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Abstract

Real-world image denoising remains a challenge task. This paper studies self-
supervised image denoising, requiring only noisy images captured in a single shot.
We revamping the blind-spot technique by leveraging the transformer’s capability
for long-range pixel interactions, which is crucial for effectively removing noise
dependence in relating pixel–a requirement for achieving great performance for
the blind-spot technique. The proposed method integrates these elements with
two key innovations: a directional self-attention (DSA) module using a half-
plane grid for self-attention, creating a sophisticated blind-spot structure, and a
Siamese architecture with mutual learning to mitigate the performance impacts
from the restricted attention grid in DSA. Experiments on benchmark datasets
demonstrate that our method outperforms existing self-supervised and clean-image-
free methods. This combination of blind-spot and transformer techniques provides
a natural synergy for tackling real-world image denoising challenges.

1 Introduction

Images taken with digital cameras inevitably acquire noise from various sources. Image denoising
aims to recover a clean (noise-free) image from its noisy counterpart, serving as an important tech-
nique in many low-level vision tasks. Recently, deep learning has prominently driven advancements
in image denoising; see e.g., [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 11]. Early works typically take a supervised
learning approach to train a neural network (NN) on a dataset with paired noisy and clean images,
where noisy images are synthesized by corrupting clean images with Additive White Gaussian Noise
(AWGN). As observed in [6, 12], a denoising NN trained on AWGN fails to generalize well on
real-world noisy images due to the statistical distribution gap between AWGN and real-world noise.

To address this issue in supervised learning, several studies have concentrated on constructing datasets
with paired real-world noisy and clean images, such as the Smartphone Image Denoising Dataset
(SIDD) [13] and the Darmstadt Noise Dataset (DND) [14]. However, creating these datasets is
labor-intensive, involving multiple acquisitions of images of the same scene, requiring rigorous image
alignment, and is inapplicable to dynamic scenes. Additionally, the statistical properties of real noise
vary for different camera systems and settings. These limitations restrict the wider application of
supervised-learning-based solutions in real-world image denoising.

To address the difficulties of creating paired noisy-clean image datasets that capture the noise
characteristics of the targeted testing data, some approaches train denoising NNs using unpaired noisy
and clean images [15, 16, 17, 8]. Other studies [18, 19, 20] use multiple noisy images of the same
scene as training data. While these methods relax data collection requirements, limitations remain.
The former still requires clean images, which is challenging to collect, especially in scientific/medical
imaging. The latter involves rigorous image alignment, making it unsuitable for dynamic scenes.
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Self-supervised denoising methods: In recent years, there has been increasing interest in self-
supervised denoising methods, where network training requires only a set of noisy images captured
in a single shot. Among these methods, Blind-Spot Networks (BSNs) and their variations are
particularly popular; see, e.g. [21, 22, 23, 24, 25, 26, 27, 28, 29, 30]. The concept of BSNs has played
a significant role in self-supervised learning for various denoising-related tasks. In principle, through
specific architectural design, a BSN estimates each output pixel from the surrounding noisy pixels,
excluding the corresponding one. This design prevents the network from converging to an identity
mapping when trained to minimize the distance between the output of the NN and the input noisy
image, as no clean image is available. Note that pixel-wise noise independence is critical for BSN to
work effectively.

Recently, transformers, NNs utilizing self-attention (SA) for sequence modeling, have shown great
performance in many applications, including image denoising; see, for example, [31, 32, 33, 34, 35].
Compared to Convolutional Neural Networks (CNNs), which use multiple convolution layers to
extend the receptive field and connect distant pixels, transformers directly model interactions between
distant pixels via attention, capturing long-range dependencies more effectively.

The effectiveness of transformers or SA in connecting distant pixels is particularly attractive for
self-supervised denoising, especially for Blind-Spot Networks (BSNs). The ability of transformers
to exploit long-range dependencies aligns well with the need for pixel-wise noise independence in
BSNs to achieve optimal performance, as noise on distant pixels is more likely to be independent
than on neighboring pixels. While the integration of transformers with BSNs is very promising, it has
not been well studied in self-supervised denoising.

