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Abstract

Banding artifacts in images stem from limitations in color bit depth, image

compression, or over-editing, significantly degrades image quality, especially in

regions with smooth gradients. Image debanding is about eliminating these

artifacts while preserving the authenticity of image details. This paper introduces

a novel approach to image debanding using a cross-scale invertible neural network

(INN). The proposed INN is information-lossless and enhanced by a more effective

cross-scale scheme. Additionally, we present a technique called banded deformable

convolution, which fully leverages the anisotropic properties of banding artifacts.

This technique is more compact, efficient, and exhibits better generalization

compared to existing deformable convolution methods. Our proposed INN

exhibits superior performance in both quantitative metrics and visual quality, as

evidenced by the results of the experiments.
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1. Introduction

Banding artifacts, visible as bands or stripes in an image, significantly

diminish its visual quality. These artifacts are characterized by their tendency to

emerge in areas with smooth transitions between colors or shades, where instead

of a continuous gradient, abrupt breaks in smoothness lead to distinct bands of

colors. The bands within these artifacts often exhibit a regular and repetitive

pattern, a critical feature that sets banding apart from other forms of noise or

artifacts. Refer to Figure 1 for an illustration exemplifying these properties.

Image debanding is a critical technology with significant value in engineering

and various applications. In video streaming services, the quality of visual

content directly impacts user experience. By removing banding artifacts from

video streams, debanding technology enhances the visual appeal and overall

quality of streamed content, leading to higher viewer satisfaction and retention

rates. Additionally, debanding technology can be utilized to correct distortions

in user-generated or stored dynamic image formats, as well as to address image

distortions caused by irreversible bit depth changes. Furthermore, debanding

technology can be integrated into various image and video processing software for

user convenience. Through these software tools, users can easily rectify banding

artifacts and other distortions in images, thereby enhancing image quality and

visibility. This is particularly valuable for many users, especially those who need

to process large volumes of images.

Various factors contribute to the emergence of banding artifacts in images.

For instance, this issue is particularly common in images with limitations in

color depth, such as those compressed for online use or displayed on devices with

limited color capabilities. Additionally, image compression, especially through

lossy compression, introduces banding artifacts due to the loss of information.
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The process of inverse tone mapping, where high dynamic range values are

mapped back to a limited range for display, also contributes to banding if

quantization levels are too coarse or bit depth is insufficient, resulting in visible

errors. In essence, these diverse causes all trace back to variations in quantization

levels.

Banding artifacts can significantly detract from the visual quality and fidelity

of images. They can create a posterization effect, where continuous tones are

replaced by distinct, flat regions of color. This effect is particularly pronounced in

images featuring smooth gradients. The outcome is reminiscent of the image being

segmented into blocks, each showcasing uniform colors with sharp boundaries

demarcating them. The study by Huang et al. [1] highlights that changes in

intensity may not necessarily contribute to contours, however, the disruption

of monotonicity in the distribution emerges as a crucial factor for the human

visual system to identify sensitive contours. The presence of banding artifacts is

intolerable for viewers, hindering their ability to fully appreciate the image and

diminishing its intended allure and realism.

There is a compelling demand to address banding artifacts in order to elevate

visual quality and uphold data accuracy. Image debanding, referring to the

process of reducing or eliminating visible bands in an image, plays a pivotal

role in achieving these objectives. This technique is especially crucial in diverse

applications like digital media, photography and graph design where visual

fidelity is paramount. The fundamental challenge in image debanding lies in the

precise differentiation between authentic image features and artifacts. This task

is often intricate due to the overlapping characteristics of the two. Aggressively

removing banding artifacts poses the risk of sacrificing image detail, particularly

in areas with smooth gradients. Striking the right balance between artifact

removal and the preservation of image content and quality represents a delicate
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Figure 1: Two sample images displaying needle-like banding artifacts. The green squares
indicate the corresponding region of the pristine image while the yellow squares indicate the
debanding results.

trade-off. Furthermore, the complexity arises from the multitude of sources

contributing to banding artifacts, making the design of a universally effective

method challenging in eliminating all types of banding across diverse images.

Addressing debanding requires a nuanced understanding and tailored approaches

to mitigate these diverse sources, involving an exploration of the distinct physical

characteristics of various types of banding artifacts for the design of corresponding

debanding techniques. This intricate process adds to the overall complexity of

finding comprehensive solutions.

