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Abstract

Tropical deforestation is one of the most pressing threats to biodiversity, and substantially

reduces ecosystem services at the global scale. Little is known however about the global

spatial distribution of the actors behind tropical deforestation. Newly available maps of

global cropland field size offer an opportunity to gain understanding towards the spatial dis-

tribution of tropical deforestation actors. Here we use a map of global cropland field size and

combine it with maps of forest loss to study the spatial association between field size and

deforestation while accounting for other anthropogenic and geographical drivers of defores-

tation. We then use linear mixed–effects models and bootstrapping to determine what fac-

tors affect field sizes within deforested areas across all countries in the global tropics and

subtropics. We find that field size within deforested areas is largely determined by country-

level effects indicating the importance of socio-economic, cultural and institutional factors

on the distribution of field sizes. Typically, small field sizes appear more commonly in defor-

ested areas in Africa and Asia while the association was with larger field sizes in Australia

and the Americas. In general, we find that smaller field sizes are associated with deforesta-

tion in protected areas and large field sizes with areas with lower agricultural value, although

these results have low explanatory power. Our results suggest that the spatial patterns of

actors behind deforestation are aggregated geographically which could help target conser-

vation and sustainable land-use strategies.

Introduction

Tropical forests are the most biodiverse terrestrial biome on Earth, and are instrumental in

15 out of the 25 global biodiversity hotspots [1]. Besides their vital role as habitat for many

species, tropical forests also provide ecosystem services such as carbon sequestration, disease

regulation, increased rainfall and provide subsistence food and resources for tropical commu-

nities [2–4]. However, tropical forests are increasingly under threat. Tropical deforestation is

happening at rapid rates with 730 thousand square kilometers of tropical forests lost globally

from 2000 to 2012 [5]. This loss, if left unchecked, will lead to substantial declines in the
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abundance of many species, possibly even to large-scale extinctions [6], as well as the depletion

of valuable ecosystem services which could hinder the development options of future genera-

tions [7].

The primary cause of rapid tropical deforestation is the increasing demand for timber, bio-

fuels, and agricultural products. For instance, 55% of new agricultural land in the 1980s and

1990s was at the expense of intact tropical forests [8]. Growing demand caused by the rising

global population is exacerbated by an increasing per capita demand due to economic growth

in developing countries. This poses a challenge to tropical forest conservation since tropical

forests occupy most of the remaining unused land suitable for agriculture [8]. The pressure to

convert forest to agriculture is exemplified by the main drivers of deforestation. These have

been shown in Latin America to be cropland and pastureland expansion between 2001 and

2013 [9], and in Africa to be agricultural and fuelwood demands [10].

Despite our knowledge of the large scale drivers of tropical deforestation and its large scale

environmental consequences, we lack, at the global scale, knowledge of the actors that are

behind most deforestation. One potential way to obtain an approximate solution to the prob-

lem is to use field sizes as a proxy for actors, whereby small field sizes would be associated to

smallholders and large field sizes associated to large agri-businesses. For instance, field sizes

from smallholders are typically below two hectares [11]. Field size maps are thus important

because they could be used, with inherent caveats, as a surrogate for farm size [12], income

[13] and level of mechanization [14]. Field sizes could thus be a good proxy to advance towards

differentiating between smallholder agriculture and large agri-businesses. The link between

field size data and actor identification thus opens an opportunity to learn about deforestation

and support land-use and conservation interventions. This is because of the different con-

straints and capabilities associated with smallholders and large agri-businesses. By knowing

which actor is responsible of deforestation in each location can have useful applications for the

design and spatial targeting of conservation interventions. However, a global classification of

actors behind deforestation has remained elusive with approximations using size of land clear-

ings [15] and identification of actors occurring only for individual countries [16, 17]. A dra-

matic improvement in this line of enquiry comes from a recent global map identifying types of

drivers of deforestation including commodity agriculture, shifting agriculture, forestry and

wildfires [18].

The recent availability of the first global field size map [19] presents an unprecedented

opportunity to contribute further to characterize and monitor agricultural activities globally.

We use this new dataset to globally characterize the conditions associated with the occurrence

of different field sizes, thereby examining the factors that influence a potential proxy for the

distribution of smallholders and large agri-businesses. Specifically, we aim to ascertain: (i) the

countries and regions in which large field sizes are associated with deforestation; and (ii) the

factors that spatially predict field size in deforested areas. We hypothesize that field sizes within

recently deforested areas have spatial patterns that are distinctive in each country and that can

be explained by accessibility and higher agricultural values. We do this by studying deforesta-

tion from 2000 to 2001 and field sizes replacing forests in 2005.

Methods

Data collection

We compiled spatial data using Geographic Information Systems (GIS) for our main variables

of field size and deforestation as well as for variables influencing field size within deforested

areas. These included the potential rents for agricultural crops and cattle, (defined as the rent

that is obtained under potential yields after closing yield gaps), country boundaries, protected
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areas, accessibility, and population density (Table A in S1 File describes the variables and their

descriptive statistics). The spatial scope of the analysis was tropical and subtropical regions

defined as latitudes from 40 degrees South to 40 degrees North.

The maps were overlaid using ArcMap 10.2.1. We further restricted our dataset to include

only areas that were deforested between 2000 and 2001 and excluded all other areas that pre-

sented no deforestation between 2000 and 2001. We chose 2000–2001 for two reasons: (i) this

was the earliest year with high-resolution deforestation information available that occurred

before the field size map was created (2005), allowing us to assume that enough time had

passed since deforestation to the establishment of the agricultural fields associated to the

cleared land; and (ii) it was circa the year 2000 for which agricultural values were calculated,

and which best matched with our other data sets. We then use systematic sampling to select a

set of 35,175 30 second by 30 second cells (Fig 1). Information for the other variables consid-

ered was extracted to this set of cells. When two different field sizes occurred within a defor-

ested cell, the mean of the field size values was calculated.

