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Harmful non-indigenous species (NIS) introductions lead to loss of biodiversity and serious economic impacts.
Government agencies have to decide on the allocation of limited resources to manage the risk posed by
multiple NIS. Bioeconomic modelling has focused on single species and little is known about the optimal
management ofmultiple NIS using a common budget. A comprehensive bioeconomicmodel that considers the
exclusion, detection and control of multiple NIS spreading by stratified dispersal and presenting Allee effects
was developed and applied to manage the simultaneous risk posed by Colorado beetle, the bacterium causing
potato ring rot and western corn rootworm in the UK. A genetic algorithm was used to study the optimal
management under uncertainty. Optimal control methods were used to interpret and verify the genetic
algorithm solutions. The results show that government agencies should allocate less exclusion and more
control resources to NIS characterised by Allee effects, low rate of satellite colonies generation and that present
low propagule pressure. The prioritisation of NIS representative of potential NIS assemblages increases
management efficiency. The adoption ofmanagementmeasures based on the risk analysis of a single NISmight
not correspond to the optimal allocation of resources when other NIS share a common limited budget.
Comprehensive bioeconomic modelling of multiple NIS where Allee effects and stratified dispersal are
considered leads to a more cost-effective allocation of limited resources for the management of NIS invasions.
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1. Introduction

Government agencies need to manage multiple harmful non-
indigenous species (NIS) introductions to avoid losses to biodiversity
and serious economic impacts on agriculture, fisheries, forestry and
industry (OTA, 1993). Quantitative models aimed at identifying the
economically optimal strategy to manage NIS should combine the
disciplines of invasion ecology and economics (Leung et al., 2002) that
hitherto have tended to remain separate. NIS spread and management
has been successfully captured by biological invasion spread theory
(good reviews are Hastings, 1996; Higgins and Richardson, 1996) and
applied ecology models (e.g. Moody and Mack, 1988; Taylor and
Hastings, 2004). Surprisingly, these advances have not quite been
integrated within the economic modelling of NIS management (Lieb-
hold and Tobin, 2008). Aspects commonly overlooked by the economic
literature of NIS invasions management are: (i) long-distance dispersal
events that are known to be very relevant to the rate of the invasion
spread (Bossenbroek et al., 2007); and (ii) the importance of Allee
effects (reduced survival probability in low population density colonies
due for instance to the difficulty to find a mating partner, satiate
predators or inbreeding depression) and propagule pressure on the
establishmentof isolatednewcolonies (Liebhold andBascompte, 2003).

Recent bioeconomicmodels combining both ecology and economics
for the management of single NIS have been insightful in determining
the optimal management of NIS invasions (a good review is provided
by Olson, 2006). Studies have focused on the exclusion of NIS related to
trade (e.g. Costello andMcAusland, 2003;Horanet al., 2002), prevention
or control of a single NIS (e.g. Buhle et al., 2005; Carrasco et al., 2010;
Eiswerth and Johnson, 2002;Olson andRoy, 2002) andmore recently an
integrative approach to study the trade-off between control and pre-
vention has been adopted (e.g. Burnett et al., 2008; Finnoff et al., 2007;
Kim et al., 2006; Olson and Roy, 2005; Perrings, 2005). Regarding
the methodologies used to solve the dynamic optimization problem of
NIS management, different approaches have been used: models where
optimal control theory is employed (Burnett et al., 2008; Eiswerth and
Johnson, 2002; Kim et al., 2006, 2007; Olson and Roy, 2005) stochastic
dynamic programming applications (Eiswerth and van Kooten, 2007;
Leung et al., 2002; Shoemaker, 1981) and genetic algorithms (Taylor
and Hastings, 2004).

Despite these advances, little is known about the economically
optimal management of multiple NIS coming from different pathways
and regions with a limited budget, because modelling efforts have
focused mainly on a single NIS or pathway (but see Kim et al., 2007
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which focuses on multiple regions and is the basic work from which
the analytical exploration builds). This focus on a single NIS overlooks
the fact that inmost cases NIS management activities share a common
and limited national budget. For this reason, it is necessary to develop
more comprehensive models that integrate the management of mul-
tiple NIS under uncertainty.

Allee effects and propagule pressure are fundamental factors that
determine the potential success of a biological invasion (Leung et al.,
2004; Liebhold and Tobin, 2008). Although they are important
concepts in the field of invasion ecology, they have received very
little attention in the economic modelling of NIS. An exception is the
work by Burnett et al. (2008) that assumes strong Allee effects and
uses a minimum population threshold before which an invasive
population of tree snakes cannot start growing in Hawaii. In this
paper, the literature of economic modelling of NIS management is
advanced by including Allee effects and propagule pressure explicitly
in the economic analysis.

Here a comprehensive bioeconomic model that integrates exclu-
sion, detection and control of multiple NIS is developed. The model is
used to study the influence of Allee effects, propagule pressure and
stratified dispersal of a certain NIS on the optimal economic allocation
of exclusion and control efforts among multiple NIS. It is also used to
test the cost-effectiveness of agencies carrying out risk analysis on
individual NIS that are representative of pathways that might carry
assemblages of multiple unknown NIS.