Despite the creation of numerous algorithms [2, 3, 4, 5, 6] aimed at minimizing

visual distortion caused by variations in quantization, the occurrence of banding

artifacts is inevitable. Extensive research has been conducted in the past on

image debanding to tackle this challenging task. In the pre-deep learning era,

the majority of debanding techniques focused on post-processing methods [7, 8,

9, 1, 10]. These techniques detected banding artifacts by imposing specific priors

on them and subsequently removing them. A crucial aspect of these methods is

defining accurate priors to distinguish between banding patterns and authentic

image details. However, banding patterns can vary considerably in scale, shape

and density across different images. Consequently, existing hand-crafted priors

are often over-simplified and fail to perform consistently and effectively across a

wide variety of images.
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Recently, deep learning has emerged as a promising solution for image

debanding, as evidenced by studies [11, 12, 13, 14, 15, 16]. Some leveraged

end-to-end deep neural networks (DNNs) to transform images with banding

effects into their banding-free latent versions. While these existing DNN models

outperform traditional post-processing techniques, they lack designs specifically

tailored for debanding tasks. The architecture of the general model is designed

to be applicable to various tasks, such as image deblurring and deraining, but

not explicitly optimized for image debanding. This suggests a lack of specialized

design exclusively tailored for the image debanding task. Furthermore, the

tasks addressed by these general models typically focus on regions with dense

gradients exhibiting large variations, which are distinctly different from image

debanding that primarily addresses regions with smooth gradients. Some tailored

to a specific cause of banding artifacts, lack universality when it comes to

removing banding artifacts arising from different causes. Therefore, deep image

debanding is still in its early stages, offering ample opportunities for performance

improvement.

In this paper, we present a deep learning approach that recasts image deband-

ing as an image decomposition process. That is, an image with banding effect is

perceived as a composite of a banding pattern layer and a latent image layer.

Within the context of image decomposition, we propose to employ invertible

coupling layers [17] to create an Invertible Neural Network (INN). Our proposed

INN includes two pathways: one for the extraction of the banding pattern layer,

and the other for latent image prediction. The advantage of using an INN can

be interpreted in two directions. Firstly, from the view of the forward pass, the

invertibility of INN guarantees that all details are preserved when decomposing

an image into two layers, which is essential as any loss of information could

lead to the disappearance of vital details, subsequently degrading image quality.
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Secondly, the invertibility of the process ensures that the original image can be

perfectly reconstructed from the separated layers, which is crucial for verifying

the effectiveness of the decomposition process.

In the proposed INN, we introduce two key techniques. The first is a cross-

scale architecture. Given that banding patterns can greatly vary in scale, shape

and density across different images, it is critical to identify/process these patterns

at various scales. As such, we introduce a multi-scale INN sharing the same spirit

as existing CNNs and U-Net, utilizing sequential upsampling and downsampling.

However, we go further by addressing the primary challenge in multi-scale

INN development: efficient multi-scale processing with maintained invertibility.

To achieve this, the encoder and decoder blocks are designed for cross-scale

representation and connected in a coupling fashion. Each encoder/decoder block,

composed of a series of invertible coupling blocks [17], is integrated within a

broader coupling structure. This allows partial features from the encoder blocks

to be channeled to the corresponding decoder blocks via a short path for cross-

scale fusion. This design channels partial features from encoder to corresponding

decoder blocks via a short path for cross-scale fusion, which enhances cross-scale

processing while preserving invertibility.

The second key and novel technique is termed as banded deformable con-

volution, specifically engineered for detecting and processing banding artifacts.

Deformable convolution [18, 19] represents a convolution type that allows the

filter to spatially vary, enabling a flexible and data-adaptive receptive field

as opposed to a fixed one. However, in the context of image debanding, the

standard deformable convolution encounters a significant issue. Adapting the

convolution’s receptive field to handle the needle-like anisotropic pattern of

banding artifacts necessitates a very large filter with substantially more weights.

This not only increases computational costs but also renders the model more
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susceptible to overfitting. To address these limitations, the proposed banded

deformable convolution allows the filter to adapt to the needle-like structures,

while maintaining a compact model with less computational cost. To conclude,

the major contributions of this paper include:

• We propose a decomposition-based deep invertible model for image de-

banding and present a cross-scale coupling structure within an invertible

cross-scale scheme. This approach effectively distinguishes between authen-

tic image details and banding patterns across multiple scales, enhancing

the performance of the debanding process.

• We develop a banded deformable convolution technique to efficiently and ef-

fectively detect/process anisotropic patterns of banding artifacts in images,

while maintaining a compact model size and improving the computational

efficiency.

• Experiments demonstrate that our proposed DNN outperforms all existing

debanding filters, achieving state-of-the-art performance both quantita-

tively and qualitatively.

