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Abstract

In recent years, deep learning has emerged as an important tool for image shadow removal. However, exist-

ing methods often prioritize shadow detection and, in doing so, they oversimplify the lighting conditions of

shadow regions. Furthermore, these methods neglect cues from the overall image lighting when re-lighting

shadow areas, thereby failing to ensure global lighting consistency. To address these challenges in images

captured under complex lighting conditions, this paper introduces a multi-scale network built on a Retinex

decomposition model. The proposed approach effectively senses shadows with uneven lighting and re-light

them, achieving greater consistency along shadow boundaries. Furthermore, for the design of network, we

introduce several techniques for boosting shadow removal performance, including a shadow-aware channel at-

tention module, local discriminative and Retinex decomposition loss functions, and a multi-scale mechanism

for guiding Retinex decomposition by concurrently capturing both fine-grained details and large-scale con-

textual information. Experimental results demonstrate the superiority of our proposed method over existing

solutions, particularly for images taken under complex lighting conditions.
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1. Introduction

A shadow in an image is defined as a region where light intensity is diminished due to an object obstructing

the light source, leading to a decrease in brightness and possible color alterations, as depicted in Fig. 1(a).

Shadows in an image not only impair its aesthetic quality but also undermine the performance of related

computer vision algorithms. Specifically, they can obscure object features, induce false positives or negatives

in detection tasks, and create lighting inconsistencies. Image shadow removal seeks to rectify the lighting

within these shadowed regions while maintaining the original colors and details of the entire image. This

technique serves as a vital preprocessing step with extensive applications across various fields, including but
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(a) shadowed image (b) Shadow mask (c) GT (d) SP-M-Net [5] (e) UnfoldNet [1] (f) MSRDNet [Ours]
(28.58/0.938/3.57) (25.28/0.862/5.96) (36.75/0.978/2.31)

Figure 1: Illustration of image shadow removal. he PSNR (dB), SSIM, and RMSE values for each result are provided in brackets

not limited to object detection [1], medical image analysis [2], augmented reality [3], and satellite imaging [4].

Effective shadow removal in images presents numerous challenges, primarily due to the intricacies of

lighting conditions and scene composition. Key issues include the ambiguity in distinguishing shadows from

other dark regions, the need to handle both soft and hard shadows, and the preservation of original color

and texture. Further complications arise from varying illumination conditions, multiple light sources, inter-

reflections, and the non-uniformity of shadows. Lastly, another significant challenge is to maintain global

illumination consistency when adjusting the lighting of shadow regions, as any oversight can lead to post-

removal artifacts, such as anomalies along shadow boundaries. These multifaceted challenges make image

shadow removal a complex problem to tackle.

In the era preceding deep learning, traditional methods for image shadow removal predominantly relied

on handcrafted discriminative priors on both detect shadows and recover illumination in shadowed regions.

These methods primarily focused on exploiting distinct attributes of shadow versus non-shadow regions,

such as edges [6], intensities [7], geometries [8], and textures [9]. However, the oversimplified assumptions

underlying these priors limit their applicability in complex real-world scenarios. In recent years, deep learning

has made substantial contributions to the progress of shadow removal. Convolutional neural network (CNN)-

based methods, often employing end-to-end training, focus on directly mapping a shadowed image to its

shadow-free counterpart [10, 11, 12]. A variety of techniques utilize generative adversarial networks (GANs)

to detect and subsequently remove shadows [13, 14]. Additionally, deep learning has made significant progress

in shadow detection [15, 16], which can serve as a pre-processing step for subsequent shadow removal.

1.1. Motivation and Main Idea

While deep learning has significantly enhanced the effectiveness and robustness of shadow removal tech-

niques, current methods frequently fall short in fully leveraging the underlying illumination-related physics

of shadows and the entire image. This limitation compromises their performance in complex lighting envi-

ronments. Although end-to-end models offer a convenient solution, they often fail to generalize well across

diverse real-world lighting conditions. Most existing physics-based models [5, 6], while exploiting certain
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physical properties of shadows, tend to rely on overly simplistic assumptions on shadows, such as constant

illumination within shadow regions and apply basic linear transformations for illumination adjustments. This

leads to undesirable artifacts along shadow boundaries, particularly under complex lighting conditions. For

instance, Fig. 1 (d), illustrates that the SP-M-Net method [5] mistakenly darkens regions below the shadow

boundary and excessively brightens the vertical gray stripe within shadowed areas. These issues motivate us

to develop more advanced shadow removal techniques that can handle intricate lighting variations, particu-

larly at shadow boundaries.

To illustrate, a shadowed image Y can be decomposed into shadow and non-shadow regions as follows:

Y = (1−M)⊙X +M ⊙ S, (1)

where ⊙ denotes entry-wise multiplication, 1 is a matrix of all ones, X denotes the shadow-free image, S

represents the shadow layer, and M is a binary mask, taking only 0, 1 values, to indicate non-shadow and

shadow region. Then, the shadow-free image X can be obtained by:

X = (1−M)⊙Y +M ⊙ Y ′, (2)

where Y ′ represents the re-light image obtained from Y which achieves natural illumination in shadow regions.

While the model (2) is useful at identifying shadow regions, it has several limitations. First, it fails to consider

the nuances of lighting and color, leading to possible erroneous illumination adjustment. Second, the binary

nature of the mask often ignores soft transitions or gradations in shadows, resulting in visible artifacts along

shadow boundary in the result. Lastly, the mask-based model overlooks the global illumination effects of

shadows, potentially yielding results that appear inconsistent or unnatural. In summary, while useful for

shadow identification, mask-based model (2) fall short in addressing the multifaceted challenge of restoring

original color and illumination of images taken under complex illumination conditions.