The problem is first approached using optimal control theory
(Pontryagin maximum principle) (Pontryagin et al., 1962; Sethi and
Thompson, 2000) to explore the necessary optimal management
conditions (Appendix A). Then, uncertainty is introduced into the
parameters and themodel is applied for the case study of the potential
invasion by the NIS western corn rootworm (WCR), Colorado potato
beetle (CB) and the bacterium Clavibacter michiganensis subsp.
sepedonicus responsible of the disease potato ring rot (PRR) in the
UK (see the electronic supplementary material for a description of the
case studies). The optimal control problemwas solved using a genetic
algorithm combined with Monte Carlo simulation.

2. Methods

2.1. The Model

The stages of a NIS invasion are divided into entry, establishment
and spread. The management measures available to the government
agency to manage NIS i are the control variables of the problem:
exclusion (Exi) that attempts to decrease the probability of entry and
establishment; detection before discovery (Sbi) that aims to discover
the invasion at its early stages; and control (Qi) that can be aimed
at eradicating the invasion, containing it or slowing it down and
encompasses removal and surveillance after discovery. Herewe define
CExi, CSbi and CQi as the total expenditure on exclusion, detection before
discovery and control of NIS i.

2.1.1. Entry and Exclusion
Let the annual probability of entry and establishment of the first

colony by NIS i be piinv. Wemodel the process of a successful entry and
first establishment per year using a Poisson stochastic process (Vose,
1997):

f invi = exp −pinvi

� �h i
pinvi

� �
ð1Þ

where f inv is the probability density function of successful entry and
establishment. We assume that pinv′ b0 and pinv″ N0, where the prime
denotes the derivative with respect to CEx, i.e. the probability of
invasion of the NIS is inversely proportional to the government
expenditure on the NIS exclusion with decreasing marginal returns.
We model the relationship between probability of invasion and
exclusion as (modifying Leung et al., 2005):

pinvi =
pri

1 + θiCExi

ð2Þ

where pri is the probability of invasion when no efforts at exclusion
are in place and θi is the effectiveness in reducing the probability of
invasion per monetary unit spent on exclusion measures on NIS i.

2.1.2. Detection Before Discovery
Once the NIS has entered and established, official control measures

are not started unless theNIS is discovered. The conditional probability
of discovery at time t, given non-discovery up to time t ismodelled as a
hazard function. The hazard is explained by the covariates CSbi and Ati

(area invadedat time t). A Coxproportional hazardsmodel (Cox, 1972)
was employed:

λ tk;CSbi
;Ati

� �
= λ0i tð Þ exp β1iCSbi

+ β2iAti

� �
ð3Þ

where tk is the time of discovery of the invasion k; λo is the baseline
hazard function defined at the mean of the explanatory variables; βj

are the regression coefficients. CSbi and At have an effect on the
baseline hazard function shifting it up or down.

2.1.3. Stratified Dispersal and Establishment
A successful invasion event leads to an initial main colony that

grows following a reaction–diffusion model (Skellman, 1951) by
which the radius increases at a constant radial velocity vi=2(εidi)1/2 in
a circular fashion where εi is the intrinsic growth rate and di is the
diffusion constant of the NIS i. The main colony generates a propagule
pressure (N) due to propagules arriving at the same location in the
same time period after performing long-distance dispersal. New
entries after the current invasion has been discovered become new
satellite colonies with probability equal to At/Amax where Amax is the
total susceptible range of theNIS. Long-distance dispersing propagules
might generate satellite colonies (“nascent foci”). The probability of
establishment of a propagule to generate a newcolony (pe) ismodelled
with a Weibull distribution (Dennis, 2002; Leung et al., 2004):

pei = 1− exp −αiNið Þγi
� �

ð4Þ

whereαi equals to− ln(1−ηi) and ηi is the probability of establishment
of a single migrating individual that is assumed equal to the density of
the host in the landscape. γi is a shape parameter that reflects the
severity of Allee effects on NIS i. When γi=1, there is no Allee effects.
Once established, the nascent foci grow following also a reaction–
diffusion model. A scattered colony model where nascent foci do not
coalesce with other colonies was employed (Shigesada et al., 1995).
The original main colony and the nascent foci produce new propagules
at a rate ρi. The number of propagules (nprop) is assumed proportional to
the area of the colony (Acol): nprop(t)=ρi Acol(t) (Shigesada et al., 1995).
The agency prioritises the control of nascent foci and uses the remaining
funds for control for the management of the original colony (Moody
and Mack, 1988).

2.1.4. Control After Discovery: Surveillance and Removal
Control costs are composed of surveillance costs after discovery

and removal costs. The agency is uncertain about the extent of
the invasion and needs to perform surveillance activities to gain
knowledge of the areas invaded, i.e. for a unit of invaded area to be
removed it has to be detected first. The marginal cost of control (c') is
expressed as (modifying Burnett et al., 2007):

c′ =
dCQi

dQi
= cR + cdetð ÞAdet
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where cdet is the unit cost of detection of an invaded unit of area and
Adet is the area where the NIS has been detected at time t; and cR is the
unit cost of removal. The agency will allocate resources to surveillance
activities until the cost of removal of the amount of invaded area
detected equals the remaining funds available in the budget for control
activities.

