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A B S T R A C T

Tropical deforestation in Southeast Asia is one of the leading causes of carbon emissions and reductions

of biodiversity. Spatially explicit analyses of the dynamics of deforestation in Indonesia are needed to

support sustainable land use planning but the value of such analyses has so far been limited by data

availability and geographical scope. We use remote sensing maps of land use change from 2000 to 2010

to compare Bayesian computational models: autologistic and von Thünen spatial-autoregressive

models. We use the models to analyze deforestation patterns in Indonesia and the effectiveness of

protected areas. Cross-validation indicated that models had an accuracy of 70–85%. We find that the

spatial pattern of deforestation is explained by transport cost, agricultural rent and history of nearby

illegal logging. The effectiveness of protected areas presented mixed results. After controlling for

multiple confounders, protected areas of category Ia, exclusively managed for biodiversity conservation,

were shown to be ineffective at slowing down deforestation. Our results suggest that monitoring and

prevention of road construction within protected areas, using logging concessions as buffers of protected

areas and geographical prioritization of control measures in illegal logging hotspots would be more

effective for conservation than reliance on protected areas alone, especially under food price increasing

scenarios.
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1. Introduction

Over the last two decades, global rates of tropical deforestation
increased from 5.6 Mha y�1 to 9.1 Mha y�1 (FAO and JRC, 2012).
Southeast Asia in particular is a global hotspot for tropical
deforestation (Achard et al., 2002; Hansen et al., 2008), losing
�32 Mha of forests from 1990 to 2010 (Stibig et al., 2013). During
this period, Indonesia accounted for �61% of forest loss in
Southeast Asia (Stibig et al., 2013). In addition, from 2000 to
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2012, 6 Mha of primary forest were lost in Indonesia—a rate higher
than that of Brazil (Margono et al., 2014). Extensive deforestation in
Indonesia is a cause for global concern as it contributes substantially
to land-based global carbon emissions (Harris et al., 2012), and
potentially high rates of biodiversity loss (Sodhi et al., 2004; Wilcove
et al., 2013). Therefore, an understanding of the dynamics and
spatial distribution of deforestation in Indonesia is crucial to
facilitate attempts to mitigate these environmental problems.

Historically, the drivers of deforestation in Indonesia varied
according to Indonesia’s agricultural, geographic and economic
contexts. After Indonesia’s independence and prior to the mid-
1980s, deforestation in Indonesia, especially in the Outer Islands
(Sumatra, Indonesian Borneo, Sulawesi, and Papua), was largely
associated with small-scale agricultural expansion as a result of
state-led re-settlement schemes as well as a boom in industrial
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logging activities (Jepson et al., 2001; Rudel et al., 2009). Roads
constructed for rural development as well as logging activities
reduced the travel costs for people to access forest resources and to
market them (Jepson et al., 2001; Miyamoto, 2006). By the 1990s, a
strong global demand for agricultural commodities, rising crop
prices, and increased privatization of land resources led to
widespread expansion of oil palm and fiber plantations over
forests, especially on lands without clear land ownership such as
peat swamps (Koh et al., 2011; Miettinen et al., 2012), as well as
small to medium scale deforestation for coffee and cacao
production (Clough et al., 2009; Gaveau et al., 2009c). Illegal
logging, which causes significant environmental and economic
damage to Indonesia’s forest capital (ITTO, 2001), has also been a
driver of deforestation since colonial times, but its activity
intensified after the Suharto era and the subsequent government
decentralization (Casson and Obidzinski, 2002).

While it has been shown that deforestation rates are lower in
protected areas than in certain non-protected area regions in
Indonesia (Gaveau et al., 2009a, 2012), mounting demands for
timber and agricultural products along with weak enforcement
have resulted in illegal logging and agricultural encroachment
within Indonesia’s protected areas (Jepson et al., 2001; Levang
et al., 2012).

Protected areas are classified in different categories (I–VI)
depending of their level of protection and objectives according to
the International Union for Conservation of Nature (IUCN):
category Ia that are strictly set aside to protect biodiversity and
human visitation is strictly controlled (equivalent to the category
of Nature Reserve in the Indonesian protected area system),
category Ib that are large unmodified areas retaining their natural
character and without permanent human habitation, category II

that are large natural areas set aside to protect ecological processes
and compatible with some uses such as educational or recreational
(equivalent to National Park in the Indonesian system), category III

set aside to protect a specific natural monument, category IV to
protect specific species or habitats (equivalent to Wildlife Reserve
in the Indonesian system), category V to protect areas where the
interaction of people and nature has created an area of distinct
character (equivalent to Nature Recreation Park, Forest Park and
Hunting Park in the Indonesian system) and category VI that
protect ecosystems and habitats together with natural resource
management systems (equivalent to Marine Protected Areas in the
Indonesian classification).