2. Related Work

2.1. No-reference metrics for banding artifacts

Beyond researching image debanding methods, it is essential to develop

dedicated no-reference metrics. While mainstream image evaluation metrics such

as PSNR, SSIM, and LPIPS focus on supervised measures of similarity to ground

truth, they often fall short in accurately quantifying the extent of contamination

by banding artifacts. Given that image debanding is a task primarily concerned

with enhancing subjective human perception rather than achieving high similarity

with ground truth, the design of dedicated no-reference metrics becomes crucial.
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These specialized metrics aim to better capture the perceived quality of images

affected by banding artifacts, highlighting the importance of subjective evaluation

in driving advancements in image debanding research. Tu et al. [20] developed

BBAND, a Blind BANding Detector index that generates a banding visibility

map and output a severity score for an input image based on the map. However,

the algorithm employed to generate the map demonstrates limited effectiveness

in detecting banding edges across diverse scenarios, which leads to a wrong

severity score for many images. Kapoor et al. [21] proposed a no-reference deep

banding index (DBI), which was trained using a supervised learning mechanism.

However, several ground truth within the training dataset inherently exhibit

banding artifacts, lead to inaccuracies in the DBI results.

2.2. Image debanding

Image debanding approaches can be categorized into three main groups:

pre-processing methods [22], embedded processing methods [23, 24], and post-

processing methods [7, 9, 1, 10, 11, 14, 13, 15, 16, 12]. Pre-processing methods

are typically employed before or after image encoding to mitigate or eliminate

discontinuities, such as bands, in the original image, which may be exacerbated

during the encoding process. Another strategy involves embedded processing,

where the quantization process is adjusted within the encoder to reduce banding

artifacts. Widely utilized techniques fall into the category of post-processing

methods, which target the output of the decoder. Among these, post-processing

methods have garnered notable attention for their practical flexibility in real-

world applications and will be thoroughly explored as the primary focus of this

subsection.

Non-learnable approaches The majority of non-learnable post-processing

debanding methods [7, 9, 1, 10] are prior-driven approaches whose performance

depends on how accurately the priors fit data. Huang et al. [1] proposed an
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accurate false contour detection method based on the monotonicity of false

contours, and utilized probabilistic dithering to remove banding artifacts. Tu et

al. [10] treated image debanding as a reconstruction-requantization challenge,

utilizing adaptive interpolation for high-bit-depth estimation in banded areas,

followed by dithered quantization. These methods heavily rely on pre-defined

priors for image details and banding artifacts, limiting their adaptability to

real-world images with diverse banding patterns and content variations. More-

over, achieving optimal performance often requires meticulous hyperparameter

calibration.

Deep learning-based approaches Similar to other image restoration

tasks, deep learning [11, 14, 13, 15, 16, 12] has proven to be an effective tool for

image debanding, leveraging its abundance of trainable parameters. Deng et

al. [16] introduced a single Spatio-Temporal Deformable Convolution tailored for

compressed video quality enhancement. However, its design is specifically oriented

towards video restoration, and banding artifacts are just one manifestation of

the broader category of compression artifacts. Jiang et al. [15] proposed a

flexible blind convolutional neural network that separates the quality factor from

the JPEG image, incorporating it into the subsequent reconstructor module.

However, its utility is confined to addressing JPEG artifacts, representing only

one contributor to the generation of banding artifacts. Zhou et al. [14] created a

large-scale open-source dataset for image debanding tasks and trained Pix2Pix

[25], a conditional generative adversarial network, on this dataset. However,

Pix2Pix is a general image translation model that lacks a specific design tailored

to image debanding. In another approach, Zhao et al. [13] decomposed the

debanding process into a flat region detection module and a debanding module,

utilizing a generated mask to guide the debanding task. Nonetheless, the target

labels for the flat region detection module were generated using an oversimplified
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gradient extraction operator, limiting the model’s capacity.

2.3. Related DNN Techniques

INNs In recent years, INNs have achieved significant success in various image

restoration tasks such as denoising, super-resolution, and image compression [26,

27, 28, 29]. INN is structured as a shared-weight auto-encoder with invertibility,

enabling the recovery of the original input from the output. This unique property

allows for artifact removal, including noise and other unwanted elements, while

preserving all information from the original image. Despite the study of INNs

in many image restoration tasks, there is a notable absence of research on

their application to image debanding. In this study, we present an approach

that specifically tailors INNs for image debanding, introducing novel designs to

address this particular task.

Deformable convolution Deformable convolution [18, 19] is a convolutional

operation that enhances matching capabilities by adaptively adjusting the kernel

to the local structure of an image. It has demonstrated effectiveness across

various tasks [16, 30, 31, 32, 33] including image recovery. In the context of

image recovery, deformable convolution with spatially-varying kernels allows

enlarging the receptive field, resulting in improved prediction without sacrificing

fine-scale image details or introducing artifacts. Although deformable convolution

has shown its utility in existing DNNs for image recovery tasks, it is essential to

design problem-specific deformable convolution modules that do not excessively

increase model complexity and computational costs in order to fully leverage its

advantages derived from its adaptability to the local structure. In this paper,

we propose a tailored deformable convolution module specifically designed for

image debanding, aiming to effectively harness its benefits.
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3. Methodology

3.1. Cross-Scale Invertible Network Architecture

The proposed DNN, denoted as G, is illustrated in Figure 2 (a). It takes

a degraded image Y ∈ RC×H×W and its replica as input and decomposes

them into the desired latent image layer X ∈ RC×H×W and the banding layer

B ∈ RC×H×W using the following mapping:

G : (Y ,Y ) → (X,B). (1)

Notably, the sizes of the input (Y ,Y ) and the output (X,B) are both 2C×H×

W , which is configured to satisfy the dimensional consistency constraint of INN.