Surveillance activities follow diminishing marginal returns with
the size of the invasion. This represents the greater difficulty to
eradicate the last proportions of area invadedwith respect to the initial
proportions (Myers et al., 1998):

cdet = cS +
cdet−max−cS

1 + At

where cs is the unit cost of surveying a unit of susceptible area;
cdet−max is the cost of detecting the last invaded unit of area. It is
assumed that: cdet−max=cs∙A0 where A0 is the size of the area
invaded when control activities started against the invasion.

2.1.5. Damages
The NIS invasion generates damages Dt where Dt=D⁎At and D⁎ is

the unit cost of damage caused by the NIS per unit of area invaded.
D⁎ can present the following relationships with the area invaded:
(a) linear relationship whereD⁎=D0⁎where D0⁎ is constant; (b) convex
relationship where D⁎=D0⁎+(At/b1)2; (c) concave relationship where
D⁎=D0⁎+(At/b2)1/2. Case (a) is the default case used in the numerical
simulation–optimization experiments.

2.1.6. The Policy Problem of the Agency
The problem of the agency is to allocate resources on exclusion,

detection before discovery and control among N potential NIS to
minimise the net present value (NPV) of the total costs due to the
invasions and their management. Expressed in a generic way:

Minimize : ∫
T

0

e−r⋅tf∑
N

i=1
ðFinv iFdi CQi Qi;Atið Þ + Di Atið Þ + CExi + CSbi

h i

+ Finv i 1−Fdið Þ Di Atið Þ + CExi + CSbi

h i
+ 1−Finv ið Þ CExi + CSbi

h iÞgdt
ð5Þ

where r is the discount rate, T is the time horizon, Finv i and Fdi are the
cumulative probability functions of successful initial invasion and
discovery of the NIS i at time t. The minimisation is subject to a budget
constraint on themanagement activities, the dynamics of entry andfirst
establishment, spread and discovery of eachNIS. Optimal control theory
(Pontryagin, 1962; Sethi and Thompson, 2000) was used to explore
analytically the behaviour of the control variables in their optimal paths
(Appendix A). A genetic algorithm was used to obtain the optimal
control paths for the presented empirical formulation of the problem.

2.2. Model Parameterisation

A panel of expert pest risk analysts was asked to provide estimates
of entry and establishment probability given different levels of
exclusion efforts and the time till discovery given sizes of the initial
invasion and levels of detection for WCR, CB and PRR (see electronic
supplementary material). The models were fitted to the data using
survival analysis and nonlinear regression methods in the R environ-
ment (R Development Core Team, 2005).

2.3. Simulation and Optimization: Genetic Algorithms

The optimal timepath of the control variables under uncertaintywas
obtained using a genetic algorithm. Genetic algorithms are a numerical
optimization method inspired from evolutionary biology and used to
find solutions to complex problems with poorly understood solution
spaces (Holland, 1975). Genetic algorithms have extensively been
used in the fields of engineering, economics and biology (Axelrod,
1984; Chen, 2002; Dawid, 1999). For instance genetic algorithms have
been used to solve the travelling salesman problem, large scheduling
problems, portfolio optimization and engineering problems like the
design of bridge structures (Dawid, 1999).However their use in the area
of bioeconomics of NIS control is very rare (see as an exception Taylor
and Hastings, 2004). In a genetic algorithm, a computer simulation is
performed where a population of abstract representations of candidate
solutions of the optimization problem (chromosomes) evolves to better
solutions according to a fitness criterion (Goldberg, 1989). In our case,
the functioning of the genetic algorithm expressed in programming
pseudocode was:

1. Generate an initial population of 500 chromosomes (each chromo-
some contains the levels of detection, exclusion and control for
each NIS and year, i.e. “genes”).

2. The model is run for each chromosome using Monte Carlo simu-
lation with Latin Hypercube sampling until convergence of the
estimate of the mean of the distribution of NPV of the total costs
(our fitness criterion).

3. Select the fittest chromosomes (those that led to lowest mean NPV
of total costs).

4. Create “offspring” chromosomes through: (i) a crossover function
that interchanges the genetic material of the fittest chromosomes
and (ii) a mutation function that performs random changes in a
proportion of the “genes” of the chromosomes to allow for explo-
ration of new regions of the solution space.

5. Replace the least-fit chromosomes of the population with the fitter
offspring chromosomes.

6. The genetic algorithm continues creating new offspring chromo-
somes until themeanNPV of total costs is not reduced bymore than
0.01% for the last 5000 generated chromosomes (visual inspection
confirmed the convergence of the algorithm to a stable optimal
solution).

Genetic algorithms have been used to solve complex optimal control
problems where, as in our case, sufficiency conditions of optimality
cannot be applied analytically (Seywald et al., 1995; Yamashita and
Shima, 1997).Whereas their probabilistic nature does not allow them to
find with certainty the exact global minimum, it prevents them from
being contained by local minima unlike hill-climbing optimization
methods (Mardle et al., 2000). In this respect, mutation processes are
essential to avoid a premature convergence to local minima because
they ensure a good coverage of the solution space (Dawid, 1999),
allowing genetic algorithms to obtain a good approximation of the
global minimum. Their probabilistic nature allows them also to handle
constrained optimization problems and find boundary solutions with
less difficulty than hill-climbing methods. The main problem with
constraints is how to deal with candidate solutions that violate
the constraints. For these cases fitness penalty functions or rejection
rules are employed. In our case, a rejection rule that discarded the
chromosomes that violated the problem constraints was used.