Global studies in the tropics report varying findings on the
effectiveness of protected areas on reducing deforestation
(Naughton-Treves et al., 2005; Nelson and Chomitz, 2011; Paul
et al., 2013; Porter-Bolland et al., 2012), with some studies
reporting less deforestation in strictly protected areas (IUCN
Categories I–IV) (Naughton-Treves et al., 2005; Nolte et al., 2013;
Paul et al., 2013), and others reporting more effective protection
under multiple use protected areas (IUCN Categories V–VI) (Nelson
and Chomitz, 2011; Porter-Bolland et al., 2012).

Drivers of deforestation have also been studied and spatial
regression models have shown a strong relation between
deforestation and the proximity to roads or rivers that facilitate
transport of timber and agricultural products to markets
(Angelsen, 2010; Nelson and Hellerstein, 1997). These results
have been verified by analytical microeconomic and regional
models that indicate a positive relationship between roads and
agricultural output prices with deforestation (Angelsen and
Kaimowitz, 1999).

In the case of Indonesia, the analysis of deforestation and
protected area effectiveness has been limited by data availability
and geographical scope. A nation-wide analysis of contemporary
deforestation and protected area effectiveness would thus be
useful to support land-use planning for conservation purposes.
Here we analyze the spatial distribution of deforestation in
Indonesia and protected area effectiveness from 2000 to 2010
derived from 250 m spatial resolution land cover maps (Miettinen
et al., 2011a). To this end, we fit and compare (a) an autologistic
model and (b) a von Thünen model with spatial autoregressive
components to: (i) evaluate the influence of potential factors on
deforestation while controlling for multiple confounders and the
spatial autocorrelation between observations; and (ii) to project
future deforestation under three macroeconomic forecast scenari-
os derived from the Organization for Economic Co-Operation and
Development (OECD), and Food and Agricultural Organization
(FAO) (OECD-FAO, 2011).

2. Methods

2.1. Data collection

Drawing upon the historical context of deforestation in
Indonesia, we evaluated the following factors: agricultural rent
with and without deducting transport costs (autologistic and von
Thünen models respectively), transport costs (in the autologistic
model), elevation, illegal logging hotspots, presence of logging and
timber concessions and protected area status.

Some limitations to the analysis of deforestation in Southeast
Asia occur because reliable spatial deforestation data for the whole
of Indonesia is notoriously difficult to obtain due to the persistence
of cloud cover in the region (Miettinen et al., 2011b). Therefore the
use of 250 m resolution spatial data that overcomes the cloud
cover problem (Miettinen et al., 2011b) opens a window of
opportunity to construct detailed statistical and mechanistic
models to understand the contemporary dynamics of deforestation
in Indonesia. These maps were preferred over recent global
deforestation maps (Hansen et al., 2013) as they were built using
independent peat swamp maps in the region and provided
different land uses of the region (Miettinen et al., 2011a), which
were adequate for our modeling purposes.

The scope of the analysis is the five main islands of Indonesia:
Sumatra, Java, Kalimantan, Sulawesi and Papua. In order to find a
reasonable compromise between data accuracy and computing
time, we divided this territory in 33,989 cells of size
6.9 km � 6.9 km. Using Geographic Informatics Systems (ESRI,
2006), the following spatial maps were computed:

2.1.1. Deforestation

We employed remote sensing satellite-generated maps of land
cover classification for the whole of insular Southeast Asia in
2000 and 2010 (Miettinen et al., 2011a). These maps were based on
Moderate Resolution Imaging Spectroradiometer (MODIS) images
and Daichi-Advanced Land Observing Satellite data. The overall
classification accuracy of the maps is 85.3%. We extracted land
cover data for the whole of Indonesia at two time periods: 2000
and 2010. This dataset consists of 12 land cover classes for
2000 and an additional ‘large-scale palm plantation’ land cover
class for 2010 (Miettinen et al., 2011b). We focused our analysis on
deforestation events which we define here as the conversion of
forest into non-forest land cover classes between 2000 and
2010. The forest land cover classes are represented by mangrove,
peat swamp forest, lowland forest, lower montane forest, and
upper montane forests. The non-forest land cover classes are
represented by plantation/regrowth, lowland mosaic, montane
mosaic, lowland open, montane open, urban, and large-scale palm
plantation. From these two maps we deduced the map of the
deforested cells between 2000 and 2010. We excluded from our
analysis forest degradation and did not model the possibility of
forest regrowth or restoration.
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2.1.2. Transport cost

We developed a map with the cost to transport timber or
agricultural outputs to the nearest city of more than 150,000
habitants. To develop the map we took into account the presence
or not of roads, the type of land to cross (roads, rivers, agricultural
land and forest) and the slope of the terrain. We first built a
weighted map estimating the cost of transport through each cell.
The weights were associated to land use types and the cost of
transport in each land type (see Table S1 in the Supporting

Information SI and Fig. 1 (ESRI, 2006; Phelps et al., 2013)). The
means of transport for land and across rivers or seas were trucks
and boats respectively. Slope of the terrain was taken into account
factored in through the volume of increase in fuel consumption by
the trucks and lower effective speed. We then calculated the least
expensive path to reach a city according to the weighted map and
stored the transport cost associated to each cell.