To process the input features, our DNN employs a U-shaped cross-scale invertible

structure comprising three Encoder Blocks (EBs) and three Decoder Blocks

(DBs), with two Banded Deformable Attentive Coupling Blocks (BDACBs) in

between. Each EB includes a pixel unshuffle layer and m Dense Coupling Blocks

(DCBs). Similarly, each DB consists of m DCBs and a pixel shuffle layer. The

specific values of m for each EB and DB are detailed in Figure 2(a). The BDACB

in the bottleneck enhances adaptive and spatially-varying processing of local

structure. Throughout the DNN, information from previous blocks is propagated

to subsequent blocks, ensuring comprehensive information flow.

The pixel shuffle and unshuffle layers [34], which do not possess learnable

parameters, play a crucial role in forming a cross-scale representation within

the network. The unshuffle layer reduces the spatial resolution to one-fourth of

the original size while quadrupling the channel number. Conversely, the shuffle

layer performs the inverse operation, allowing the two layers to be reversible.

Moreover we introduce a cross-scale coupling structure for further improvement.

The output of each EB is split into two parts, where one part is passed to the

corresponding DB via a path with several cascaded DCBs, and the other part
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Figure 2: Architecture of proposed DNN for image debanding. All BDConv (Banded Deformable
Convolutional) layers use 3× 5 kernels.

is passed to the next EB through the skip connection. Accordingly, each DB

concatenates the features from the corresponding EB and the features from its

previous layer as the input. Indeed, each EB and DB can be viewed as a larger

coupling layer nested by some small coupling layers. Such a design empowers

the proposed model with better cross-scale analysis capability while keeping

invertibility.

3.2. Modules

Dense coupling blocks The DCB depicted in Figure 2(b) is a coupling

block [17] specifically designed for invertible feature transformation. It utilizes

a double-branch structure that enables straightforward reconstruction of its

input from its output using the inverse mode, whose inner learnable functions

ϕ1, ψ1, ϕ2, ψ2 are implemented with the same structure based on dense blocks

[35], shown in Figure 2(c). The dense block connects each layer’s output to

the inputs of all subsequent layers, fostering dense information flow and feature

reuse within the network. The invertibility of DCB ensures perfect information

fidelity throughout the feature processing stage.

The input features x1 and x2 are transformed and interact with each other
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through the learnable functions ϕ1, ψ1, ϕ2, ψ2 in a coupling manner. This results

in two output features y1 and y2:

y2 = x2 ⊙ eϕ1(x1;Θ) + ψ1(x1; Θ), y1 = x1 ⊙ eϕ2(x2;Θ) + ψ2(x2; Θ), (2)

where ⊙ denotes element-wise multiplication and Θ denotes the whole set of

learnable weights. The inversion procedure is defined as follows:

x1 = (y1 − ψ2(y2; Θ))⊘ eϕ2(y2;Θ), x2 = (y2 − ψ1(y1; Θ))⊘ eϕ1(y1;Θ), (3)

where ⊘ denotes element-wise division. Refer to Figure 2(b) for more details.

Banded deformable attentive coupling blocks The Banded deformable

attentive coupling block (BDACB) shares the same architecture with DCB, as

illustrated in Figure 2(b). It is only inserted at the bottleneck of the neural

network for computational efficiency considerations. Its inner functions (i.e.,

ϕ1, ψ1, ϕ2, ψ2), as depicted in Figure 2(d), are cascaded with a dense block and

a residual channel attention module composed of a series of banded deformable

convolutions to effectively distinguish between banding artifacts and image

details in the latent feature space.

All banded deformable convolutions here have a kernel size of 3× 5, which

better exploits the anisotropic structure of edges.2 The structure depicted in

Figure 2(e) illustrates the channel attention module, which utilizes two skip

connections to preserve information.

2This setting encourages more anisotropic processing. As will be seen later, the banded
deformable convolution is rotatable. Therefore, it does not matter whether using a kernel size
of 3× 5 or 5× 3.
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3.3. Banded Deformable Convolution

Banded deformable convolution, a specifically tailored version of standard

deformable convolution, is extensively utilized in the proposed DNN. To elaborate,

in standard deformable convolution, distinct offsets {∆pn ∈ R2}k2

n=1 are learned

for each center location p0 within a convolution sliding window of shape (k, k),

based on k2 pristine sampling points {pn ∈ Z2}k2

n=1. The final sampling location

set for p0 is then represented as p0+pn+∆pn, utilizing bilinear interpolation to

calculate final non-integer sampling locations. In this process, 2k2 parameters are

required to represent the sampling locations for each center pixel. Consequently,

when working with an input feature of shape (c, h, w), an intermediary feature of

shape (2k2, h, w) is computed to facilitate the representation of the final sampling

locations for the entire feature.