Discretization of the optimal control problem to a yearly time-
step was necessary in order to apply the genetic algorithm (Seywald
et al., 1995; Yamashita and Shima, 1997) i.e. discretization of the time,
exclusion, control and detection efforts. Uncertainty distributions of
the model parameters were introduced (Table 1). The software
RiskOptimizer (Palisade-Corporation, 2006) was employed. We set
the rate of crossover and mutation at 0.5 and 0.1 respectively
(Palisade-Corporation, 2006). There is a trade-off between the
precision of the solution obtained (length of the chromosome) and
the speed of convergence to an optimal solution. We limited the
values of the control variables to 10% fractions of the annual budget
and assumed that management policies could only be changed every
two years in a twenty year time horizon ((910)(20/2)=2.656 ∙1095
possible solutions).
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Table 1
Uncertainty distributions of the parameters of the model. The parameters regarding entry, establishment and time till discovery were elicited from expert information (electronic
supplementary material). pR: baseline probability of entry; Θ: cost-effectiveness of exclusion efforts; β1 and β2 are the effect of detection efforts and area of the invasion on the time
to discovery; ρ: rate of satellite generation; ε: intrinsic growth rate; d: diffusivity (km2/year); cR: unit cost of control (£/km2); D⁎: unit cost of impacts (£/km2); η: probability of
establishment of a satellite colony; γ: shape parameter reflecting the severity of Allee effects; cS = unit cost of surveillance activities; b1 and b2: scale parameter of the convex
and concave damage functions. U denotes uniform distribution. The “assemblage” column presents the uncertainty distributions sampled to generate the NIS assembled with CB
(see Fig. 4).

Parameter WCR CB PRR Assemblage

pR U(0.27,0.74)c U(0.22,0.34)c U(1.1E−03, 0.054)c U(0,1)
Θ U(1.7E−06, 5.3E−05)c U(2.0E−05, 4.4E−05)c U(2.5E−06, 4.6E−06)c –

β1 4.34E−07c 0 2.93E−06c U(0, 1E−06)
β2 1.35E−05c 8.11E−06c 9.84E−06c U(1E−05, 1E−06)
ρ Pert(0.36, 0.72, 1.08)c Pert(0.2, 0.4, 0.6)c Pert(0.1, 0.2, 0.3)c U(0,1)
ε Pert(1, 2, 3) Pert(0, 0.025, 0.05)b Pert(3, 5, 7)b U(0,7)
d Pert(12, 23, 35)c Pert(50, 60, 70)b Pert(0, 0.025, 0.05) U(0,70)
cR Pert(80, 163, 240)c Pert(40, 119, 200)a Pert(41, 68, 134)c U(40,240)
D⁎ Pert(60, 120, 180) Pert(0, 50, 100)b Pert(354, 726, 1114)b U(0,1200)
η 0.008 0.0094 0.0094 U(0.008,0.0094)
γ U(1,2) U(1,2) 1 U(1,2)
cs 18.054c 8.512c 14.235c U(8,18)
b1 22,035 32,140 45,000 –

b2 88 160 229 –

Common annual budget for management of all NIS £8,000,000
Number of NIS in the assemblage U(0,30)

Sources: aestimated from (Bartlett, 1980); b(Waage et al., 2005); celectronic supplementary material.
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3. Results

3.1. Analytical Exploration: Condition of Equimarginality

Assuming an interior solution, the maximum principle (Pontryagin,
1962; Sethi and Thompson, 2000) was used to derive the following
necessary optimality conditions of the problem (Appendix A):

−Finv iFdi−λ1ð Þ ∂CQi

∂Qi
+ λi2

∂Ζi
∂Qi

= −Finv iFdi−Finv i 1−Fdið Þ− 1−Finv ið Þ−λ1ð Þ ∂CExi

∂Exi
+ λi3

∂Φi

∂Exi

= −Finv i 1−Fdið Þ− 1−Finv ið Þ−λ1ð Þ ∂CSbi

∂Sbi
+ λi4

∂Ψi

∂Sbi
= 0

ð6Þ

where λ1 is the Lagrangian multiplier associated to the budget
constraint; λi2, λi3, λi4 are costate variables (reflecting the shadow
price) and Ζ,Φ, andΨ are partial time derivatives of the variables area
invaded, probability of entry and first establishment and probability of
discovery respectively.

Condition (6) determines that for a dynamic allocation of the budget
among the different NIS and management activities to be economi-
cally optimal, the marginal avoided costs due to the NIS obtained by
each management activity should equal the marginal costs of such
activity. This type of condition is called an equimarginal condition
and the marginal costs and marginal avoided costs due to the NIS
can differ between each NIS and management activity (Kim et al.,
2007).