To address these limitations, we utilize the well-known Retinex decomposition theory [17]. This theory

has been widely used for explaining how the human visual system perceives colors under varying lighting

condition, and it has also found extensive applications in tasks related to image enhancement [18, 19]. In

Retinex decomposition, an image I is composed by an illumination map L and a reflectance map R:

I = L⊙R, (3)

Here, the reflectance map R captures the inherent properties of the objects, for instance, their colors and

patterns. It remains relatively invariant under different lighting conditions. The illumination L represents
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the light that illuminates the scene. Changes in the illumination can change the appearance of the scene

without altering the inherent properties of the objects.

By leveraging the Retinex decomposition, the shadow-free image can be expressed as:

X = (1−M)⊙L⊙R+M ⊙L′ ⊙R, (4)

where L,L′ are the illumination maps of Y and Y ′ respectively, and the reflectance R is shared between

Y and Y ′ due to its invariance to illumination changes caused by shadows. The adoption of a Retinex

decomposition-based model for shadow removal is compelling for several reasons. First, it effectively models

shadows as regions of altered illumination by employing separate illumination maps for shadowed and illumi-

nated regions. Second, the model maintains reflectance invariance by using the same reflectance map for both

shadowed and illuminated regions, aligning with the principles of Retinex theory. Third, the decoupling of

illumination from reflectance enables more effective compensation and adjustment in shadowed areas, thereby

enhancing re-lighting for shadow removal. Last, the decomposition allows flexible manipulation of L and L′,

facilitating more nuanced shadow removal.

Instead of directly incorporating the model (4) in the image domain, our approach, termed the Multi-Scale

Deep Retinex Decomposition Network (MSRDNet), embeds the model (4) in feature space with a multi-scale

fashion. There are two key components in MSRDNet for shadow removal: one performs Retinex decompo-

sition in feature space for efficient differentiation between true shadows and other image artifacts and for

better illumination correction with spatially-varying shadow parameters; and the other refines the model’s

focus on feature channels rich in shadow-related information, thereby enhancing shadow recovery. For further

performance improvement, a local discriminative loss and a Retinex decomposition loss are introduced, con-

centrating the MSRDNet on shadow boundaries and improving illumination correction without introducing

undesired artifacts.

The effectiveness of our approach is validated through extensive experiments on three benchmark datasets.

For instance, as shown in Fig. 1, our approach successfully avoids over-brightening gray vertical streaks within

shadowed regions and prevents erroneous removal of dark regions near the shadow boundary.

1.2. Main Contributions

The primary contribution of this paper lies in addressing the limitations of existing shadow removal tech-

niques, particularly those failing to account for the complexities of lighting conditions and shadow transitions

around boundaries. While Retinex decomposition, as a widely used model explaining color perception under

varying lighting conditions, has been utilized for shadow removal [15, 7], how to implement it as an effective
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physics-driven neural network remains a key to performance. Our proposed MSRDNet in this paper provided

an efficient solution towards this goal. The main contributions of this paper are summarized as follows:

• An effective and interpretable deep neural network for image shadow removal is proposed based on a

Retinex-based deshadowing model;

• Multi-scale shadow-aware processing modules are proposed, enabling better handling spatial variations

of shadow illuminations across multiple scales;

• Specialized loss functions including a local discriminative loss and a Retinex decomposition loss are

introduced to guide the model in focusing on shadow boundaries and ensuring the consistency of

boundary between shadow and non-shadow regions.

• Our approach has achieved excellent performance and avoids common pitfalls like over-brightening and

erroneous shadow removal.

2. Related Work

2.1. Non-learning Methods for Image Shadow Removal

Early studies on image shadow removal focus on non-learning methods that rely on handcrafted priors,

e.g., the distinct properties of shadow regions versus non-shadow regions in terms of edges [6, 20], colors and

intensities [7, 21], or geometries and textures [8, 9]. Finlayson et al. [6] proposed to eliminate shadows by

reintegrating image gradients from shadow-free regions. Yang et al. [21] proposed to derive intrinsic image

structures from color information and then remove shadows by adjusting their brightness. Liu et al. [20]

proposed to remove shadow by reconstructing the whole image from the estimation of shadow-free texture-

consistent image gradients. Guo et al. [22] performed pairwise classification based on the information of

segmented regions and then recovered the shadow-free image with the new illumination model. Grest et

al. [23] introduced a method for segmenting scenes and adopted an adaptive thresholding strategy to remove

shadows. While having their merits, these methods are constrained by their reliance on specific pre-defined

priors that lack adaptability, limiting their performance, particularly on complex real-world data that deviate

from those pre-defined rough assumptions.

2.2. Deep Learning Methods for Image Shadow Removal

In recent years, deep learning has emerged as a dominant approach for shadow removal, addressing the

limitation of handcrafted prior-based methods by leveraging powerful modeling capability of deep neural
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networks. Le et al. [5] designed dual deep CNNs to predict shadow parameters and mask layers respec-

tively, followed by a linear transformation to adjust the lighting conditions in shadow regions. Fu et al. [12]

formulated shadow removal as an exposure fusion problem and introduced a shadow-aware fusion CNN to

generate fusion weight maps for re-illuminated images. Gao et al. [11] proposed a two-stage method that

sequentially uses a CNN for gray-scale enhancement and a CNN for colorization. Jie et al. [10] designed

a random multi-level attentive CNN that fuses multi-level features via a self-attention mechanism, which

enhances the adaptability to various shadow conditions.