2.1.3. Gross rents

The seven top crops in terms of national production
value (farm gate price of the crops multiplied by the gross
Fig. 1. Spatial input variables. (A) Protected areas per IUCN category; (B) el
national production in physical terms) were considered: oil
palm, rubber, rice, maize, cocoa, coffee and coconut. The
percentages of area of each of these crops on each province
and their yields were obtained using global crop distribution
maps (Table S6 in SI, Monfreda et al., 2008; Ramankutty et al.,
2008). A weighted average of the gross rent for each province
was calculated.

2.1.4. Protected areas

We extracted maps of designated protected areas distributions
with their associated IUCN categories from the World Database on
Protected Areas (Fig. 1, WDPA Consortium, 2004).

2.1.5. Historical illegal logging hotspots

We used a map representing the hotspots of illegal logging in
the years 1997–1998 according to Forest Watch Indonesia, Global
Forest Watch and the World Resources Institute that corresponds
to a compilation of illegal logging cases reported by local
newspapers and by Forest Watch Indonesia (Matthews, 2002,
pp. 99).
evation; (C) transport cost to cities with more than 150,000 habitants.



Table 1
List of variables and their description.

Variable

name

Variable description

Oa Value of agricultural production for each cell and is calculated as the

area-based weighted average of agricultural yield times price of the

crops grown in each region

w Yearly wages

la, lf Agricultural labor and timber forest labor respectively for each cell

q Annual cost of capital

ka, kf Capital needed for production in each agriculture or forest cell

respectively

da, df The transport costs of the production in each cell to the nearest city

with a population greater than 150,000 habitants

pf Timber price

yf Maximum sustainable yield of timber per cell per year

ajP
j Cost of cultivating crops (or deforesting) on a protected area of

category j

a7I Cost or benefit of cultivating crops (or deforesting) where illegal

logging happened before

a8E Cost of cultivating crops in areas with high elevation

a9c Cost or the benefit of cultivating crops (or deforesting) in logging

concessions or timber industrial plantations
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2.1.6. Logging and timber industrial plantation concessions

We employed maps describing logging concessions and
industrial wood plantations (World Resources Institute, 2014).

2.2. Statistical analyses

2.2.1. Rationale for Bayesian computational methods

While regression models are useful, the use of ordinary least
squares to analyze spatial data has been found to produce residuals
that vary systematically over space, a phenomenon known as
spatial autocorrelation (LeSage, 2000). Spatial autocorrelation
needs to be accounted for because the effect of factors that are
spatially correlated tend to be over-estimated (Gumpertz et al.,
1997; Lichstein et al., 2002). Models that can deal with spatial
autocorrelation in the analysis of spatial data are thus necessary
(Dormann et al., 2007).

The use of Bayesian computational methods coupled with
spatial economic land use models might allow complex spatial
correlation patterns to be accounted for while providing a
framework for a mechanistic interpretation of the factors driving
deforestation. In particular, we use the von Thünen model that
determines deforestation patterns by comparing the rent of the
forest versus the rent of agricultural activities while accounting
explicitly for transport costs (Angelsen, 2010). The models we used
are inspired by spatial autoregressive models (autologistic
regression) and the estimation of the parameters is done under
the Bayesian framework using Markov Chain Monte Carlo (MCMC)
computational methods. The Bayesian framework allows for more
flexibility than the usual expectation-maximization (EM) algo-
rithms because it enables inference on the mean and dispersion of
all the model coefficients. In addition, the estimation of dispersion
of the posterior distribution of the parameters overcomes the
tendency for EM algorithms to overestimate the precision of the
estimates (LeSage, 2000). In general, Bayesian methods enable as
well the introduction of knowledge from external data sources
through prior distributions of the parameters (Gelman et al., 2003),
can deal efficiently with complications such as missing data or
non-standard error distributions (Dormann et al., 2007), and is
convenient for fitting mechanistic models directly to observational
data (Marion et al., 2012).