Currently, there are few studies [28, 29, 36] integrate SA and BSN for self-supervised denoising.
LG-BSN [28] used channel SA [34] with dilated convolutions for blind-spot learning but did not
utilize spatial SA. SS-BSN [29] integrated a lightweight spatial SA module into a BSN with dilated
convolutions but lacked rigorous justification of blind-spot constraints. SwinIA [36] applied masking
to the Swin Transformer [31] attention matrix, targeting only AWGN. As a result, these transformer-
based methods do not outperform recent CNN-based approaches [30] in denoising real-world images.
It remains an open question how to fully leverage the effectiveness of long-range dependence in
transformers for better performance in self-supervised real-world denoising.

Main idea of our approach: The direct combination of SA and BSD, as done in [29], may
compromise the blind-spot property [28]. Another approach is to mask out input pixels, as in [21, 22].
However, pixel masking can reduce the integrity and the accuracy of long-range feature interactions
within transformer blocks. It also limits the number of available pixels for loss calculation, thereby
leads to sub-optimal performance. We address these issues with SelfFormer, a self-supervised
transformer model featuring a built-in blind-spot structure that avoids input pixel masking.

Our SelfFormer is built on a directional self-attention (DSA) mechanism, inspired by directional
convolution [23]. Unlike plain self-attention, where the attention window spreads out in all directions
(see Figure1(a)), DSA’s attention window is constrained to a half-plane excluding the token itself
(see Figure 1(b)). This unidirectional flow ensures that information broadcasted by a token does not
return to it, even after multiple DSA applications, thus creating a blind-spot mechanism.

SelfFormer has four branches, each using DSA in one direction: left, right, up, and down. Combining
outputs from all branches allows attention to extend arbitrarily far in every direction without including
the center pixel. To improve computational efficiency, we use a gridding scheme on the directional
attention window. In addition, we introduce a channel attention (CA) mechanism with blind-spot
properties to capture channel interdependence, complementing the spatial similarity captured by SA.

Blind Zone

Current Token

Attention Window

(a) Plain SA (b) Proposed  DSA

Figure 1: Illustration of basic idea of our approach.
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To further enhance the effectiveness of DSA caused by its restricted attention locations, we introduce
a pseudo-Siamese architecture for SelfFormer. One sub-NN, SelfFormer-D, employs DSA with four
branches, while the other, SelfFormer-F, uses full-grid SA with only one branch. SelfFormer-D’s four
branches share weights and process four rotated inputs, allowing identical learnable weights for DSA
and full-grid SA in the pseudo-Siamese learning. Despite different structures, this setup ensures both
sub-networks have consistent weights. SelfFormer-D and SelfFormer-F, with their different inductive
biases, provide mutual regularization through joint learning. Due to its better capability of exploiting
long-range dependencies with unconstrained attention windows, SelfFormer-F is used for inference.

Contributions: The main contributions of this paper are summarized as follows:

• SelfFormer, an efficient self-supervised transformer, is introduced for real-world image
denoising, integrating the blind-spot mechanism with transformers.

• DSA, a specific type of SA, is developed to embed the blind-spot mechanism in transformers.
• A pseudo-Siamese architecture is introduced to address the potential negative performance

impact of the restricted attention locations caused by the blind-spot mechanism.

The proposed SelfFormer for denoising real-world images is evaluated on two popular datasets, SIDD
and DND, and compared with many existing image denoisers. The results showed that SelfFormer
outperforms existing self-supervised denoisers and other methods that not using clean images.

2 Related Work

Supervised denoising: The study of supervised denoisers focus on designed network architecture.
Most existing methods are based on CNNs; see e.g. [1, 2, 3, 4, 5, 6, 7, 8, 9, 10, 37, 11]. Recently,
transformers have become a primary choice due to their performance advantage [31, 32, 33, 34, 35].
Training data is another concern. Instead of using AWGN for data synthesis, CBDNet [12] synthesized
heteroscedastic Gaussian noise and processed it through a Image Signal Processor. Zhou et al. [38]
trained a noise estimator and a denoiser with mixed AWGN and random-valued impulse noise
and then utilized pixel-shuffle down-sampling to adapt the trained model to real noises. For better
generalization and evaluation, two widely-used real-world noisy datasets were constructed in [13, 14],
respectively. However, large-scale paired data collection remains a challenge.

Weakly-supervised denoising: The related approaches can be categorized into learning on unpaired
image data, and learning on paired noisy image data. The former leverages unpaired noisy and clean
images, using either generative adversarial networks [15, 16] or flow-based methods [17, 20]. The
latter use multiple noisy images of the same scene to train a denoiser [18, 19, 20]. Note that such
multi-capture of noisy images still requires image alignment and is not applicable to dynamic scenes.