Some studies focused on utilizing unpaired training samples. Hu et al. [14] employed a cycle GAN with

a cycle consistency loss function for unpaired data learning. Le et al. [24] utilized an adversarial critic

to train a shadow remover using unpaired shadow and non-shadow patches. A few studies works on the

augmentation of training data. Cun et al. [25] developed a shadow matting GAN that synthesizes shadow

images from corresponding shadow-free images and masks, thereby forming more realistic samples for training.

Liu et al. [13] further relaxed requirement on unpaired data collection via introducing a weakly-supervised

approach that trains models only with shadowed images and their corresponding shadow masks, without

using ground-truth shadow-free images.

While having made progresses in improving shadow removal performance, these methods often employ

simplistic strategies such as mere concatenation of shadow masks with shadow images and applying linear

lighting adjustments solely in the image space. Moreover, many of these methods operate under the assump-

tion that shadow regions exhibit constant variations, which limits their effectiveness in handling complex

lighting conditions and varying shadow intensities.

2.3. Image Shadow Detection

Image shadow detection itself is a problem with practical usages. An accurate shadow detector can sig-

nificantly aid the shadow removal process by providing precise shadow masks. These masks are instrumental

in identifying and localizing the shadows. Consequently, many shadow removal methods incorporate image

shadow detection techniques as a preprocessing step to obtain inputs related to the location of shadows.

Early traditional methods rely on various clues for shadow detection [26], e.g., the material and illumina-

tion relationships of region pairs [22], the comparison of texture descriptors and photometric properties [27],

and the pairwise contextual cues [28]. Although these methods have shown promise in detecting shadows

with reasonable accuracy in simplistic scenarios, they do not generalize well in complex environments.

Deep learning also has been extensively exploited in shadow detection. Hu et al. [16] employed a recurrent

neural network to analyze spatial context in an orientation-aware manner and integrated this analysis into a

CNN for enhancing shadow detection. Inoue et al. [15] extended a physically-based shadow lighting model
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Figure 2: Architecture of proposed MSRDNet.

to synthesize shadow images, thereby improving the detection performance. Zhu et al. [29] implemented two

parallel interactive branches to jointly generate shadow and non-shadow masks. Cun et al. [25] designed a

dual hierarchical aggregation network that combines dilated multi-context features and attentions to further

refine shadow detection.

3. Methodology

Our proposed MSRDNet for image shadow removal is inspired by the Retinex decomposition model

described in (4). It operates within a multi-scale Retinex decomposition framework to effectively address

shadow removal under complex illumination conditions. To ensure the seamless transition between shadow

and non-shadow regions in the result, we augment conventional loss functions with a local discriminative loss

and a Retinex decomposition loss that effectively guide the re-illumination of shadow regions.

3.1. Network Architecture

As illustrated in Fig. 2(a), the MSRDNet is a 4-level symmetric encoder-decoder neural network en-

hanced with skip connections. Each level of this encoder-decoder structure comprises multiple Mask-Guided

Shadow Removal (MGSR) blocks. The MGSR block performs efficient Retinex decomposition-based feature

processing at multiple scales, consisting of a shadow-aware channel attention (SACA) module and a Retinex

decomposition-based shadow lighting (RDSL) module, allowing them to extract features from both local and

global perspectives. The early levels of the MGSR blocks have smaller receptive fields, allowing them to
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focus on local fine-grained details within the input data. As the data progresses through the MGSR blocks,

the layers become progressively deeper, with larger receptive fields. This enables the later levels to capture

more global, large-scale contextual information. Furthermore, the inclusion of skip connections facilitates the

integration of features from earlier and later levels, effectively combining information from different scales.

This results in a feature representation that adeptly captures both fine-grained local details and large-scale

contextual information.

Specifically, the MSRDNet starts with a high-resolution image of size C × H ×W , with H ×W pixels

and C channels. A 3 × 3 convolution is initially applied to this input to extract low-level features. To

perform a multi-scale analysis, through the encoder of MSRDNet, the spatial dimensions of feature maps are

progressively halved, while the numbers of channels are doubled accordingly. This hierarchical downsampling

serves to encapsulate and abstract important image features across varying scales. Conversely, the decoder

iteratively restores the input lower-resolution features to higher-resolution representations. At each MGSR

block of the decoder, the features from the previous MGSR block are concatenated with the corresponding

features of the MGSR block in the encoder, and then a 1× 1 convolution is employed. The resulting feature

maps are used as the input features.

In addition, the shadow mask and its downsampled version are used as inputs for each MGSR block.

The downsampled version is obtained through a 2 × 2 max pooling operation, which reduces the spatial

dimensions while preserving the most prominent features of the mask. These shadow masks are employed

in the RDSL module to identify shadow regions, enabling the model to leverage both global and local

illumination information from non-shadowed areas to guide the illumination recovery process. They also serve

as a reference in the SACA module, emphasizing shadow-rich channel features for more precise processing.

One side effect of the dimension reduction induced by the 2× 2 pooling process is that it may introduce

minor precision loss in shadow region identification. This raises concerns about the potential propagation of

such errors. However, our approach effectively addresses this issue, and empirical experiments validate the

robustness of our method against possible error propagation, as shown in Section 4.3.