2.2.2. Models

A phenomenological (autologistic model) and a mechanistic
(von Thünen) model with spatial autoregressive components were
fit to the data: the latter based on a theoretical understanding of
the behavior of the system. To allow the model to capture the land
use dynamics, the von Thünen model was fit to the entire land-use
satellite maps of 2000 cross-sectionally. Hence forested cells were
represented by 1 and non-forested cells by 0 and the prediction of
deforestation was assessed on the entire map of 2010. However for
the autologistic model, the change in deforestation between 2000
and 2010 was directly modeled. Only the forest cells in 2000 were
used to fit the autologistic model and the dependent variable was
equal to 0 when the cell had been deforested between the two
dates and 1 if the cell was still forested in 2010. Ten-fold cross-
validation was run for each of the models to estimate their
predictive power represented by their error ratio.

2.2.3. von Thünen model

To evaluate the dynamics between agriculture expansion and
forest conservation, a von Thünen land rent versus forest rent
model was developed (S1 Supporting Methods in SI, Angelsen,
2010; von Thünen and Hall, 1966). The rent represents the profit
resulting from the cultivation of the land. The model compares the
rent of agricultural land uses with the rent of the forest using
sustainable timber harvest where a key factor of the model is the
distance to the nearest city (von Thünen and Hall, 1966). The land
is allocated by the model to the use with the highest rent. The
model predicts deforestation between 2000 and 2010 in a cell
when it is forested in 2000 and the agricultural rent is higher than
the rent of the forest. The agricultural rent takes into account the
benefits from selling the outputs at the market minus the labor,
capital and transport costs (the mathematical description of the
model is given below and expanded in the Supporting Methods in
SI). We assumed that the benefit from selling the timber from
forests conversion cancels out with the costs of land clearing and
preparation (Grieg-Gran, 2008). To be able to account for the
effectiveness of protected areas, we expand the von Thünen model
with a cost component representing the intangible cost of the
expected liability resulting from converting land inside protected
areas. We also added a component for the increase in production
costs and lower yields related to high elevation. Cost components
were also added for logging concessions and illegal logging. The
rationale is that concessions and existing illegal logging before
2000 in an area indicate the presence of the mechanisms and
transport systems necessary to deforest (e.g. logging roads and
forest tracks) and this is expected to lower costs of deforestation.
The rent of the forest is the benefits from selling the maximum
sustainable production of timber at the market minus the labor,
capital and transport costs. We introduced a spatial component
inside the von Thünen framework by expanding it into a
Conditional Auto-Regressive model (Supporting Methods in SI).
The closest neighbors of each cell were taken into consideration to
determine the rent of the cell. The extended cost, viz. protected
areas, elevation, logging concessions, illegal logging, and the
autoregressive components were estimated directly from the data
using MCMC methods (Gelman et al., 2003) using the 2000 data
only. These data were used to fit the rent of the agricultural land ra

and the rent of the forest rf on each cell i. These are defined as (see
Table 1 for variable definitions):

ra
i ¼ Oa

i � wla � qka � da
i � ei

r f
i ¼ p f y f � wl f � qk f � d f

i

where ei ¼
Xn

j¼1

a jP
j
i þ a7Ii � a8Ei þ a9ci represents the extension of

the traditional von Thünen model. Each observation is modeled as:

yi ¼ signðra
i � r f

i þ eiÞ



Table 2
Summary variables and proportion deforested between 2000 and 2010.

Variable Number

of cells

Forested

2000

Deforested

2000–2010

%

deforested

Total 33,989 16,602 2624 16

Protected areas 7103 5100 508 10

Category Ia 205 118 17 14

Category Ib 222 213 13 6

Category II 1674 1279 121 9

Category IV 652 419 35 8

Category V 48 12 2 17

Category VI 664 534 26 5

Category Unesco/other 3644 2525 294 12

Illegal hotspot

before 2000

112 28 16 57

Forest concessions 11,147 6558 1249 19

C. Brun et al. / Global Environmental Change 31 (2015) 285–295 289
where ei is the error term that is assumed to follow a Gaussian
distribution.

Hence when ra
i � r f

i > 0, agriculture is expected to be used on
the land and elsewhere forest is used. The likelihood function was
developed according to Gaussian Conditional Autoregressive
models (Supporting Methods in SI).

2.2.4. Autologistic regression model

An autologistic regression with the same explanatory variables
as those used in the von Thünen model was developed. The
autologistic model is an extension of a logistic model which also
takes into consideration the closest neighbors of each cell to
account for spatial autocorrelation (Supporting Methods in SI). The
autologistic model was used to fit deforestation data from 2000 to
2010 in those cells forested in 2000. We chose the probability
threshold that maximized the Matthews correlation coefficient.
The cells with probabilities to be deforested above the threshold
are said to have been deforested between 2000 and 2010. The
model was fitted using MCMC methods (Supporting Methods in SI).