The following mathematical formulas express the sampling principle of banded

deformable convolution in polar coordinates. Here, we present its concept

using an example of 3×3 kernel with dilation 1. Let the regular point set

Pp0 = {(px, py)|(−1,−1), (−1, 0), (−1, 1), · · · , (1, 1)} define the initial receptive

field size and dilation. Then, for each location p0 on the output feature map y,

we have

y (p0) =
∑

pn∈Pp0

ω (pn) · x (p0 + pn +∆pn) , (4)

where ω(pn) denotes the kernel weight on pn. In the proposed banded deformable

convolution, the regular point set Pp0
is augmented with a rotation angle θ, two

scale factors ρ and r:

P′
p0

= {(p′x, p′y)|p′x = r cos θ · px − ρ sin θ · py,

p′y = r sin θ · px + ρ cos θ · py,∀(px, py) ∈ Pp0
}.

(5)
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Then, Eq. (4) can be expressed as

y (p0) =
∑

p′
n∈P′

p0

ω (p′
n) · x (p0 + p′

n) , (6)

where non-integer coordinates values are calculated via bi-linear interpolation.

The rotation angle θ and two scale factors ρ and r, totally three values for each

center pixel, are generated by a convolutional block shown in Figure 3 (d).

See Figure 3 for a comparison between the proposed banded deformable

convolution and standard convolution and deformable convolution. Unlike

standard deformable convolution, which results in an intermediate feature of

shape (2k2, h, w) for an input with shape (c, h, w), our banded deformable

convolution generates an intermediate feature of shape (3, h, w). This significant

reduction in parameter number enhances computational efficiency and reduces

the risk of over-fitting.

Furthermore, the proposed banded deformable convolution enhances the

network’s analysis capability. Banding edges have a needle-like structure that

can be characterized by two scaling factors (horizontal and vertical) and a

rotation factor. Accordingly, the banded deformable convolution utilizes these

factors to adaptively parameterize the sampling locations. Specifically, since

banding edges as well as image edges can occur in various directions beyond

just vertical and horizontal, rotation is employed in our banded deformable

convolutions to better capture and discriminate banding edges from image edges.

This module allows the convolution to adaptively focus on the most relevant

neighboring pixels. The anisotropic property of banded deformable convolution

proves beneficial for effectively detecting and processing false contour edges in

banding artifacts, as confirmed by our experimental observations.
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3.4. Training Loss

Let X and B represent the debanded image layer and banding layer obtained

from our proposed DNN for a degraded image Y with its corresponding ground

truth image X ′. Recall that the degradation process caused by banding artifacts

is not simply additive, i.e., we cannot assume that Y = X +B. As a result,

the supervision data for the banding layer is unavailable as it cannot be simply

obtained by subtracting the input with the input image. Therefore, we do not

supervise the banding layer B but supervise the latent image layer X only.

The total loss L consists of content loss Lc and frequency loss Lf, which is given

by:

L = Lc + λfLf, λf ∈ R+

The content loss Lc measuring the reconstruction accuracy of the latent clean

image, is defined by

Lc = ∥X −X ′∥1. (7)

The second term of the total loss is the frequency loss, which is given by:

Lf = ∥F(X)−F(X ′)∥1. (8)

Since banding artifacts involve the introduction of erroneous high-frequency

information into an image, the utilization of the frequency loss can effectively

suppress these artifacts.

4. Experiments

4.1. Experimental Settings

Dataset The dataset is provided by Zhou et al. [14], which comprises 1440

pairs of Full High-Definition (FHD) images. Each image is initially divided into
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256×256 patches with a step size of 128. After filtering out pairs which degraded

image devoid of banding artifacts, the remaining pairs are divided into training

(60%), validation (20%), and test (20%) sets while ensuring all patches from

the same FHD image belong to the same set. Training involves the use of the

segmented patches, totaling 30,829 image pairs, while validation and testing use

the complete FHD images.

Implementation details The weights λf in the loss function is set to

0.1. In the training phase, Xavier [36] initialization is utilized to initial all

the model weights. We utilize the Adam optimizer [37] along with a cosine

learning rate and a batch size of 4. The implementation of our proposed INN is

carried out using the PyTorch framework, and the computations are executed

on an NVIDIA Geforce RTX 4090 GPU. The code will be made public via

https://github.com/csxyhe/BDINN.