3.2. Retinex Decomposition-based Shadow Lighting Module

Our proposed MSRDNet leverages the concept of Retinex decomposition (3) within the feature space,

particularly through the RDSL module. This module effectively distinguishes genuine shadow features from

artifacts, thereby improving the visual quality of deshadowed regions. By learning spatially varying shadow

parameters and integrating global and local information from non-shadow regions, MSRDNet handles spa-

tially complex degradations within shadow areas more effectively, reducing boundary artifacts. As shown

in Fig. 2(b), the input feature tensor F ∈ RĈ×Ĥ×Ŵ undergoes decomposition into an illumination part LF
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and a reflectance part RF , which is achieved via layer normalization and consecutive parallel convolutions,

where Ĉ = C × 2i−1, Ĥ = H/2i−1, Ŵ = W/2i−1, and i represents the level in MSRDNet. With such a

Retinex decomposition in feature space, the RDSL module then adjusts the lighting in shadow regions using

the illumination map, guided by a shadow mask M expanded to match the dimensions of the target feature

tenor.

The illumination map of features is partitioned into shadow regions LF
s = M⊙LF and non-shadow regions

LF
ns = (1−M)⊙LF . Then, two types of coefficients, i.e., global coefficients W F and local coefficients BF ,

are derived from non-shadow regions to modify the lighting to process shadowed areas, as follows:

LF
relit = LF

s ⊙W F +M ⊙BF . (5)

The global coefficients W F integrate the global illumination information of non-shadow regions via mask

average pooling (MAP), followed by two 1 × 1 convolutions, a ReLU activation function, and an expan-

sion operator. The local coefficients BF address shadow degradation in a discriminative manner, obtained

through horizontal/vertical MAP (H/V-MAP, alternating through the MGSR blocks), followed by two 1× 1

convolutions, a Tanh activation function, and an expansion operator. The MAP and H/V-MAP are defined

by:

MAP : (LF
ns)(c, 1, 1) = (

∑
i,j

1−M(1, i, j))
−1∑

i,j

LF
ns(c, i, j),

H-MAP : (LF
ns)(c, i, 1) = (

∑
j

1−M(1, i, j))−1
∑
j

LF
ns(c, i, j),

V-MAP : (LF
ns)(c, 1, j) = (

∑
i

1−M(1, i, j))−1
∑
i

LF
ns(c, i, j).

After illumination adjustment in shadow regions, the modified illumination map LF
sf is synthesized by

combined shadow regions LF
relit with the non-shadow regions LF

ns. Finally, the modified illumination map

LF
sf and the reflectance map RF are combined to reconstruct the enhanced features via a residual connec-

tion. Some visual examples of lighting adjustment are presented in Fig. 3, where the illumination features

(LF ,LF
s ,L

F
sf ,L

F
relit) are displayed in a single channel. The initial illumination map LF highlights the distinct

contrast between shadowed and non-shadowed regions. After the RDSL module’s adjustments, the illumina-

tion disparities between these regions in LF
sf are significantly minimized. This reduction is further enhanced

by the attention mechanism in the SACA module and the local discriminative loss, which together result

in a seamless transition between shadow and non-shadow regions. These results provide clear evidence of

the Retinex model’s effectiveness, particularly in reducing shadow boundary artifacts and ensuring smooth

9



illumination recovery, thereby justifying its use in our approach.

3.3. Shadow-Aware Channel Attention Module

Shadows introduce considerable variations in color, texture, and illumination, thus complicating image

shadow removal. To address these variations, the SACA module is specifically designed to operate synergis-

tically within the concept of Retinex decomposition in feature channels, enabling the utilization of shadow

lighting information for further enhancing the quality of the recovery of shadow regions.

The SACA module employs a shadow mask to identify channels rich in shadow features and directs

attention towards them. By assigning different weights based on the similarity between the shadow mask

and channel features, the module prioritizes shadow-affected areas. This mechanism helps to reduce the

disparity at shadow boundaries, as shown in Fig.2 (c). Specifically, an input feature tensor is first mapped

to an intermediate feature V via sequentially applying a layer normalization, a 1 × 1 convolution, and a

3 × 3 depth-wise convolution. Then, a shadow-aware channel attention vector is computed by measuring

the similarity between V and M , through element-wise multiplication, followed by global average pooling

(GAP) and Sigmoid activation. This channel attention vector is expanded to re-weight each feature channel

via element-wise product, guiding the process to focus on channels rich in shadow features. Finally, a 1× 1

convolution further fuses the channel information, with a residual connection to obtain the output.

3.4. Loss Function

Let X and X̄ represent the ground-truth shadow-free image and the MSRDNet-restored image, respec-

tively. The overall training loss function reads:

L = Lchar + λ1Lld + λ2Lretinex, (6)

where Lchar denotes the Charbonnier loss, Lld denotes the local discriminative loss, and Lretinex denotes

the Retinex decomposition loss. Both λ1 and λ2 are set as 1 in the experiments. The Charbonnier loss

is commonly used in many computer vision tasks, particularly in image restoration problems [30]. It is a

smooth approximation of the ℓ1 loss for robust training, which is defined as:

Lchar =
√

∥X − X̄∥22 + ϵ2, (7)

with ϵ = 10−3 used in the experiments.

The local discriminative loss Lld is inspired by the loss function proposed in [31] for image super-resolution,

which is designed to more effectively capture and preserve image details and textures. Furthermore, our ap-
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Shadowed GT MSRDNet LF LF
sf LF

s LF
relit

Figure 3: Visual examples of lighting adjustment in shadow regions. The illumination features from the first MGSR block at
the second level of MSRDNet, within a single channel, are displayed
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proach targets inaccuracies in the recovery process by utilizing the local statistical properties of the difference

map, specifically focusing on regions where shadow boundary recovery is challenging. By emphasizing these

regions, our method effectively reduces boundary discrepancies, improving overall deshadowing performance.