The autologistic model is defined as follows:

log
ðPðyi ¼ 1ÞÞ
ðPðyi ¼ 0ÞÞ ¼ bXt

i þ r
X

i � j

ðy j � m jÞ

where Xi is the vector of the different predictors, b is the vector of

coefficients of the regression, r is the spatial correlation

dependence parameter and mj is the independence expectation

of yj where j means that j is a neighbor of i (Supporting Methods in
SI). On top of the usual logistic regression equation, the
autoregressive effect of the neighbors is characterized by the
second term, i.e.: r

P
i � jðy j � m jÞ.

2.2.5. Macroeconomic scenarios

In order to project future deforestation for the next period of
10 years, three macroeconomic scenarios derived from the
Organization for Economic Co-Operation and Development
(OECD), and Food and Agricultural Organization (FAO) (OECD-
FAO, 2011) were used: macroeconomic scenario 1, food price
inflation with a 20% agricultural commodity price increase
between 2011 and 2020; macroeconomic scenario 2, market
flooding with a 20% reduction in agricultural commodity prices
due to the increases in supply; and macroeconomic scenario 3, oil
price increase and a subsequent 25% increase in transport costs and
4% increase in agricultural commodity prices. These scenarios are
not forecasts about the future but represent plausible scenarios
that illustrate the range of deforestation implications of different
market evolutions. The FAO-OECD scenarios were chosen because
they are supported by a strong combination of expertise at the
commodity, country and policy levels.

3. Results

3.1. Factors influencing deforestation

The effect of protected areas varied for different categories.
Category Ia protected areas, which are exclusively managed for
biodiversity conservation, present 14% of their areas deforested
from 2000 to 2010. This is almost as high as the average 16%
deforestation rates (Table 2). Mixed results were obtained for
different categories of protected areas. The von Thünen model
showed that categories Ia and V had a greater probability of being
deforested than land outside these protected areas, all other factors
being equal (Fig. 2, 95% posterior credible interval CI [�0.79,�0.23]
and [�1.59,�0.35] respectively). The autologistic model showed
that category Ib presented higher probability of deforestation (CI
[�1.08,�0.11]) but this was in contrast to the results from the von
Thünen model. The autologistic model could however not find
evidence of effectiveness of the rest of protected areas (CI
encompassing zero) but the von Thünen indicated that categories
Ib, II, IV, VI and ‘‘other/UNESCO’’ slowed down deforestation.
However deforestation still occurs within the boundaries of these
categories of protected areas and ranged from 5% to 9% of their
areas (Table 2).

In the autologistic model, deforestation was found to be lower
as the transport cost to the market increased (CI [0.01, 0.25], Fig. 2).
High agricultural rent led to higher deforestation (CI
[�1.06,�0.49], Fig. 2). The results of the autologistic model with
regards to transport costs and agricultural rents are thus consistent
with the theory underpinning the von Thünen model by which
deforestation is driven by agricultural rents including transport
costs.

Elevation was shown to reduce deforestation in both the
autologistic and von Thünen models (CI [0.08,0.16] and CI
[0.07,0.08] respectively, Fig. 2). The correlation between elevation
and transport costs was however low (correlation coefficient,
r = 0.18).

Historical illegal logging hotspots before 2000 were good
predictors of deforestation between 2000 and 2010 (CI
[�1.73,�0.02] and CI [�3.17,�0.99] for autologistic and von
Thünen models respectively, Fig. 2). The probability of being
deforested was found to be lower within forest concessions or
industrial timber plantations ([0.06,0.37] and [1.32,1.42] than in
other locations outside concessions all factors being equal for
autologistic and von Thünen models respectively, Fig. 2).

3.2. Models predictive performance

The best predictive model for deforestation was the auto-
logistic model with an accuracy of 85% (Table S3). The von
Thünen model, despite its simplicity, was able to capture the
main deforestation patterns with an accuracy of 70% (Table S3).
The higher accuracy of the autologistic model was expected as the
autologistic model uses deforestation information from 2000 and
2010 while the von Thünen model only uses land-use information
from the year 2000.

Both models captured deforestation remarkably well in the
center south, west and east of Java and the North of Kalimantan
(Fig. 3). The von Thünen model, however, overpredicted defores-
tation—3000 predicted deforested cells versus 2688 actual defor-
ested cells. The autologistic model, on the other hand, was also able
to capture well the deforestation hotspots in Sulawesi (Fig. 3). Of
the main islands of Indonesia, deforestation in Papua was the least
well captured mainly because of paucity of reliable road maps,
especially those of private company roads constructed by large
scale agro-industrial projects.



Fig. 2. Results from fitting autologistic and von Thünen models using Markov Chain Monte Carlo methods. The bars represent the posterior distribution 95% credible interval.