Performance metrics We adapt DBI [21] for quantitative comparison,

which is a metric specifically designed for assessing the quality of image banding.

However, as mentioned above, the capacity of DBI is limited by its supervised

training. To comprehensively showcase the debanding capabilities of each method,

We also adapt three mainstream metrics including PSNR(Peak Signal-to-Noise

Ratio), SSIM (Structural SIMilarity index), LPIPS (Learned Perceptual Image

Patch Similarity) [38] for quantitative comparison.

In addition, we implement a subjective quality assessment based on human

perception using the double-stimulus impairment scale (DSIS) method. We

invited a total of 20 professional observers to rate the debanding results by

comparing them to the ground truth images. In this DSIS evaluation, impairment

scores range from 1 to 5, with scores of 1, 2, 3, 4, and 5 representing ‘very annoying

impairment’, ‘annoying impairment’, ‘slightly annoying impairment’, ‘perceptible

impairment’ and ‘imperceptible impairment’ respectively. To facilitate the
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perception of impairments, observers were allowed to switch back and forth

between the reference images and the debanded images processed by the various

methods under comparison. Higher average impairment score µ(DSIS) indicates

a better visual quality achieved by the method.

Methods for comparison We select four debanding methods for quantitative

comparison, including FCDR [1], FFmpeg Filters [39], AdaDeband [10] and

DeepDeband [14]. The first three are non-learnable methods, while DeepDeband

is the only deep-learning based method for universal image debanding tasks with

publicly available code, to the best of our knowledge. As the full implementation

of FCDR is not publicly available, we implement it ourselves based on the

code provided in [10]. We try six suggested parameter settings and select the

best-performing one, i.e., a window size of 9 for both probabilistic dithering and

averaging smoothing. We use the default parameters for FFmpeg Filters. For

AdaDeband, we compare with its default parameter settings for the YUV420p

format. For DeepDeband, we retrain it using the same data configuration as

ours and select the best-performing model parameters based on its numerical

performance on the validation set.

Since there are few deep learning methods specifically designed for debanding

tasks right now, we also consider employing deep learning methods from other

related tasks for comparison, including BitNet [40] for bit-depth expansion task,

several denoising methods such as ADNet [41] and BRDNet [42], and the general

model Uformer-T [43]. For all these deep learning models, we retrain them using

the same data configuration and training loss as ours.

4.2. Performance Comparison

Quantitative comparison The quantitative results in terms of four metrics

are listed in Table 1. Our proposed method exhibits performance gain over

existing methods in terms of all metrics while the second-best performer varies
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Table 1: Quantitative performance comparison (3rd-6th columns) in terms of mean evaluation
metric scores on the entire test set and comparison of execution time (7th column) on an FHD
image with size 1920× 1080. Best values are boldfaced and second-best values are underlined.

Method PSNR(dB) SSIM LPIPS DBI Time(s) #Params(M)

N
-D

L FCDR 25.73 0.7170 0.3766 0.3657 45.8417
-FFmpeg Filter 35.33 0.9352 0.0622 0.1955 -

AdaDeband 35.35 0.9392 0.0639 0.2658 4.5162

D
ee

p
L
ea

rn
in

g DeepDeband-f 32.95 0.8859 0.0788 0.1735 7.2849 54.414
DeepDeband-w 32.64 0.9014 0.0717 0.1706 153.6721 54.414

BitNet 38.24 0.9633 0.0505 0.0939 0.0346 0.954
ADNet 38.29 0.9612 0.0499 0.0689 0.0906 0.521

BRDNet 38.66 0.9652 0.0460 0.0810 0.3072 1.116
Uformer-T 39.27 0.9699 0.0463 0.0698 0.3688 5.203

Ours 39.37 0.9711 0.0454 0.0668 0.1728 5.885

regarding different metrics. For instance, it achieves a PSNR improvement of

0.1 dB over Uformer-T and a DBI reduction of 0.0021 compared to ADNet.

Additionally, the average impairment scores from the subjective experiment are

shown in Table 2, where our proposed method achieves the highest average

impairment score among the comparison methods. Such results demonstrate

that our proposed model effectively balances between data preservation and

visual quality.

Table 2: Average impairment scores on the entire test set. Best values are boldfaced and
second-best values are underlined.

Method FCDR FFmpeg Filter AdaDeband DeepDeband-f DeepDeband-w
µ(DSIS) 1.39 3.16 2.75 3.51 3.43
Method BitNet ADNet BRDNet Uformer-T Ours
µ(DSIS) 4.24 3.96 4.02 4.42 4.49

Complexity comparison We evaluate the execution time as well as the

model size of different methods on an 1920× 1080 image using the same device.