Self-supervised denoising: Self-supervised denoisers are trained using only a set of noisy images
captured in a single shot. BSN is one popular self-supervised denoiser. Masking-based BSNs (e.g.,
Noise2Void [21] and Noise2Self [22]) address overfitting caused by the absence of clean images in
the loss function by masking a portion of input pixels and predicting them using the remaining pixels.
Noise2Same [24] introduces an additional self-reconstruction loss to utilize center pixels’ information.
Blind2Unblind [25] trains a masker to better preserve valuable pixels in the masked input. SASL [39]
gives separate treatment to flat and textured regions in masking-based self-supervision.

A large percentage of input pixels are not used in the loss function when they are masked out, leading
to sub-optimal performance [23]. To address this, some works design specific network architectures to
ensure the receptive-field center is not seen by the corresponding pixel during prediction. Laine19 et
al. [23] occludes half of the receptive fields of a CNN in four different directions. D-BSN [26] applies
a center-masked convolution, followed by a series of dilated convolutions with specific step sizes.
MM-BSN [40] uses multiple convolutional kernels masked in different shapes.

The less correlated the noise of related pixels is, the better the denoiser performs. However, in
real images, neighboring pixels’ noise is highly correlated. One solution is to relate distant pixels.
AP-BSN [27] uses pixel-shuffle downsampling with high strides in training, and low strides in testing.
PUCA [30] leverages patch-unshuffle/shuffle to expand receptive fields for relating distant pixels.
LG-BPN [28] uses channel SA with dilated convolution for relating distant pixels and densely-
sampled patch-masked convolution to recover local structures. SS-BSN [29] combines grid SA [41]
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with a simplified D-BSN [26]. SwinIA [36] masks the diagonal of the attention matrix in a Swin
Transformer [31].

Besides BSNs, there are also other approaches which are architecture-independent. SURE-based
methods (e.g. [42]), introduce Stein’s unbiased estimator [43] to regularize the training. Recorruption-
based methods, e.g., Noisier2Noise [44], R2R [45], IDR [46], and Zheng et al. [47], define the loss
using pairs derived from the input noisy image to simulate a supervised loss. Sampling-based methods
(e.g. Neighbor2Neighbor [48]) form training pairs using a random neighbor sampler on the noisy
image. Score-based methods, e.g., Noise2Score [49], NDASSID [50], and Xie et al. [51], perform
self-supervised training via score matching [52]. Disentanglement-based methods, e.g., CVF-SID [53]
use a cyclic loss function to decompose the noisy image into clean and noisy components.

Zero-shot denoising: This approach performs per-sample self-supervised training. The sparse-
coding-based denoisers learn a dictionary [54, 55, 56, 57] from the noisy image, and the denoising
output is defined as a sparse approximation to the input based on the learned dictionary. The NN-based
denoiser, such as DIP [58], Self2Self[59], NoisyAsClean[60], Noise2Fast [61] and ScoreDVI [62],
also follow this paradigm. However, this approach is computationally costly when applied to a large
number of images.

3 Methodology

In this section, we give a detailed description of our proposed SelfFormer, which effectively integrates
the blind-spot mechanism with transformers for self-supervised real-world image denoising.

3.1 Grid Self-Attention and Directional Self-Attention

For a set of tokens stored as Z = [z1; · · · ; zL] ∈ RL×D, SA seeks to derive new token representations
by assessing interdependence among every pair of input tokens. Consider SA in a multi-head
setting [63]. For the h-th of H attention head, all tokens undergo a linear transform resulting in
Qh,Kh,Vh ∈ RL×D, which represent queries, keys and values respectively:

(Qh,Kh,Vh) = (ZW Q
h ,ZW K

h ,ZW V
h ), (1)

where W Q
h ,W K

h ,W V
h are learnable matrices. Subsequently, attention weights are derived, deter-

mining the extent to which each token interacts with its counterparts. This is achieved through the
calculation of similarity scores between queries and keys, leading to:

Headh = softmax(QhK
T
h /

√
D)Vh. (2)

To consolidate results from all attention heads, the output is given by

SA(Z) = concat([Head1,Head2, · · · ,HeadH ])WO, (3)

where WO is a learnable matrix dedicated to fusing the results of the different attention heads.