The loss is defined as:

Lld = ∥σW (X − X̄)∥1, (8)

where W denotes the local variance of the residual map E between two images, and σ scales its global

variance. Concretely, the matrix W is defined as:

W (i, j) = var(E(i− s− 1

2
: i+

s− 1

2
, j − s− 1

2
: j +

s− 1

2
)), (9)

where E = X − X̄, and σ = (var(E))
1
α . The parameter s and α are set as 7 and 5 respectively in the

experiments. The local discriminative weight W penalizes inconsistencies between the restored and ground-

truth images, particularly at shadow boundaries. The global coefficient σ captures the overall error and aids

in color and texture preservation.

The Retinex decomposition loss Lretinex guides the model to embed Retinex decomposition in the feature

domain. It is defined as:

Lretinex = LR + LLR, (10)

where

LR =

l∑
i=1

Ni∑
j=1

ωi∥ϕ(RF
i,j)−RX

↓2i−1∥1, (11)

LLR =

l∑
i=1

Ni∑
j=1

ωi∥ψ((LF
sf )i,j)ϕ(R

F
i,j)−X↓2i−1∥1. (12)

Here, l is the total number of levels in the MSRDNet, Ni is count of MGSR blocks at the i-th level, ωi is

the balance coefficient, ↓ r denotes the down-sampling operator with a ratio of r, and ψ and ϕ are functions

mapping features of the illumination and reflectance maps to the image domain, respectively. The (LF
sf )i,j

and RF
i,j represent the features of illumination and reflectance map in j-th MGSR block of i-th level, and

RX represents the reflectance map obtained by applying the classic Retinex decomposition method [32] on

the ground-truth image X.

The terms LR and LLR serve to align the feature maps with the reflectance and illumination layers

extracted from the ground-truth image, respectively. By combining these losses, the model is steered towards

accurate Retinex decomposition, thereby preserving essential details and achieving a reconstruction closely
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resembling the ground truth.

4. Experiments

4.1. Experimental Settings

Datasets: Three commonly-used datasets are included for the performance evaluation of shadow removal

models: ISTD [33], adjusted ISTD (ISTD+) [5] and SRD [34]. The ISTD includes 1330 training triplets

and 540 test triplets. The ISTD+ has the same number of triplets as ISTD, except that the ISTD+ dataset

reduces the lighting inconsistency between the shadowed images and the shadow-free images through post-

processing. The SRD contains 3088 pairs of samples, of which 2680 pairs are used for training, and 408 pairs

for testing. The ISTD and ISTD+ provide shadow masks. For SRD, following existing works, we use the

masks from [25] for training and test. See Fig. 4 for example images on the datasets.
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(a) ISTD (b) ISTD+ (c) SRD

Figure 4: Sample images from three benchmark datasets.

Implementation details: The number of MGSR blocks N1 to N4 are set as 2, 4, 6, 8 respectively, with

the number of channel C = 32. The coefficients ω1 to ω4 are all set as 1/N , where N = N1 +N2 +N3 +N4.

The functions ψ and ϕ are implemented using a 3 × 3 convolutional layer followed by a sigmoid activation.

The training employs the AdamW optimizer on 256× 256 random crops with a batch size of 4. The learning

rate starts at 3e−4 and decays to 1e−6 after 150 epochs via cosine annealing. The MSRDNet is implemented

in PyTorch on a single NVIDIA GTX 3090Ti GPU. The code will be public upon papaer’s acceptance.
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Evaluation metrics: Following existing works [5, 12, 33, 34, 25], we use there metrics to quantify the

deshadowing performance: peak signal-to-noise ratio (PSNR), structural similarity (SSIM), and rooted mean

squared error (RMSE). The PSNR and SSIM are calculated in the original RGB space, while the RMSE is

calculated in the LAB color space. Better performance generally leads to lower RMSE, higher PSNR, and

higher SSIM. The three metrics are computed on the shadow regions, non-shadow regions, as well as the

whole image, respectively.

4.2. Comparison with representative shadow removal methods

We evaluate MSRDNet against several state-of-the-art shadow removal methods, including both non-

learning ones (Guo et al. [7] and Gong et al. [35]) and deep learning-based ones (ST-CGAN [33], MS-

GAN [14], ST-CGAN [33], MS-GAN [14], DeShadowNet [34], DSC [16], DHAN [25], G2R [13], FusionNet [12],

CANet [36], UnfoldNet [1], BMNet [37], SP-M-Net [5], DC-ShadowNet [38], Param-Net [24], DMTN [39],

RMLANet [10]). For fair comparison, all the results of these compared methods are quoted from existing

literature whenever possible; or otherwise produced by their released codes. Following the experimental

configuration of previous works [12, 1, 37], the results of shadow removal models are resized to 256× 256 for

evaluation.