Relaxing the assumption of interior solution, i.e. state and control
constraints can be binding, the optimal path presents modifications of
the equimarginal condition. When a certain NIS i is eradicated or
totally invades its susceptible range, management efforts towards NIS
i become zero and the ratio of marginal costs and marginal benefits of
the control of NIS i (Qi) drops from the equimarginal condition until a
new introduction of NIS i takes place (see Appendix A).

Regarding the budget inequality constraint, the Kuhn–Tucker
conditions are given by:

λ1≥0; B− ∑
N

i=1
CExi

+ CSbi
+ CQi

� �
≥0; λ1 B− ∑

N

i=1
CExi

+ CSbi
+ CQi

� � !
= 0:
By complementary slackness, the budget constraint will be binding
(λ1N0) whenever the total expenditure on the management of the
group of NIS equals the budget (B). The budget constraint creates a
competitive interaction between different management options and
NIS, i.e. focusing on the exclusion of one NIS implies that fewer
resources are available for the management of the other NIS. If the
budget is not a limiting factor for the management of all NIS, i.e. the
budget constraint is not binding (λ1=0) the solution of the optimal
control problem is equivalent to the independent solution of the
optimal control problem for each individual NIS. Due to the
complexity of the problem, (λ1 is a function of the level of exclusion,
detection and control of each NIS), explicit expressions for the path of
λ1 and the control variables as a function of time could not be found
analytically. We used instead numerical methods to study the optimal
paths of the control variables. The simulation–optimization algorithm
was applied to the concrete case of WCR, CB and PRR and allowed to
study the general case when control and state constraints are binding.

3.2. Optimal Paths Obtained Using Numerical Methods

In the baseline scenario, the allocation of management resources
pointed towards the condition of equimarginality. WCR was allocated
a large share of the management resources (£23.8 million on
exclusion and £30.1 million on control, Fig. 1(a) “baseline scenario”)
because its likelihood of entry, establishment and spread velocity is
higher than those of CB and PRR. This makes the potential avoided
costs due toWCRmanagement very high and grants a large allocation
of the management resources for WCR.

In contrast, economic impacts were not so relevant for the final
allocation of management resources. For instance, PRR that presented
clearly the highest potential economic impacts (Table 1) was not
allocated as much resources as WCR because of its low probability of
entry and establishment and slow spread (Fig. 1(a)). This indicates
that the overall costs are more sensitive to the biological character-
istics of the NIS than to its economic damage characteristics.

The optimal paths for WCR, CB and PRR (Fig. 1(b), (c) and (d))
showed that the management measures presented cyclic fluctuations.
These cycles corresponded to the mean time of entry and eradication
of each NIS invasion in the time horizon. For instance, control of
PRR (Q-PRR, Fig. 1(d)) remains as zero after one peak (eradication
achieved) until a new invasion event occurs. Other results are that, as
expected, more resources were allocated to the exclusion of the NIS at



Fig. 1. (a) Optimal allocation of management resources for the exclusion, detection and control of, CB, PRR andWCR in the UK. The “baseline scenario” corresponds to the parameter
values of Table 1. In the “non cost-effective control of WCR” scenario, the unit cost of control of WCR was increased ten times. Ex: exclusion; Sb: search before discovery; Q: control
(removal and surveillance after discovery). (b), (c) and (d) expenditure in the optimal control paths on exclusion, detection and control of WCR, CB and PRR respectively.

1307L.R. Carrasco et al. / Ecological Economics 69 (2010) 1303–1312
the beginning of the time horizon, i.e. control is only relevant once the
NIS is established (Fig. 1(b) and (d)) and non cost-effective manage-
ment measures (relative to other alternative options) might remain at
zero for the entire time horizon (e.g. exclusion of CB in the “baseline
scenario”, Fig. 1(c)). A further simulation experiment was used to test
the condition of equimarginality: the unit cost of WCR control was
increased ten times (Fig. 1, “non cost-effective control of WCR”). As a
result, outlays previously allocated for control of WCR in the baseline
scenario (£30.1 million) were reduced to £7.8 million and used instead
for the detection before discovery of WCR that increased from £7 to
15.2 million and exclusion of WCR that increased from £23.8 to
61.5 million. The increase of the unit cost of control of WCR also
affected the optimal allocation of resources to other NIS. For instance,
the resources for control of PRR increased from £3.7 to 19.3 million
and the exclusion of CB from £0 to 6.5 million. This is because these
management options became relatively more cost-effective under the
new scenario. It would not have been possible to estimate these inter-
NIS effects with a risk analysis that focused on a single NIS.

3.3. The Effect of Satellite Generation and Propagule Pressure

Higher rates of satellite colonies generation and higher propagule
pressure had a relatively similar effect: greater management efforts
were allocated to exclusion and fewer to post-discovery control
(Fig. 2(a) and (b)). The reason was that NIS that presented a high
propagule pressure (high probability of establishment of satellite
colonies) and generated high number of new satellites, invaded their
susceptible range very rapidly. These dispersal characteristics make
control of such NIS ineffective, rendering exclusion as the only cost-
effective alternative.