SA involves pairwise comparison of tokens, which is costly when directly working on all spatial
tokens from a feature tensor. As an acceleration scheme, grid SA [41] grids the tensor of shape
(H,W,C) into the shape (G2, HW

G2 , C) using a fixed G×G uniform grid, resulting in windows with
adaptive size H

G ×W
G . Then SA is performed on the decomposed grid axis (i.e., G×G), corresponding

to dilated, global spatial mixing of tokens. See Figure 2 (a) for an illustration. Note that grid SA does
not satisfy the blind-spot property.

Our DSA also uses the gridding trick for acceleration; see Figure 2(b) for the illustration. Instead
of using a half-plane attention window (Figure1(b)), DSA employs a half-plane grid to reduce the
number of compared tokens for p. Only a subset of equally spaced grids on the half-plane is involved,
which lowers computational cost. To enhance diversity, adjacent tokens have different attention grids.
For example, tokens of different colors correspond to different grids (Figure2 (b)). Each attention
head shifts the grid differently, ensuring each token visits all grids in one pass.

Our DSA can effectively simulate different attention grids by rotating and shifting the input. Despite
different definition of attention grid„ DSA and grid SA in our approach share the same parameters
W Q

h ,W K
h ,W V

h ,Whh
, allowing the introduction of the Siamese structure into our SelfFormer.
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(a) Grid SA (b) Grid-based multi-head implementation of DSA

Head #1 Head #2 Head #3 Head #4
Token / Attention Grid

Figure 2: Illustration of grid SA and grid-based DSA. In grid SA, attention grids are scattered in
all directions, with attention among tokens on same-colored grids. In DSA, attention grids are
constrained to a half-plane, varying by token and attention head.

3.2 Architecture of SelfFormer

As illustrated in Figure 3, the proposed SelfFormer has a pseudo Siamese architecture consisting
of two sub-NNs: SelfFormer-D (D for Directional) and SelfFormer-F (F for Full), both aiming at
mapping an input noisy image to its clean counterpart. The SelfFormer-D consists of four branches,
each performing DSA with one specific direction. The SelfFormer-F has only one branch which has
the same structure as the branches in SelfFormer-D, except that its performs grid SA instead of DSA.

Each branch consists of six attention blocks (ABs) for performing DSA or grid SA, with two 1× 1
convolutions at the beginning and end. The ABs are arranged in a U shape, with downsampling in the
first half and upsampling in the second half. All branches in SelfFormer-D and SelfFormer-F share
weights, except for the last 1× 1 convolution. The last 1× 1 convolution in SelfFormer-D integrates
outputs from its four branches, resulting in a different input channel dimension from SelfFormer-F.
Consequently, SelfFormer-D and SelfFormer-F have different structures but share identical learnable
weights, except for the last layer, forming a pseudo-Siamese pair.

The pseudo-Siamese architecture benefits both training and testing. While SelfFormer-D’s blind-
spot mechanism aids self-supervised training to avoid overfitting, its restricted attention grid may
weaken the utilization effectiveness of long-range dependency. In contrast, SelfFormer-F uses a full
attention grid, avoiding this issue though losing the function of a BSN. Mutual learning between
these sub-networks mitigates SelfFormer-D’s structural bias, enhancing effectiveness. Additionally,
SelfFormer-F utilizes a single path, as opposed to the four-path structure of SelfFormer-D, resulting
in significantly faster performance. Due to these advantages, SelfFormer-F is employed for inference.

Downsampling and upsampling: The pairs of downsampling and upsampling used in SelfFormer
can extend the receptive field in all directions. To maintain a blind-spot structure, we implement
the same idea in [23] which attaches offsets to the downsampling layers. For a 2 × 2 average
downsampling layer, we restrict the receptive field to extend upwards only by padding the input
tensor with one row of zeros at top and cropping out the bottom row before operating downsampling.

Attention blocks: Each AB sequentially comprises a CA, a Feed-Forward Network (FFN), a DSA
module, and another FFN. ABs involve multiple 1×1 convolutions and summation operations, which
do not need specific treatment for blind-spot mechanism, as they neither change the receptive field
nor spread information spatially. The CA is implemented as the NAFBlock [11] in SelfFormer-F, and
we construct its blind-spot counterpart (called BSCA) for SelfFormer-D.