Quantitative Comparison: The quantitative results on the three datasets are given in Tables 1, 2, 3,

respectively. From the tables we can see that, MSRDNet excels on ISTD and ISTD+ across all metrics,

notably in shadow regions. Compared to the second-best performer (DMTN) on ISTD, our MSRDNet

improves PSNR by 1.53dB. On ISTD+, the PSNR of MSRDNet gains 1.06 dB against the second-best

performer, BMNet. On SRD, our MSRDNet ranks the second. Furthermore, the tables also compare the

model size and computational complexity 1. We can see that the MSRDNet has a model size comparable

to its top competitors such as DMTN [39] and UnfoldNet [1]. Moreover, the MSRDNet has a significant

advantage over TBRNet and DMTN regarding the computational complexity, using only 9% and 14.2%

#MACs of them respectively. These results have justified the superior performance of MSRDNet in image

shadow removal.

Qualitative Comparison: The qualitative evaluation is done via visual comparisons of shadow removal

results from different methods, as shown in Fig. 5, 6, 7, for the three datasets respectively. Clearly, MSRDNet

consistently excels in visual quality. For instance, Fig. 5 shows MSRDNet’s superior treatment of shadow

boundaries, maintaining color continuity at the boundaries after post-removal. In Fig. 6, unlike other meth-

ods, MSRDNet not only effectively removes shadows of weak-intensity without misidentifying other regions,

1The number of Multipy-ACcumulate operations (#MACs) is used to evaluate the computational complexity, and the #MACs
is analyzed by FVcore from https://github.com/facebookresearch/fvcore
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Table 1: Quantitative comparisons on ISTD. Boldface indicates the best results and underline indicates the second best results.

Method Source Params(M) #MACs(G) Shadow Region Non-Shadow Region Whole Image
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

Input Image n/a n/a n/a 22.40 0.936 32.10 27.32 0.976 7.09 20.56 0.893 10.88
Guo [7] TPAMI’12 n/a n/a 27.76 0.964 18.95 26.44 0.966 7.46 23.08 0.920 9.30

Gong [35] BMVC’14 n/a n/a 30.14 0.973 14.98 26.98 0.972 7.29 24.71 0.926 8.53
ST-CGAN [33] CVPR’18 31.8 8.94 33.74 0.981 10.33 29.51 0.958 6.93 27.44 0.929 7.47

DSC [16] TPAMI’19 22.3 61.74 33.45 0.967 9.48 n/a n/a 6.14 n/a n/a 6.67
MaskShadow-GAN [14] ICCV’19 13.8 28.41 n/a n/a 12.67 n/a n/a 6.68 n/a n/a 7.41

SP-M-Net [5] ICCV’19 141.2 27.82 32.16 0.981 10.30 26.40 0.970 7.47 25.08 0.943 7.79
DHAN [25] AAAI’20 21.8 131.44 34.98 0.984 7.52 n/a n/a 5.43 n/a n/a 5.76

DC-ShadowNet [38] ICCV’21 n/a n/a 31.69 0.976 11.43 28.99 0.958 5.81 26.38 0.922 6.57
G2R [13] CVPR’21 22.76 56.94 31.63 0.975 10.72 26.19 0.967 7.55 24.72 0.932 7.85

FusionNet [12] CVPR’21 186.5 80.16 34.71 0.975 7.91 28.61 0.880 5.51 27.19 0.846 5.88
CANet [36] ICCV’21 358.2 n/a n/a n/a 8.86 n/a n/a 6.07 n/a n/a 6.15

UnfoldNet [1] AAAI’22 10.1 12.69 36.27 0.986 7.78 31.85 0.965 4.72 29.98 0.944 5.22
BMNet [37] CVPR’22 0.4 5.50 35.61 0.988 7.60 32.80 0.976 4.59 30.28 0.959 5.02

TBRNet [40] TNNLS’23 46.7 361.89 36.35 0.987 6.40 31.18 0.951 4.49 29.64 0.934 4.76
DMTN [39] TMM’23 22.8 230.22 35.83 0.989 7.19 33.01 0.979 4.18 30.42 0.965 4.62

RMLANet [10] TCSVT’23 n/a n/a n/a n/a 7.68 n/a n/a 4.24 n/a n/a 4.80
MSRDNet [Ours] n/a 19.7 32.75 37.36 0.989 6.38 33.38 0.980 4.09 31.16 0.965 4.48

Table 2: Quantitative comparisons on ISTD+. Boldface indicates the best results and underline indicates the second best
results.

Method Source Params(M) #MACs(G) Shadow Region Non-Shadow Region Whole Image
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

Input Image n/a n/a n/a 20.83 0.927 36.95 37.46 0.985 2.4 20.46 0.894 8.4
DeshadowNet [34] CVPR’17 n/a n/a n/a n/a 15.9 n/a n/a 6.0 n/a n/a 7.6

SP-M-Net [5] ICCV’19 141.2 27.82 35.72 0.986 7.5 36.55 0.978 2.8 32.37 0.956 3.5
Param-Net [24] ECCV’20 n/a n/a n/a n/a 9.7 n/a n/a 3.0 n/a n/a 4.0

DHAN [25] AAAI’20 21.8 131.44 32.92 0.988 9.6 27.15 0.971 7.4 25.66 0.956 7.8
FusionNet [12] CVPR’21 186.5 80.16 36.04 0.978 6.6 31.16 0.892 3.8 29.45 0.861 4.2
BMNet [37] CVPR’22 0.4 5.50 37.87 0.991 5.8 37.51 0.985 2.4 33.98 0.972 3.0
TBRNet [40] TNNLS’23 46.7 361.89 36.34 0.991 6.5 35.57 0.977 3.3 31.91 0.963 3.8
DMTN [39] TMM’23 22.8 230.22 37.12 0.991 6.2 38.00 0.984 2.5 33.68 0.972 3.1

RMLANet [10] TCSVT’23 n/a n/a n/a n/a 7.0 n/a n/a 2.4 n/a n/a 3.1
MSRDNet[Ours] n/a 19.7 32.75 38.93 0.991 5.5 38.49 0.985 2.4 34.94 0.972 2.9

Table 3: Quantitative comparisons on SRD. Boldface indicates the best results and underline indicates the second best results.