3.4. The Influence of Allee Effects on the EconomicallyOptimalManagement
Mix

When some of the NIS in the pool of NIS considered presented
Allee effects, the overall total costs generated decreased (Fig. 3(a)).
The optimal mix of management efforts also varied towards allocating
more post-discovery control and less exclusionary efforts for the NIS
presenting high Allee effects (WCR in our simulation experiment,
Fig. 3(b)). The reasonwas that the probability of establishment of new
colonies was lower (leading to lower spread velocities). For this
reason, it was more cost-effective to wait for a new invasion to start
and then eradicate it rather than to attempt to exclude the NIS.

3.5. The Effect of Convexity and Concavity of the Damage Function

We employed convex and concave damage functions instead of
a linear damage function. We varied the convexity and concavity



Fig. 2. (a) The effect of satellite generation and (b) the effect of propagule pressure on
the optimal mix of management strategies. Expenditure on Ex: exclusion; Sb: search
before discovery; Q: control (removal and surveillance after discovery).

Fig. 3. The influence of Allee effects on the optimal management mix. (a) Mean net
present value of total costs (NPV TC) as a function of Allee effects severity. (b) Decrease
of exclusionary expenditure and increase of expenditure on control and search before
discovery measures against WCR for increasing severity of Allee effects. Ex: exclusion;
Sb: search before discovery; Q: control (removal and surveillance after discovery).
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(b1 from 22,035 to 4435 and b2 from 88 to 44) for the case of WCR. No
changes in the optimal mix of management allocation could be
detected. The reasonwas that the optimal policy againstWCR is one of
eradication for small areas invaded; therefore the effect of the
nonlinear damage function was not noticeable. The experiment was
repeated in a situation where the optimal management of WCR
corresponded to slowing down the invasion (we decreased the cost-
effectiveness of exclusion of WCR from Uniform(1.7 ∙10−6, 5.3 ∙10−5)
to 9.12 ∙10−7 and the unit cost of control from Pert(80, 163, 240) to
5.4£/km2). In this case, a change from a linear damage function into
an increasingly convex function led to an increasing allocation of
resources for the control of WCR in an attempt to stop WCR from
occupying its whole susceptible range.

3.6. Management of NIS Assemblages

The efficiency of considering risk analysis of NIS assemblages was
evaluated. CBwas assumed to be representative of a pathway carrying
an uncertain number N of NIS of unknown biological and economic
characteristics (Table 1). Because those NIS were assumed to share
the pathway with CB, exclusion activities against CB were also
effective in reducing the probability of entry of the NIS of the
assemblage. The results showed that the consideration of assemblages
led to a reduction of the overall costs (Fig. 4(b)). The NIS assemblage
attractedmoremanagement resources (Fig. 4(a), high expenditure on
exclusion of CB) with respect to an allocation that only considered the
known NIS.

4. Discussion

Here we combined analytical methods with genetic algorithm
simulation–optimization to solve a problem of multiple NIS exclusion,
detection and control. This approach allowed us to increase the
complexity of the economic analysis including common aspects of
biological invasions: Allee effects, propagule pressure and stratified
dispersal. The inclusion of these aspects led to new management
insights.

Comprehensive bioeconomic models integrating prevention, con-
trol and detection are not common in the economic literature of
NIS management. Focusing on the trade-off between prevention and
control has tended to suppress the important distinction between
detection and removal. Besides, studies centred on the trade-off



Fig. 4. (a) Optimal allocation of management resources for the exclusion, detection and control of, CB, PRR and WCR in the UK with and without considering hypothetical NIS
assemblages. (b) Distribution of the net present value of total costs (NPV-TC) for a policy that consider potential assemblages (“Assem”) and one that does not (“No Assem”). The bar
indicates the 50th percentile and the error bars the 95th percentile. The “not considering assemblages” scenario represents the allocation of management resources attending to the
known 3 NIS. In the “consider assemblage scenario” the government considers the uncertainty of potential assemblages in the pathway of CB (see Table 1 for the characteristics of the
unknown NIS in the assemblage).
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between detection and removal have not incorporated prevention
simultaneously into the analysis. Given the importance of the
establishment of the NIS and the role of early detection on the
progression of the invasion, these aspects should be incorporated into
bioeconomic models together with prevention and control. Further
pursuit of this line of research by incorporating the factors that
determine the risk of establishment into comprehensive bioeconomic
models would be necessary.

Risk analysis based on single NIS might not lead to the optimal
allocation of economic resources when a limited budget has to be
allocated among several NIS. Consideration of other NIS that compete
for budget allocations is necessary to estimate the optimal strategy.
The results showed that complex interactions between the cost-
effectiveness of alternative management measures and the NIS
considered play an important role on the optimal final allocation of
management resources. For instance, if the measures to manage a NIS
that presents an unacceptable risk are very costly and ineffective, the
agency will attain a more cost-effective allocation of economic
resources if no action is adopted against such NIS and the resources
are instead allocated to otherNIS forwhich cost-effectivemanagement
alternatives exist.