Channel attention w/ and w/o blind-spot: Channel attention re-calibrates global feature responses
for primitive inputs by explicitly modeling inter-dependencies of channels, complementing the
function of SA. We use NAFBlock [11] for channel attention, consisting of SimpleGate and Simplified
Channel Attention (SCA). See Figure 3 for details. Given 2 feature tensors, X1 and X2, generated
by two 3× 3 convolutions on an input feature, SimpleGate outputs X = X1 ⊙X2, where ⊙ denotes
element-wise multiplication, maintaining the receptive field. The 3× 3 convolutions in SelfFormer-D
are directional convolution [23] to own the blind-spot property. Then, SCA re-calibrates channels
by multiplying each channel of X with a weight scalar, calculated using a channel-wise Global
Average Pooling (GAP) and a 1× 1 convolution. As GAP squeezes all spatial values into a scalar and
scale-multiplication do not spread spatial information, the SCA preserves the blind-spot property.
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Figure 3: Architecture of the proposed SelfFormer.

3.3 Loss Function

The overall loss function consists of a self-reconstruction loss Lself and a mutual learning loss Lmutual:

Ltotal = Lself + λLmutual, (4)

where λ is set to 1. Let x denote a noisy image. Let MD,MF denote the models of SelfFormer-D
and SelfFormer-F, respectively. The self-reconstruction loss is then defined by

Lself = Ex||MD(x)− x||1. (5)

Due to the blind-sport structure of SelfFormer-D, MD trained with this loss will not converge to the
trivial identity mapping, but rather an effective denoiser. The mutual loss is defined by

Lmutual = Ex||MD(x)−MF(x)||1. (6)

This loss enables the regularization effect of the two sub-networks to each other, leading to better
generalization performance.

4 Experiments

4.1 Experimental setting

Datasets: Three widely-used real-world datasets are used for evaluation: SIDD [13], DND [14], and
NIND [64]. SIDD is created by photographing a scene many times and using its mean as the GT
clean image. The images of SIDD are captured by five different smartphone, and they are divided
into non-overlapping subsets for training, validation, and test, respectively. As most works do, these
samples are cropped into 24542 pairs of patches. the SIDD-Medium subset is chosen as training
data, consisting of 320 noisy/clean image pairs. The validation subset, denoted by SIDD-Validation,
consists of 1280 paired samples for hyper-parameter tuning and ablation study. The subset for test is
denoted by SIDD-Benchmark, consisting of 1280 noisy samples. DND consists of 50 noisy-clean
pairs, formed by shooting the same scene twice with different ISO values. The high-ISO images
serve as noisy inputs and the corresponding low-ISO images serve as GT images. DND is used only
for testing for performance evaluation. NIND is a real-world dataset consisting of clean-noisy image
pairs captured at ISO levels of 3200, 4000, 5000, and 6400, with 22, 14, 13, and 79 pairs, respectively.
For evaluation, we select ISO 3200 and ISO 5000, following the provided training/test split. Note
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that as the GTs of SIDD-Benchmark and DND are not accessible to users. All denoising results are
uploaded to the official websites of these two datasets for calculating the peak signal-to-noise ratio
(PSNR) and the structural similarity (SSIM) index,

Implementation details: Our work is implemented on PyTorch1.10 and CUDA 11.8, which will be
released upon paper acceptance. All experiments are conducted on an NVIDIA A6000 GPU. The
grid size of SelfFormer-D is set to image size divided by 8, and it doubles for SelfFormer-F. To better
address noise correlation, we mask out the 4× 4 half-plane neighboring locations around the center
pixel within the attention window of the DSA of SelfFormer-D during training. This ensures that the
pixels used in the attention window are at a distance from the central pixel, thereby reducing the noise
correlation as the distance between the pixels increases. SelfFormer-D is optimized using Adam with
a learning rate of 0.0001, and that of SelfFormer-F is doubled. Other parameters of Adam are set to
default. The entire model is trained for 30 epochs for full convergence.