Method Source Params(M) #MACs(G) Shadow Region Non-Shadow Region Whole Image
PSNR SSIM RMSE PSNR SSIM RMSE PSNR SSIM RMSE

Input Image n/a n/a n/a 18.96 0.871 36.69 31.47 0.975 4.83 18.19 0.830 14.05
Guo [7] TPAMI’12 n/a n/a n/a n/a 29.89 n/a n/a 6.47 n/a n/a 12.60

DSC [16] TPAMI’19 22.3 61.74 30.65 0.960 8.62 31.94 0.965 4.41 27.76 0.903 5.71
SP-M-Net [5] ICCV’19 141.2 27.82 32.67 0.970 8.61 32.04 0.964 5.32 28.71 0.919 6.23
DHAN [25] AAAI’20 21.8 131.44 33.67 0.978 8.94 34.79 0.979 4.80 30.51 0.949 5.67

FusionNet [12] CVPR’21 186.5 80.16 32.26 0.966 9.55 31.87 0.945 5.74 28.40 0.893 6.50
UnfoldNet [1] AAAI’22 10.1 12.69 34.94 0.980 7.44 35.85 0.982 3.74 31.72 0.952 4.79
BMNet [37] CVPR’22 0.4 5.50 35.05 0.981 6.61 36.02 0.982 3.61 31.69 0.956 4.46
TBRNet [40] TNNLS’23 46.7 361.89 35.53 0.981 6.38 34.97 0.979 4.21 31.64 0.952 4.86
DMTN [39] TMM’23 22.8 230.22 37.29 0.985 5.33 37.50 0.989 3.21 33.73 0.967 3.82

RMLANet [10] TCSVT’23 n/a n/a n/a n/a 7.03 n/a n/a 3.16 n/a n/a 4.39
MSRDNet[Ours] n/a 19.7 32.75 35.43 0.984 5.98 36.23 0.989 3.38 32.17 0.965 4.09
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but also preserves color details well in non-shadow regions. In the more complex scenarios with irregular

shadows, as in Fig. 7, most methods struggle leaving shadow residues or oversmoothed textures. In contrast,

leveraging Retinex decomposition, MSRDNet not only successfully restores the illumination of all shadows,

but also preserves the texture details of the image.

Input GT DSC G2R DC-Shadow FusionNet UnflodNet BMNet MSRDNet

Figure 5: Shadow removal results of different methods on some images from ISTD.

Input GT SP-M-Net DHAN DC-Shadow FusionNet DMTN BMNet MSRDNet

Figure 6: Shadow removal results of different methods on some images from ISTD+.

4.3. Ablation Study

To analyze the contribution of each key component in MSRDNet, we conduct ablation studies on ISTD

by forming the following baseline models:
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Input GT DSC DHAN DC-Shadow FusionNet UnflodNet BMNet MSRDNet

Figure 7: Shadow removal results of different methods on some images from SRD.

• “w/o SACA": It excludes the SACA module from the MGSR block. The number of MGSR blocks, N1

to N4, are set to [4, 6, 6, 8], to maintain the original model size.

• “w/o RF ": Removes the reflectance feature layer Rf in the RDSL module.

• “w/o BF ": It omits the branch calculating the local coefficient BF in the RDSL module.

• “Lchar → L1": It replaces Charbonnier loss Lchar by the L1 loss for training.

• “w/o Lld": It excludes the local discriminative loss Lld from the overall loss function in training.

• “w/o Lretinex": It excludes the Retinex decomposition loss Lretinex from the overall loss function for

training.

Table 4: Results of ablation study on ISTD.

Model Setting Shadow Region (S) All Image (ALL)
PSNR(dB) RMSE PSNR(dB) RMSE

w/o SACA 36.68 6.93 28.61 5.43
w/o RF 35.99 7.81 30.22 4.96
w/o BF 36.89 7.21 30.67 4.82
Lchar → L1 37.11 6.54 30.91 4.61
w/o Lld 36.90 6.87 30.61 4.73
w/o Lretinex 37.02 6.59 30.90 4.59
Original model 37.36 6.38 31.16 4.48

The results of these baseline models are listed in Table 4, where MSRDNet notably outperforms all of

them, demonstrating the effectiveness of the key components in our approach. The detailed analysis is as

follows.
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Input Ground Truth Original model Lchar → L1 w/o Lld

w/o SACA w/o RF w/o BF w/o Lretinex

Figure 8: Shadow removal results of different methods on a shadowed image in the ablation study.

• Comparing “w/o SACA” to the original model reveals a PSNR drop of 2.55dB and an RMSE increase

of 0.95, indicating SACA’s importance to the performance.

• The model for “w/o RF ” shows a PSNR drop of 1.37dB in shadow regions and 0.94dB overall, verifying

the significance of Retinex decomposition in shadow removal.

• The model for “w/o BF ” experiences a PSNR decrease from 37.36dB to 36.89dB in shadow regions and

an RMSE increase from 6.38 to 7.21, highlighting the role of local coefficients in handling spatially-

varying degradation in shadow removal.

• Replacing Lchar with L1, lightly degrades performance. In addition, the local discriminative loss Lld

contributes a 0.55dB PSNR improvement, likely because enhanced boundary consistency brought by

Lld.