The circles represent the coefficient estimate.
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3.3. Deforestation projections under macroeconomic scenarios

According to the models, deforestation between 2010 and
2020 is likely to occur in close proximity to the areas that have
been deforested before 2010, identifying the south and west part of
Kalimantan, the north-west Sumatra and West Papua as areas that
will be subject to the greatest rates of deforestation (Fig. 4).
Specifically, under the von Thünen model and macroeconomic

scenario 1, the top five regencies with highest area projected to be
deforested are: Asmat, Teluk Bintuni (Papua), Kapuas Hulu and
Ketapang (West Kalimantan) and Maluke Tenggara (Maluku
islands) (Table S6 shows the rank of projected deforestation by
regency). From the autologistic model, three out of the top five
regencies overlap: Ketapang, Maluku Tenggara and Kapuas Hulu
and the next two: Maluku Tenggara Barat (Maluku islands), and
Pontianak (West Kalimantan), are located in similar provinces
(Table S6). The top protected areas in terms of projected future
deforestation under macroeconomic scenario 1 are: Kepulauan Aru
Tenggara (category Ia), Belat Besar Linau, Gunung Leuser National
Park, Sebangau, Kerinci Seblat (category II) by the autologistic
model and Kepulauan Aru Tenggara (category Ia), Pulau Kobroor,
Jamdena, Morowali (category Ia) and Sungai Kayan by the von
Thünen model (Table S7 shows the rank of projected deforestation
by protected area).

Given the predictions of future deforestation under macroeco-

nomic scenario 1, some mitigating actions that could be imple-
mented such as expansion of existing and establishment of new
protected areas could be: expansion of Sebangau and Gunung
Palung National Parks to the north, Sungai Kayan to the north-west
(west, south and north of Kalimantan respectively, Fig. 4), establish
protected areas in the regencies of Kabupaten and Asmat in Papua,
expand Dabas Liegums Nature Reserve toward the west and
northwest (Southeast Sulawesi, Fig. 4), strengthen the protection
in Belat Besar Linau, Berbak, Gunung Leuser National Park and
Seberida protected areas and expand The Leuser Ecosystem
conservation area to the north (Sumatra, Fig. 4).
Both models were highly sensitive to changes in agricultural
prices. From the von Thünen model, compared to a baseline
scenario where the prices and all other parameters do not change,
an increase of 20% in agricultural prices, as expected from the
OECD–FAO macroeconomic scenario 1, would lead to 54% increase
in deforestation (Table S4). The macroeconomic scenario 2 with
price reductions due to market flooding leads to a decrease of 46%
in deforestation. The macroeconomic scenario 3 with increased
agricultural prices and transport costs leads to a decrease of 6% of
deforestation (Table S4). Larger variations are predicted with the
autologistic model: macroeconomic scenario 1 leads to a 70%
increase in deforestation, macroeconomic scenario 2 to a decrease of
36% and macroeconomic scenario 3 to a 30% increase (Table S4).

4. Discussion

Our analysis could not find evidence that protected areas in
categories Ia and V were effective with regards to slowing down
deforestation and, according to the von Thünen model, they were
more likely to present higher deforestation rates from 2000 to
2010. This is in contrast with analyses based on satellite data for
specific islands like Sumatra from the previous time period of
1990 to 2000 (Gaveau et al., 2009a) and for analyses that showed
that stricter protected area categories tended to be more effective
(Naughton-Treves et al., 2005), but confirms predictions that
protected areas were expected to suffer mounting pressure after
2000, chiefly due to the exhaustion of logging concessions and
because much of the remaining most valuable timber is within
protected areas (Curran et al., 2004). This turn of events is alarming
because it shows that protected areas of category Ia—the main
strongholds of biodiversity conservation—could be poorly
enforced. When in the 1990s it was relatively easy to harvest
timber in logging concessions without resorting to harvest within
protected areas, protected areas seemed effective. Under the
current context in which the scarcity of logging concessions forces
loggers to overcome the fear of incurring liabilities, protected areas



Fig. 3. Maps of actual deforestation versus models’ predictions from 2000 to 2010. (A) Actual deforestation. (B) auto-logistic model predictions. (C) von Thünen model
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appear weak. The reason why category Ia behaves differently to
other less strict categories might respond to the fact that, due to
their stricter management in the past, they contain some of the
main remnants of high value timber. The results for category V and
the identification of the actual on the ground processes in category
Ia call for further research on the ground. If the exhaustion of forest
concessions is responsible for the leakage of logging activities in
protected areas, then the creation of new logging concessions or
the further implementation of forest plantations could be a way to
reduce the pressure on protected areas through meeting the
demand for timber. Other logging pressures may also respond to
small-scale agricultural expansion such as cacao in Sulawesi,
coffee in South Sumatra and oil palm in Riau (Abood et al., 2014).
Stronger enforcement of the protected areas and alternative
livelihoods to small-scale farmers could help reduce these
pressures.