4.2 Performance Evaluation on Real-world Denoising

We include an extensive list of image denoisers for comparison: (a) Two representative non-learning-
based methods: BM3D [65] and WNNM [66]; (b) Three classic supervised denoisers trained on
synthetic noisy data: DnCNN [1], CBDNet [12] and Zhou et al.[38]; (c) Five supervised denoisers
trained on real-world noisy images of SIDD-Medium: DnCNN [1], VDN [7], AINDNet(R) [9],
DANet [8] and NAFNet [11]; (d) Three unpaired learning methods GCBD [15], C2N+DIDN [16]
and D-BSN+MWCNN [26]; (e) Four zero-shot denoisers: Self2Self [59], NoisyAsClean [60],
ScoreDVI [62] and MASH [67]; and (f) Twelve Self-supervised denoisers: Noise2Void [21],
Noise2Self [22], Laine et al. [23], Recorrupted2Recorrupted (R2R) [45], CVF-SID [53], AP-
BSN [27], LG-BPN [28], MM-BSN [40], SASL [39], SS-BSN [29], C-BSN [68], and PUCA [30].

Table 1 compares the quantitative results of different methods, where we mark in bold the best results
among all methods that do not call any clean images for training, including the non-learning-based,
zero-shot and self-supervised methods. It can be seen from Table 1 that our SelfFormer achieved the
best results on all the benchmark datasets, in terms of both PSNR and SSIM.

R2R and input-masking-based BSNs, including Noise2Void, Noise2Self, and Laine et al.’s, rely
heavily on the spatial independence of noise, resulting in poor performance on real-world images
with locally-correlated noise. In contrast, SelfFormer leverages interactions of distant pixels via
its transformer architecture during training, leading to significant performance gains. Compared to
AP-BSN, MM-BSN, SASL, and PUCA, SelfFormer’s superior performance comes from utilizing the
transformer’s long-range perception capability for relating distant pixels.

Regarding SA-based BSNs, including LG-BSN and SS-BSN, our SelfFormer performs noticeably
better than LG-BSN. Although SS-BSN matches SelfFormer in SSIM on SIDD, its PSNR performance
on DND is noticeably worse. These results confirm the higher effectiveness of our SSA module
compared to the dilated SA in LG-BSN and the plain grid SA in SS-BSN.

Visual comparison: Refer to Figure 4 for a visualization of denoising results from top BSN-based
methods. We selecte the images with richly textured regions from SIDD-benchmark and DND for
comparison. Laine et al.failed to break spatial noise correlation, resulting in undesirable denoising.
While achieving adequate global denoising, AP-BSN and LG-BPN generate artifacts, and PUCA
smooths out some details. We successfully recovers the detailed texture of the clean image by
proposed DSA. Unlike SIDD-Benchmark and DND, the SIDD-Validation provides GT images
and we choose some images of it for evaluation. See Figure 5 for a visual comparison of these
images relies on global information. Both AP-BSN and LG-BPN fail to separate spatial noise from
image details, leading to deficient denoising. In contrast, SelfFormer-F effectively eliminate spatial
correlation noise while preventing the creation of erroneous flat regions.

Computational complexity: Table 2 compares the computational complexity of transformer-based
self-supervised denoisers and top CNN-based denoiser, in terms of model size (number of parameters)
and inference time for a 256 × 256 image. SelfFormer has a smaller size than the second-best
performer, PUCA, and is much faster than transformer-based methods: LG-BPN and SS-BSN.
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Table 1: PSNR(dB)/SSIM results on SIDD benchmark, DND benchmark and NIND dataset. We
report the official results from the benchmarks’ websites whenever possible. The results of Zhou et
al.are quoted from [27]. The results of Noise2Void and Noise2Self are quoted from [45]. The
results of DnCNN and Laine et al.are obtained by code re-running. Bold denotes the best results in
clean-image-free methods.

Type Method SIDD DND NIND NIND
ISO3200 ISO5000

R
eq

ui
ri

ng
cl

ea
n

im
ag

es

Supervised
(Synthetic pairs)

DnCNN [1] 23.66/.583 32.43/.790 - -
CBDNet [12] 33.28/.868 38.05/.942 - -

Zhou et al. [38] 34.00/.898 38.40/.945 - -

Supervised
(Real pairs)

DnCNN [1] 35.87/.842 35.74/.903 - -
VDN [7] 39.26/.955 39.38/.952 - -

AINDNet(R) [9] 38.84/.951 39.34/.952 - -
DANet [8] 39.43/.956 39.58/.955 - -

NAFNet [11] 40.30/.961 - - -

Unpaired
GCBD [15] - 35.58/.922 - -

C2N+DIDN [16] 35.35/.937 37.28/.924 - -
D-BSN+MWCNN [26] - 37.93/.937 - -

Fr
ee

fr
om

cl
ea

n
im

ag
es

Non-learning BM3D [65] 25.65/.685 34.51/.851 - -
WNNM [66] 25.78/.809 34.67/.865 - -