The ‘execution time’ refers to the time taken for processing the image, excluding

the time for loading the image and saving the result. Since obtaining the actual

execution time of the FFmpeg toolbox [39] is challenging, its execution time is

not provided here. See Table 1 for the results. Our proposed method ranks as

the third fastest among all methods, being roughly twice as fast as BRDNet and
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Uformer-T. As for model size, the number of parameters of our model is similar

to Uformer-T. Such results demonstrate that our proposed model effectively

balances between debanding performance and computation complexity.

Degraded FFmpeg BitNet BRDNet Uformer-T Ours
Figure 4: Visual comparison of image debanding results using the zoom-in box with a line
profile auxiliary technique. Odd rows display the degradation and corresponding debanding
results, while even rows provide zoomed-in views for better inspection. An effective debanding
algorithm will result in the line profile of flat areas showing minimal abrupt changes, appearing
as horizontal lines or lines with very gentle slopes over relatively long distances.

Qualitative comparison To provide clearer visual comparative analysis of

the debanding methods, we attempted two different auxiliary techniques. One is

the local zoom-in box with a line profile, and the other is the color segmentation

technique described in [9]. While debanding algorithm is effective, the line profile

of flat areas will exhibit minimal large jumps and appear as horizontal lines or

lines with very small slopes over relatively long distances. The color segmentation

technique groups connected pixels with the same RGB color into color blocks

and assigns a random color to each block, facilitating intuitive discernment of

differences in debanding results. Banding degradation severely affects the flat

regions of an image, causing smooth color transitions to be mapped to the same
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color. As a result, these flat regions consist of only a few color bands. This is

reflected in the color segmentation results, where the corresponding areas display

only a limited range of colors. Therefore, the better the debanding result of

a method, the smoother the color transitions in the flat regions of the image

will be, and the more diverse the colors in the corresponding areas of the color

segmentation map will be. We selected four samples of image banding for visual

comparative analysis. Two of these samples are presented with zoomed-in boxes

showcasing the restoration results. Additionally, the remaining two samples are

illustrated using the color segmentation technique. See Figure 4 and Figure 5

for the results under these two scenarios, respectively.

From Figure 4, our proposed method exhibits stronger debanding capability

than others. It is apparent that FFmpeg and BRDNet leave many banding

effects back. For instance, in the second example of Figure 4, the background of

the processed image by FFmpeg, BitNet BRDNet still show multiple significant

gradient differences, which are manifested as notable amplitude jumps in the line

profile. The debanding visual results of Uformer-T are relatively impressive, but

there are still few areas with large pixel value jumps, and its processing time is

significantly slower compared to ours. Due to the information fidelity of an INN

and the effectiveness of banded deformable convolution, our method preserves

image details well and results in natural-looking images.

The results in Figure 5 also show the advantage of our proposed method over

other compared ones, which consist with the quantitative results. For instance, in

the second example, while methods other than Uformer-T and ours still exhibit

noticeable artifacts in the sky area after processing, besides, as indicated by the

color segmentation (4-th row of Figure 5), it can be observed that our method

achieves a more natural transition compared to Uformer-T. All above results

have demonstrated the effectiveness of our proposed method.
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Degraded FFmpeg DeepDeband-f BitNet BRDNet Uformer-T Ours

Figure 5: Visual comparison of image debanding results using the color segmentation auxiliary
technique. Odd rows display the degradation and corresponding debanding results, while even
rows visualize corresponding color segmentation via the method of [9] for better inspection.
The better the debanding result of a method, the smoother the color transitions in the flat
regions of the image will be, and the more diverse the colors in the corresponding areas of the
color segmentation map will be.

Table 3: Ablation study on network’s architecture. Best values are boldfaced.

Method PSNR(dB) SSIM DBI #Params(M) #FLOPs(G)

Non-INN 38.40 0.9634 0.0967 5.943 34.122
Typical INN 38.59 0.9658 0.0843 5.953 97.533

Ours 39.37 0.9711 0.0668 5.885 37.401
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4.3. Ablation Study and Analysis

Ablation study on the INN architecture We construct two baseline

models for ablation study on our proposed INN architecture for image debanding:

(i) Non-INN: Using a standard U-Net with it channel numbers adjusted to

have a similar model size to ours; and (ii) Typical INN: the common INN [26]

without cross-scale processing, also with it channel numbers adjusted for having

a similar model size. The results are listed in Table 3. It can be seen that

the performance drops noticeably, e.g., more than 0.5dB PSNR loss, without

using the cross-scale invertible structure. Compared to a non-INN structure,

employing a standard INN structure yields noticeable improvements, leveraging

its information fidelity. Furthermore, utilizing our proposed INN structure results

in additional enhancements.

Table 4: Ablation study on key components in terms of PSNR(dB) and DBI.