There were however differences in the estimation of protected
area effectiveness between the von Thünen and autologistic
models that reflect the different nature of the models and the data
used to construct them. By contrast with the autologistic model,
the von Thünen model does not estimate the coefficients for travel
cost and agricultural rent, which are fixed. In the case of the



Fig. 4. Deforestation predictions from 2000–2010 (‘‘deforestation 2000–2010’’) and from 2010 to 2020 (‘‘deforestation scenario 1’’) under macroeconomic scenario 1 using the

autologistic model (B) and von Thünen model (C).
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autologistic model, this extra flexibility to use protected areas,
agricultural rent or transport costs to explain deforestation leads to
more alternative parameter combinations that could represent
plausible explanations of the data. This flexibility could be
problematic as protected area location tends to be biased toward
less productive land away from cities (Joppa and Pfaff, 2009),
making it more difficult to tease out the effect of protected areas
versus agricultural rents.

The second reason for these differences is that the two models
deal with spatial autocorrelation differently. The spatial autore-
gressive component of the von Thünen model does not change
directly the probability of deforestation in the model but the
covariance of the distribution of the error term. This is not the case
in the autologistic model where the autocorrelation structure is
included directly in the model and, as a result, its effect could be
stronger. Thus, in the cases where the protected areas are spatially
aggregated, the autologistic model could explain deforestation
largely from the dynamics of neighboring cells, reducing the role
that protected areas have as a variable. To test this hypothesis, we
further ran a logistic regression analysis without spatial autocor-
relation. The effects regarding protected area effectiveness
presented a similar direction in the effects as those of the von
Thünen model, showing how accounting for spatial autocorrela-
tion reduced the effect (categories II, IV, VI, other/Unesco) or even
changed the direction of the effect (categories Ib) of protected areas
in the autologistic model.

The comparison of the models showed other differences:
the von Thünen model, which describes the potential for
deforestation based on rent differentials, tends to overestimate
deforestation rates, which might reflect a time lag between the
realization of the rent differential and the actual deforestation.
Land tenure regimes such as hak milik (right of ownership) or hak

pakai (use right of land) might also prevent uncontrolled
deforestation even if there is a rent differential, but due to data
paucity on the distribution of tenured land, these factors could
not be incorporated. Nonetheless, simulating the von Thünen
model forward can be useful to pinpoint the areas at most risk of
conversion under future price increases and this could help in
devising sustainable land planning strategies. In contrast, higher
predictive accuracy was obtained from the autologistic model.
The lower accuracy of the von Thünen model is however
compensated as it allows for a mechanistic understanding of
the dynamics of deforestation.

Eventually, the choice of the model will depend on data
availability and purpose. The von Thünen model can be useful if
spatial data are scarce or available only at a single time point, for it
can provide land-use change projections that capture the salient
economic dynamics. Provided that the theoretical framework
represents appropriately the system, it can also be useful at teasing
out the effectiveness of protected areas by reducing the number of
plausible explanations. On the other hand, the autologistic model
can provide higher accuracy of forecasts in the presence of repeat
high resolutions maps, when the main aim is to obtain more
spatially accurate predictions than a mechanistic understanding of
the drivers of deforestation.

In general, the use of Bayesian spatial autoregressive models
provides flexibility in dealing with complex datasets that present
spatial and temporal correlation, with explanatory variables that
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are correlated (e.g. in our case, slope, a component of transport
costs can be correlated with altitude) and allowing to represent
environmental systems with a spatial component in a natural way
(Cook et al., 2007). An example of alternative and less computa-
tionally intensive methods used to evaluate the effectiveness of
protected areas or payment for ecosystem services schemes are
propensity score matching (e.g. Gaveau et al., 2013). These
methods attempt to identify ‘‘matched pairs’’ of locations while
controlling for a number of potential confounders that are
translated in a propensity score (e.g. accessibility confounders in
Gaveau et al., 2013). One limitation of these methods is that only
observable potential confounding variables can be accounted for
while bias due to latent unobserved variables or spatial
autocorrelation between observations cannot be incorporated
(Garrido et al., 2014). While propensity score matching is preferred
for small number of observations per potential confounder,
regression-based methods are preferred when the number of
observations is large (Cepeda et al., 2003), as would be the case
with high-resolution maps. Bayesian spatial autoregressive
models, on the other hand, may require sophisticated computing
methods and large computation time, making computationally
simpler methods such as logistic regression or propensity score
matching preferred if time constraints exist.