Zero-shot

Self2Self [59] 29.51/.651 - - -
NAC [60] - 36.20/.925 - -

ScoreDVI [62] 34.60/.920 - - -
MASH [67] 34.78/.900 - - -

Self-supervised

Noise2Void [21] 27.68/.668 - 28.42/.766 27.04/.658
Noise2Self [22] 29.56/.808 - - -
Laine et al. [23] 30.14/.823 35.13/.862 - -

R2R [45] 34.78/.898 - - -
CVF-SID [53] 34.71/.917 36.50/.924 - -
AP-BSN [27] 36.91/.931 38.09/.937 34.41/.854 33.49/.847
LG-BPN [28] 37.28/.936 38.43/.942 33.94/.840 33.33/.831
MM-BSN [40] 37.37/.936 38.46/.940 - -

SASL [39] 37.41/.934 38.18/.938 - -
SS-BSN [29] 37.42/.937 38.46/.940 - -
C-BSN [68] 37.43/.936 38.62/.942 34.33/.855 33.52/.839
PUCA [30] 37.54/.936 38.83/.942 34.24/.854 33.49/.840

SelfFormer [Ours] 37.69/.937 38.92/.943 34.43/.857 33.55/.847

Table 2: Computational complexity comparison in terms of model size and inference time.

CNN-based Method Transformer-based Method
AP-BSN MM-BSN PUCA LG-BPN SS-BSN SelfFormer-F

PSNR(dB) 36.87 37.38 37.51 37.28 37.32 37.63
#Param(M) 3.7 5.7 12.8 4.8 6.4 10.8
Time(ms) 382 539 529 5208 3976 1812
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Laine et al. [23] AP-BSN [27] LG-BPN [28] PUCA [30] SelfFormer [Ours]

Figure 4: Visual inspection of the results of some samples from SIDD-Benchmark and DND.

Noisy Ground Truth AP-BSN [27] LG-BPN [28] SelfFormer [Ours]

Figure 5: Visual comparison on samples from SIDD-Validation.
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4.3 Ablation Studies

Following existing works, we conduct the ablation study on SIDD-Validation. We consider four
baselines, summarized in Table 3. (a) DSA→Grid SA: The effectiveness of DSA is tested by replacing
it with grid SA in SelfFormer-D and reducing the branch number to one, resulting in a true Siamese
pair structure similar to SelfFormer-S. Despite some performance gain from mutual learning, this
baseline performs significantly worse than the original model. This is due to the arbitrary feature
flow, which loses the blind-spot property. (b) w/o CA: We replace all BSCA (CA) modules with DSA
(Grid SA) modules. (c) Only SelfFormer-D: We train SelfFormer-D without Lmutual and test with it.
Without the Siamese structure and mutual learning, the performance noticeably decreases due to the
limitations of the constrained attention grids in SelfFormer and the loss of regularization from mutual
learning. (d) Only SelfFormer-F: We train SelfFormer-F only using Lself and test with it. Lacking any
blind-spot mechanism and regularization from mutual learning, this network performs very poorly,
indicating overfitting to noisy image. (e) w/o DSA: All DSA (Grid SA) modules are replaced with the
BSCA (CA) modules. Since the blind spot property is preserved, the performance remains better than
“Only SelfFormer-F”, which lacks this property. (f) w/o WeightShare: In this case, the SelfFormer-D
and SelfFormer-F do not share weight, leading to a performance loss. This suggests that the weight
sharing not only reduces the the number of parameters but also provides a regularization effect.

Table 3: PSNR(dB)/SSIM results of ablation studies on SIDD-Validation.

DSA→Grid SA w/o CA Only SelfFormer-D Only SelfFormer-F w/o DSA w/o WeightShare Original

23.96/0.336 37.54/0.881 37.29/0.879 23.66/0.328 37.22/0.880 37.45/0.880 37.63/0.882

Table 4 shows the experimental results on SIDD-Validation, with varying grid sizes and loss function
weight λ. The results indicate that increasing the grid size can improve performance, as more pixels
are utilized in DSA and grid SA. However, setting the loss weight λ too small or too large results in a
noticeable decrease in performance.