• Omitting the Retinex decomposition loss Lretinex results in a PSNR drop of 0.34dB in shadow regions

and 0.26dB overall, probably due to that the Retinex decomposition of features becomes less valid due

to the lack of guidance from the loss.

The results of the baselines models on a shadowed image are shown in Fig. 8. The original MSRD model

excels in shadow removal, while the “w/o SACA” and “w/o RF ” models show deficiencies in shadow and

non-shadow regions, respectively. Omitting BF leaves some shadows in the result. Replacing or removing

the original loss functions, like Lld, leads to performance degradation and noticeable artifacts along shadow

boundaries. These inspections further validate the effectiveness of key components in our approach.
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In practice, the shadow mask is rarely perfect, and there is possible precision loss of the mask through

the MGSR blocks after pooling with down-sampling. However, several factors help mitigate this issue. First,

the max pooling operation preserves the relative spatial relationships between shadowed and non-shadowed

areas, reducing the impact of errors in the shadow mask. Additionally, our RDSL module utilizes both global

and local illumination information from non-shadowed regions to guide the illumination recovery process. As

a result, minor errors in the shadow mask have limited impact on the overall adjustments, as the global and

local illumination information remains reliable.

To assess the robustness of our method to potential mask errors, we conducted experiments using shadow

masks with varying degrees of accuracy. As illustrated in Fig. 9, the results show that our method consistently

outperforms existing approaches, even with imperfect masks. This demonstrates that a perfectly accurate

mask is not necessary, and that our method remains robust to varying levels of mask accuracy while still

achieving satisfactory shadow removal.

5. Limitations and Potential Solutions

In this section, we discuss the limitations of our shadow removal method and propose potential solutions

to address them.

5.1. Accurate Treatment of Shadow Boundaries

One of the key challenges in image shadow removal is accurately handle shadow boundaries, especially

in cases with complex lighting conditions and soft shadows. While the proposed framework improves overall

shadow removal quality, it does not work well for all situations. As shown in Fig. 3, some shadow boundary

issues remain unresolved. To tackle this limitation, one potential solution is to introduce more flexible,

spatially varying illumination parameters that can adaptively adjust to the unique characteristics of shadows,

offering a more accurate depiction of how light interacts with surfaces near shadow boundaries. Additionally,

incorporating soft shadow masks, which provide a more graduate transition between shadowed and non-

shadowed regions, could improve boundary delineation and help the model achieve smoother transitions,

preserving both texture and color consistency.

5.2. Robustness to Low-Accuracy Shadow Detection

The proposed method works well when shadow detection provides masks with reasonable accuracy, al-

lowing for small to modest errors. However, the method struggles to handle large inaccuracies in the shadow

mask, which can lead to suboptimal shadow removal results, as shown in Fig. 9. To address this limitation,

one potential solution is to develop or integrate more robust shadow detection algorithms capable of handling

19



Input Shadow Mask UnfoldNet BMNet MSRDNet GT

Figure 9: The result of shadow removal with shadow masks of varying accuracy levels.
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diverse lighting conditions, complex scenes, and various object types. Additionally, an iterative refinement

process could be employed to improve the shadow mask based on feedback from the shadow removal out-

comes. This would involve re-detecting shadows in regions where removal was less effective and adjusting the

mask accordingly.

6. Conclusion

Image shadow removal remains a challenging task due to the diverse shapes, sizes, and complexities

of shadows in real-world environments. In this paper, we proposed a deep Retinex decomposition-based

approach to address these challenges, particularly in complex illumination scenarios.

Our method integrates a multi-scale Retinex decomposition model with components like the Retinex

decomposition-based shadow lighting (RDSL) and shadow-aware channel attention (SACA). This design al-

lows the model to capture fine-grained details and large-scale contextual information, enabling it to handle

spatially varying shadow characteristics while ensuring global lighting consistency. Moreover, the RDSL

module adapts shadow illumination using non-shadow information, while the SACA module enhances sensi-

tivity to shadow-related features for accurate recovery. Additionally, the locally discriminative loss improves

consistency between shadow and non-shadow regions, especially along boundaries. Extensive evaluations

on benchmark datasets show that our approach outperforms existing methods, effectively handling various

shadow shapes, sizes, and intensities, making it a robust solution for diverse shadow removal applications.

While our method demonstrated state-of-the-art performance, there are still areas for improvement. One

bottleneck in performance lies in accurately addressing shadow boundary artifacts, particularly under complex

lighting conditions and soft shadows, which may result in residual artifacts or incomplete shadow removal

along edges. Additionally, the method’s performance depends heavily on the precision of the input shadow

mask, and inaccuracies in shadow mask detection can impact the final output quality.

Summarily, our work offers substantial benefits to the field of computer vision and image processing. By

advancing the state-of-the-art in shadow removal, it provides a robust solution that can be integrated into

various applications such as image editing, object recognition in shadowed environments, and autonomous

navigation systems requiring accurate visual information. The approach also paves the way for further

research into multi-scale decomposition techniques and attention mechanisms for better handling of complex

lighting scenarios.

For future work, we aim to address the identified weaknesses by developing more adaptive illumination

modeling techniques capable of handling complex lighting and soft shadows more effectively. We also plan to

explore more robust shadow mask detection methods to reduce dependency on mask precision, potentially
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integrating shadow detection directly into our model. Additionally, extending our approach to handle dynamic

scenes and real-time processing could significantly increase its practical utility in real-world applications.
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