Roads have been described as proximate causes of deforestation
(Gaveau et al., 2009b; Geist and Lambin, 2002) but it is sometimes
difficult to establish the direction of causality (Angelsen, 2010).
Our results with regards to transport costs show that deforestation
is associated with roads and points toward roads causing
deforestation and not the inverse, with our models predicting
correctly deforestation close to roads extant in 2000. This
reinforces the idea that careful road planning is fundamental for
tropical forest conservation (Laurance et al., 2014), i.e. road
constructions should circumvent the proximity of biodiversity
hotspots and protected areas as much as possible. Relatedly, our
results highlight the importance of low agricultural rents and high
transport costs to curb deforestation. These results show that
isolation is very effective at preventing deforestation and could
counter the effect of increasing agriculture prices. Nevertheless,
biodiversity richness and carbon may be higher in the more easily
accessible lowlands and might not always benefit from the effects
of isolation and altitude (Koh and Ghazoul, 2010; Sodhi et al., 2004;
Wich et al., 2008).

Elevation was shown to protect against deforestation. This
result is however not related to an association with transport cost
and might be instead due to lower agricultural yields with altitude.
This protection against deforestation is congruent with the bias of
protected area location at higher altitude as they support less
conversion pressures (Joppa and Pfaff, 2009). The observed low
correlation between elevation and transport costs may however
respond to the use of a cost distance function in which elevation
only plays a partial role (via higher fuel consumption in slopes and
longer roads) together with distance from cities. A measure that
integrates slope and elevation such as topographic ruggedness
could offer new insights and further research should aim at
incorporating it.

We also found that deforestation between 2000 and 2010 is
strongly linked to illegal logging hotspots. The geographical
persistence of illegal logging hotspots opens a window of
opportunity to prioritize monitoring and enforcement efforts.
Using the generated deforestation predictive maps, policy makers
could reduce the cost of extensive monitoring programs by
concentrating efforts on areas that present high probability of
illegal deforestation.

After controlling for other factors, lower rates of deforestation
occurred within logging concessions and forest plantations
(similar results were found in Gaveau et al., 2012). Although
these results would require further investigation, some explana-
tions could be the exhaustion of good timber within concessions
with the subsequent slowdown of harvest or the improved
management of the concession through a perceived improved
tenure security from managers. These results have policy
implications as they suggest that placing timber concessions
around protected areas could help protecting them against
deforestation, and indeed suggestions have been made to design
logging and industrial timber concessions as protected areas of
type VI (Gaveau et al., 2013).

Our analysis presents some caveats. In general, the datasets
used, as far as we are aware, represent the best data available for
Indonesia. These datasets are however not exempt of uncertain-
ty. For instance, the distribution of protected areas may contain
‘‘paper parks’’ that are not enforced in reality. In addition, the
sources of information within the World Database on Protected
Areas are varied leading to inaccuracies and issues of resolution
that cannot be easily assessed (Chape et al., 2005). Related to this
uncertainty, our results regarding protected areas of type Ia and
V should also be treated with caution. The number of cells in each
category affected by deforestation is low (30 out of 300 for
category Ia and 2 out of 12 for category V) and the results could
be affected by the inherent error of remote sensing products
(85.3% accuracy in the maps we used). These sources of
uncertainty could lead to potential perimeter interior ratio
effects resulting from cells overlaying the edges of the protected
area that could be misclassified as deforestation inside when
they are actually occurring outside. In addition, the distribution
of agricultural crops and potential yields correspond to global
datasets derived from national inventories, thus being associated
to high uncertainty. Further analysis would thus be warranted
when more accurate datasets (e.g. exclusion of ‘‘paper parks’’)
are made available. Neither could we find maps of illegal logging for
years after 1997, which would have been ideal as illegal logging can
be a highly dynamic process. Nonetheless, it is remarkable that the
illegal logging hotspots remained as significant predictors during
the time span considered. We have not considered maps of oil palm
concessions and pulp and paper concessions, which have been
shown to influence deforestation (Carlson et al., 2013; Gaveau et al.,
2013). These information has however been partially covered by
considering the distribution of oil palm plantations and logging and
timber concessions. Further research should consider the inclusion
of these layers explicitly.

5. Conclusions

Through the comparison of Bayesian spatial autoregressive
models, we showed that deforestation in Indonesia can be explained
by economic forces such as low transport costs, induced by the
presence of roads, and high agricultural rents. Future increases in
agricultural commodities prices will impose strong pressures on
Indonesian forests. Protected areas of category Ia, core for the
conservation of biodiversity, do not appear as an effective way to
prevent deforestation, presumably due to the mounting pressure as a
result of the exhaustion of logging concessions and conversion of
forests to farmland. Our results suggest that a sustainable design of
road networks, using timber and logging concessions as buffers
around protected areas and spatial prioritization of control measures
in historical illegal logging hotspots would be more effective than
reliance on protected areas alone.
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