Table 4: Results with varying grid sizes and loss function weights on SIDD-Validation

Grid Size Loss Weight

Grid size PSNR(dB) SSIM Loss weight PSNR(dB) SSIM

8 37.43 0.874 0.01 37.35 0.879
12 37.51 0.879 0.1 37.57 0.881
16 37.63 0.882 1 37.63 0.882
20 37.65 0.882 10 37.51 0.880

5 Conclusion

We presented a transformer-based self-supervised framework for real-world image denoising, optimiz-
ing its performance by exploiting distant pixel interactions in transformer to reduce noise correlation.
Our key innovation is a DSA module using a half-plane grid for SA, creating a blind-spot structure. A
Siamese architecture with mutual learning addressed the performance impact caused by the restricted
attention grid in DSA. Experiments on benchmark datasets show our method outperforms existing
self-supervised and clean-image-free methods.

While SelfFormer outperforms all related self-supervised denoisers, transformer-based models gener-
ally incur higher computational costs compared to CNN-based models. Additionally, there remains a
significant performance gap between SelfFormer and supervised denoisers. In the future, we aim to
improve both the performance and efficiency of transformer-based denoiser.
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A Appendix

A.1 Broader Impacts

The proposed self-supervised learning method for denoising images has the potential to impact a wide
range of applications, including surveillance security, scientific research, and digital media restoration.
By improving the signal-to-noise ratio of images, our research can facilitate deeper insights and more
effective interventions in these fields. In surveillance, higher clarity images can enhance public safety
by providing more detailed visual information. However, this also raises concerns about privacy
and the potential for mass surveillance. In scientific research, improved image quality can lead to
better data and more significant discoveries, though there is a risk that overly processed images could
misrepresent the original data. In digital media restoration, while the technique helps preserve cultural
heritage, it also poses the risk of altering historical records. Despite these possible concerns, our goal
is to contribute to enhancing image clarity in critical areas such as public safety, scientific research,
and cultural preservation. We emphasize the responsible application and continuous improvement of
this technology to mitigate potential risks and maximize its positive impact.

A.2 Additional Results

Table A1: Quantitative results of self-supervised methods on SIDD-Validation.

Metric N2V R2R CVF-SID AP-BSN LG-BPN SASL PUCA C-BSN SelfFormer [Ours]

PSNR(dB) 27.06 35.04 34.15 36.73 37.31 37.39 37.49 37.51 37.63
SSIM 0.651 0.844 0.871 0.878 0.884 0.875 0.880 0.885 0.882

Table A2: Computational complexity comparison of different methods in terms of training time,
memory usage in training, and memory usage in inference.

CNN-based Methods Transformer-based Methods
AP-BSN MM-BSN PUCA LG-BPN SS-BSN SelfFormer [Ours]

Training Time (h) 5.086 11.291 10.227 6.313 49.483 56.266
Training Mem. (G) 0.574 1.349 2.549 1.884 0.873 9.161
Inference Mem. (G) 0.664 1.310 1.200 12.072 3.492 2.806

For further analysis, we conducted an additional quantitative comparison on the SIDD-Validation
dataset, as shown in Table A1. Moreover, we provide a detailed complexity comparison in Table A2,
demonstrating that our method’s memory usage during inference is lower than that of the other
two related transformer-based methods, particularly when compared to LG-BPN. However, due to
the inclusion of SelfFormer-D, which incorporates multiple paths for DSA, the memory usage of
our method during training remains relatively high. This confirms one of our key motivations for
introducing the pseudo-Siamese architecture, namely to significantly reduce memory consumption
from the training phase to inference. For additional visual comparisons on DND, SIDD Validation
and SIDD-Benchmark, please refer to Fig A1, A2, and A3.
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Laine et al. [23] AP-BSN [27] LG-BPN [28] PUCA [30] SelfFormer [Ours]

Figure A1: More qualitative comparison on samples from DND.

Noisy Ground Truth AP-BSN [27] LG-BPN [28] SelfFormer [Ours]

Figure A2: More qualitative comparison on samples from SIDD-Validation.
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Laine et al. [23] AP-BSN [27] LG-BPN [28] PUCA [30] SelfFormer [Ours]

Figure A3: More qualitative comparison on samples from SIDD-Benchmark.
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