The results demonstrated that for theoptimal strategy corresponding
to exclusion, detection and control of multiple NIS to be estimated,
it is necessary to take into account the biological characteristics of the
NIS and the cost-effectiveness of the management measures available.
Managing a group of NIS where some of them present Allee effects led
to lower net present value of total costs (Fig. 3(a)). In the optimal
allocation of management resources, more post-discovery control
resources were allocated to the NIS that presented higher Allee effects.
The reasonwas thatAllee effects reduced thenumberof satellite colonies
that would successfully establish, thus, reducing the spread velocity
of the NIS and making it more cost-effective to control. In addition,
resources shifted from control to exclusion of NIS with low or no Allee
effects that presented stratified dispersal and high propagule pressure.
The reason was that NIS with such characteristics are very difficult to
control once established, i.e. the marginal avoided costs per unit of
exclusion are very high whereas the marginal avoided costs per unit of
post-discovery control are very low. Management decisions, however,
should also be based on the cost-effectiveness of the options available.
For instance, an explosive invader might have no Allee effects and
be extremely costly to exclude but relatively easy to detect once
established. In this case, campaigns for early detection instead of
exclusionmight be the optimal policy. Related to this example, detection
before discoverywas a relevant strategy in the form of short and intense
campaigns separated in time in the case of PRR, which had a low
probability of entry but could generate high economic impacts (Fig. 1
(d)). These short campaigns helped to gain knowledge of a potential
establishment of the NIS, increasing the probability of success of a
rapid eradication intervention.

The consideration of NIS assemblages led to a greater allocation of
management resources to those NIS representing an assemblage of NIS.
The implications are that it might be more cost-effective to allocate
more management resources to NIS representing pathways posing a
high risk than to important single NIS not likely to belong to a pathway
entailinghigh risk. Current agencypractices choosingNIS representative
of pathways carrying potential assemblages of NIS are thus adequate.
This result is analogous to a firm that presents economies of scope, i.e.
the average fixed costs of the firm are spread over a greater number of
customers if more product lines are opened. In the case of considering
potential assemblages, the fixed budget of the agency can be potentially
spread over more NIS. As a result, there is a potential increase of the
avoided economic impacts per fraction of the budget used.

The model could be developed further in a number of ways:
(i) spatially explicit models could be used to explore the influence
of landscape connectivity and colonies coalescence on the optimal
allocation of management resources for multiple NIS; (ii) ecological
interactions between the potential NIS could be considered, e.g.
predator–prey interactions; (iii) alternative methods that could bring
insight into the economic modelling of multiple NIS management are
neural networks. Their potential has recently been shown with the
use of self-organising maps to prioritise the management of different
NIS according to their risk of invasion (Worner and Gevrey, 2006).

We employed both linear and nonlinear damage functions in the
bioeconomic model (Sharov and Liebhold, 1998; Olson and Roy,
2005). The choice of the type of function might affect the optimal
policy, especially when management could influence the final extent
of the area invaded. Linear functions are adequate if the economic
impact per unit of area invaded can be approximated as constant and
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the NIS spreads in a relatively homogeneous landscape. However, a
nonlinear relationship will be more adequate when increasing
marginal damages to the industry are seen with an increasing number
of firms affected; as a few firms affected would not result in a serious
impact to the industry, but more firms affected could cause entire
industries to be impacted. Nonlinear functions would also be
preferred if the NIS invades progressively the habitat patches of a
native species that exhibits metapopulation dynamics (Parker, 1999).

4.1. Conclusions

Whereas individual risk analysis for single NIS might suffice for the
management of single NIS when management resources are not
limited, our results demonstrate the necessity to use comprehensive
bioeconomic models for the optimal management of multiple NIS
when national biosecurity budgets are limited and have to be
allocated among multiple NIS. The consideration of the biological
characteristics of the NIS was shown to be essential for an adequate
allocation of resources, especially regarding Allee effects, propagule
pressure and long-distance dispersal mechanisms. Comprehensive
bioeconomic models of multiple NIS will provide agencies with
powerful tools to better allocate management resources, identify the
necessary management adjustments when considering NIS assem-
blages and assess objectively a range of alternative policy options.
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Appendix A

Analytical exploration: application of the Pontryagin maximum
principle to a generic continuous formulation of the problem.

The problem of the government agency is to allocate resources on
exclusion (Exit), detection before discovery (Sbit) and control (Qit)
among N potential invasions by NISi in order to minimise the net
present value (NPV) of the total costs due to the invasions and their
management:

∫
T

0

e−r⋅tf∑
N

i=1
ðFinv iFdi CQi Qi;Atið Þ + Di Atið Þ + CExi + CSbi

h i
+ Finv i 1−Fdið Þ Di Atið Þ + CExi + CSbi

h i
+ 1−Finv ið Þ CExi + CSbi

h iÞgdt
½A:1�

Subject to:

∑
N

i=1
CExi

+ CSbi
+ CQi

� �
≤ B ½A:2�

∂Ati

∂t = Ζ θi;Qð Þ ½A:3�

∂Finv i tð Þ
∂t = finv i tð Þ = Φ Exitð Þ ½A:4�

∂Fdi tð Þ
∂t = fdi tð Þ = Ψ Ati; Sbið Þ ½A:5�

0≤Ati≤Amax i 0≤Exi; Qi; Sbi: ½A:6�
Eq. (A.1) represents the NPV of the total costs where: r is the
discount rate; T is the time horizon; Finv and Fd are respectively the
cumulative probability function of successful initial invasion and
discovery of the NIS at time t; CQ, CEx, and CSb are respectively the cost
functions of control, exclusion and detection efforts; Ati is the invaded
area at time t by NIS i; Di are the costs caused by the NIS i in the area
invaded. Exit, Sbit and Qit are called control variables and Finv, Fd and At

are called the state variables in an optimal control context. Eq. (A.1)
reflects the expected costs of the potential states of nature: proportion
of successful invasions that are discovered and treated; successful
invasions that spread undetected; and successful exclusions of the
NIS. Eq. (A.2) establishes that the sum of the costs of exclusion,
detection and control for all NIS has to be less or equal than the annual
budget (B). Eq. (A.3) is the equation of motion of the size of the
invasion and represents the spread of the NISi that depends on the
biological parameters of the NIS and the control activities. Eqs. (A.4)
and (A.5) are the equations of motion for the probabilities of
successful invasion and discovery of the invasion. Ζ, Φ and Ψ denote
functions relating the equations of motion with control variables
and parameters. Eq. (A.6) is a constraint on the size of the invasion
reflecting that the maximum susceptible range of invasion is limited.

The problem is an optimal control problem with three control
variables (Exit, Sbit and Qit) and three state variables (Ati, Finv and Fd).
The current value Lagrangian–Hamiltonian is:

LH = f∑N
i=1

ð−Finv iFdi CQi Qi;Atið Þ + Di Atið Þ + CExi + CSbi

� �
−Finv i 1−Fdið Þ Di Atið Þ + CExi + CSbi½ �− 1−Finv ið Þ CExi + CSbi½ �ð Þg
+ λ1 B−∑

N

i=1
CExi + CSbi + CQi

� � !
+ λi2 Ζ θi;Qð Þð Þ

+ λi3 Φ Exitð Þð Þ + λi4 Ψ Ati; Sbið Þð Þ + η1i tð Þ⋅ Ζi θi;Qið Þ½ �

−η2i tð Þ⋅ Ζi θi;Qið Þ½ � ½A:7�

where λ1 is the Lagrangian multiplier and λi2, λi3, λi4 are costate
variables. The necessary conditions for optimality are (Pontryagin et al.,
1962; Sethi and Thompson, 2000):

∂LH
∂Qi

= −Finv iFdi−λ1ð Þ ∂CQi

∂Qi
+ λi2

∂Ζi
∂Qi

≤0; Qi≥0; Qi
∂LH
∂Qi

= 0 ½A:8�

∂LH
∂Exi
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∂Exi
≤0; Exi≥0; Exi

∂LH
∂Exi

= 0 ½A:9�

∂LH
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dt
=

∂LH
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dFd
dt
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∂LH
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∂t = −∂LH
∂Ait
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λ1i Tð ÞerT = 0; λ2i Tð ÞerT = 0; λ3i Tð ÞerT = 0; λ4i Tð ÞerT = 0 ½A:18�
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Eqs. (A.20) and (A.21) are the conditions due to the constrained
state variable (Eq. (A.6)). The complementary-slackness conditions
state that η1i and η2i, the Lagrangian multipliers, will be zero unless
Ati=0 and Ati=Amax respectively (the state constraints become
binding).

Interior Solution

An interior solution occurs when the inequality constraint (A.6) is
not binding for all t. In this case when all the control variables are
greater than zero the Kuhn–Tucker conditions (A.8), (A.9) and (A.10)
turn by complementary slackness into Eq. (6). Eq. (6) determines
that for an allocation of the budget among the different NIS and
management activities to be economically optimal, the avoided
marginal costs due to invasion size reduction obtained by each
management activity should equal the marginal costs of such activity
for all NIS i. For instance, if MB11/MC11 (the ratio between themarginal
benefits and costs of management of NIS 1 with activity 1) is greater
than MB23/MC23 (management of NIS 2 with activity 3) it will be
optimal to allocate more resources to activity 1 to manage NIS 1 until
the equimarginal condition is reached. In reality the control activities
can be zero, for instance before the NIS has been discovered, when
NIS are explosive invaders very costly to control or the probability of
entry is very low (e.g. PRR). The boundary solutions for the control
variables are allowed by the Kuhn–Tucker conditions ((A.8), (A.9) and
(A.10)) and were explored using the genetic algorithm.

Constraints in the State Variables Binding

When constraint (A.6) becomes binding for the area of some NIS
(eradication or total invasion by a certain NIS) Eqs. (A.20) and (A.21)
become necessary. They correspond to the indirect adjoining method
(Sethi and Thompson, 2000). Eqs. (A.20) and (A.21) indicate that
for Ai=0 and Ai=Amaxi, by complementary slackness Zi (θi, Qi) (the
derivative of the area with respect to time) has to be zero. Because in
both cases (Ai=0and Ai=Amaxi), the area is constant, for its derivative
to be zero Qi has to be also zero (control stops when all the area is
invaded or the NIS is eradicated). In these cases, the equimarginal
condition will be re-stated without the term corresponding to the
marginal avoided costs and the marginal costs of Qi.

Appendix B. Supplementary data

Supplementary data associated with this article can be found, in
the online version, at doi:10.1016/j.ecolecon.2010.02.001.
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