MSS DB BDACB US/S PSNR(dB)↑ DBI↓ #Params(M)

✓ 38.57 0.0850 5.942
✓ ✓ ✓ 38.93 0.0792 5.887
✓ ✓ ✓ 39.21 0.0748 5.885
✓ ✓ ✓ 39.06 0.0699 5.985
✓ ✓ ✓ ✓ 39.37 0.0668 5.885

Ablation study on the key components To analyze the contribution

of each key component of the model, we form several baseline models. We

analyze the effectiveness of the multi-scale structure (MSS), the BDACB mod-

ule, the dense block (DB) and the unshuffle/shuffle layers (US/S). Specifically,

for ‘MSS’, the multi-scale structure of the coupling pipeline is replaced with

several standard coupling blocks. It is worth noting that, the model without

‘MSS‘ does not comprise BDACB module because of the memory constraint.

For ‘BDACB’, we replace the BDACB module with two cascaded DCBs to

have a similar model size as original one for a fair comparison. For ‘DB’, we

replace all the dense block with simple convolutions. For fairness, all the above
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baseline models are designed to have a similar model size to ours. Besides,

the effectiveness of unshuffle/shuffle layers is evaluated by replacing them with

convolution/transposed-convolution layers. Different from using unshuffle/shuffle

layers, the utilization of convolution/transposed-convolution layers introduce

additional learnable parameters. See Table 4 for the results. We can see that each

of our utilized components has a performance contribution. For instance, a PSNR

gain of 0.44dB and a DBI drop of 0.0124 are achieved by utilizing BDACB module.

Since the model replacing unshuffle/shuffle layers with convolution/transposed-

convolution layers destroy the network’s invertibility, there is a PSNR drop of

0.31dB and a DBI increase of 0.0031.

Ablation study and analysis on banded deformable convolution We

test the performance of our proposed DNN using banded deformable convolution

with different kernel sizes, including 3×5, 3×7, 3×9, and 5×5. In addition,

conventional deformable convolution with kernel sizes 3×5 or 5×5 is also tested.

See Table 5 for the results, where we introduce the number of floating-point

operations (FLOPs) measured on a 256×256 color image as an additional metric.

With less complexity than that of conventional deformable convolution, our

proposed banded deformable convolution results in better performance, as it can

fit the shape of needle-like structure of banding artifacts more efficiently using

only three values to represent the sampling locations for each pixel.

Overall, the 3×5 banded deformable convolution achieved a good balance

between performance and computational complexity the optimal choice. In

practice, we find that applying a non-square kernel size for banded deformable

convolution shows better performance than the one having square kernel size e.g.,

5× 5. This is probably because the non-square kernel size implicitly includes

the prior knowledge of anisotropy banded edges, alleviating possible overfitting.

Analysis on the supervision mechanism To further validate whether
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Table 5: Quantitative comparison on conventional/banded deformable convolution with different
kernel sizes. Best and second-best values are boldfaced and underlined respectively.

Deformable Type Kernel Size PSNR(dB) DBI #Params(M) #FLOPs(G)

Conventional
3×5 39.12 0.0764 5.887 37.402
5×5 39.15 0.0766 6.007 37.525

Banded

3×3 39.14 0.0723 5.861 37.376
3×5 39.37 0.0668 5.885 37.401
3×7 39.23 0.0692 5.909 37.425
3×9 39.30 0.0668 5.933 37.450
5×5 39.18 0.0720 5.925 37.442

loss on the banding layers helps, we conduct an ablation study that supervised

the banding layers B by the residual component R = Y −X ′. See Table 6 for

the results. Notably, the additional supervision on B leads to a PSNR drop of

0.53dB and a DBI increase of 0.0055. This performance drop can be attributed

to the fact that imposing B = Y −X ′ indeed enforces an over-simplified additive

modeling of banding, hence leading to negative effects.

Table 6: Quantitative comparison on different supervision mechanisms.

supervise B supervise X PSNR(dB)↑ SSIM↑ LPIPS↓ DBI↓

- ✓ 38.84 0.9675 0.0516 0.0723
✓ ✓ 39.37 0.9711 0.0454 0.0668

5. Conclusion

This paper proposed a novel approach for image debanding by reframing it as

an image decomposition problem. Our proposed approach utilizes a cross-scale

invertible deep network that is specifically designed for effective image debanding.

Additionally, we introduced a module called banded deformable convolution,

which is tailored to exploit the anisotropic characteristic of banding artifacts.

The introduced banded deformable convolution offers notable advantages in

terms of computational efficiency and generalization performance, compared to

existing deformable convolutions. In the experiments, our proposed approach
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consistently achieved state-of-the-art performance. While our current work

focuses on image debanding, it also provides a solid foundation for addressing

similar issues in video debanding. Video debanding presents additional challenges,

such as maintaining temporal consistency, which may not be optimally addressed

by methods designed solely for images. As future work, we plan to extend the

model to tackle the complexities of video debanding task, building on the insights

gained from our work on image debanding.
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