Fig 1. Distribution of field sizes within deforested land from 2000 to 2001 for which agricultural information exists. a) Africa; b) Asia; and c)

Americas. The map was built through overlaying a map of field sizes [19] and maps of deforestation [5]. Those cells that contained information on

deforestation and field size and at least one crop were selected.

https://doi.org/10.1371/journal.pone.0209918.g001
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Variables considered

—We use field size within areas deforested in the year 2000 as the dependent variable. This

was obtained from the first ever global map of field size, which was developed for the year

2005 using interpolation and data from Geo-Wiki, a citizen science project using satellite

images [19]. Fields were categorized from 1 (very small) to 4 (large) in 13,963 unique locations.

All images were ranked on the same scale, resulting in a map that is globally consistent even

between different countries. These data were rescaled to a range of 10 (very small) to 40 (large)

and interpolated using inverse weighted distance treating the ordinal values as a continuum

[19]. Fritz et al. [19] provided Geo-Wiki users with sample pictures (Figure A in S1 File) for

them to classify the field size in 1km�1km Google Earth images. Given that this was a qualita-

tive process, it is not possible to ascertain with precision the correspondence between the cate-

gories large, medium, small and very small to actual areas. A rough visual estimate however

would correspond to an average of>25, 3.3, 1 and 0.5 hectares per field for each category

respectively. The final map restricted the field sizes to a range of 10 to 40 using only integers.

The map was validated by experts for quality, and a Spearman’s rank correlation of 0.78 was

found between the expert scores and the final map.

—The forest loss map was constructed using the original version of the deforestation maps

created by Hansen et al. using satellite imagery [5] with 1 second�1 second resolution. To make

the deforestation map have the same coarser resolution as the field size map (30 seconds), we

aggregated the 1 second�1 second cells into 30 second�30 second cells classifying the aggregated

cell as deforestation if at least one of the disaggregated cells was deforested in this time period.

We did this aggregation using the function “aggregate” in ArcGIS and the sum as the criterion

of aggregation. We later assessed the influence on the results of other thresholds for classifica-

tion of deforestation (see “Robustness analyses”) by varying the deforestation threshold from 1

out of 900 cells to 800 out of 900. We only used deforestation data from 2000 to 2001.

—Protected areas were expected to influence deforestation dynamics and were included in

the model [20]. We obtained worldwide protected area maps from the World Database of Pro-

tected Areas [21].

—Accessibility was considered in the model because it affects transport costs, thus limiting

commercial agricultural activities and affecting the occurrence of illegal logging [22]. A global

map of accessibility, created for the year 2000 by the World Bank’s World Development Report

in 2009, was employed [23]. It expresses accessibility as time necessary to travel to a city of at

least 50,000 habitants.

—Population density was included in the model. This was done as it was expected to relate

to crop type and type of farm size [24].

—Agricultural rent was expected to increase the probability of deforestation [25] and to be

associated with specific farm sizes [26]. We calculated the agricultural value of a crop in a cell i
as the revenue of the crop minus the production costs without including transport costs

(details of the calculation are available in S1 File as Supplementary Methods).

Statistical modeling

We created a scatter plot to check for non-linear relationships between field size and the covar-

iates (Figure B in S1 File). Accessibility and transportation costs were highly correlated as one

variable was used to estimate the other. Similarly, agricultural rent and agricultural value were

correlated. To avoid problems of multicollinearity, these variables were not included simulta-

neously in the proposed models. The rest of the explanatory variables did not show any clear

correlation and we included all of them in the models (Figure B in S1 File).
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We fitted different linear mixed-effects models using the package nlme in the R statistical

environment [27, 28] to explore the relationship between the field size and the explanatory var-

iables (Table B in S1 File). R-squared values were calculated using the package MuMIn. As the

data may not be independent due to common country effects such as government or socio-

political factors not accounted for in the models, we employed a random country intercept

component to capture the differences among countries. We also considered different spatial

correlation structures in the models proposed (Table B in S1 File). We proposed 43 different

models with varying spatial autocorrelation structures, different combinations of our explana-

tory variables, and different interactions and quadratic terms. Models were ranked according

to their Akaike Information Criterion (AIC) using an information theoretic approach [29].

Specifically, the linear mixed-effects models with random intercept by country had the

form:

Yij ¼ Xijbþ ci þ Zij ð1Þ

where Yij is the response variable, field size of the jth cell of the ith country; ci � Nð0; s2
c Þ is the

random intercept for country i and is assumed to follow a normal distribution with mean zero

and variance s2
c . The errors ηij are assumed to be independent and normally distributed with

variance s2
c . ci and ηij are assumed to be independent. Xij is the vector of fixed effects values for

observation j in country i. Diagnostic plots were used to verify that the models did not present

problems of heteroscedasticity and that they conformed to the assumptions of normality.

Robustness analyses

Due to the fact that the field size map on which we based our analyses was made using crowd-

sourced data and interpolation, it entailed high uncertainty. To evaluate the influence of this

uncertainty, we used a bootstrap analysis to evaluate the robustness of our results to uncer-

tainty in this dataset. We used a data set employed for the validation of the field size data in

which experts rate randomly chosen points using the same 1 (very small) to 4 (large) scale used

by the Geo-Wiki crowdsourcing website [19]. Using the expert values to represent the true val-

ues of field size, we estimated an uncertainty distribution of expert classifications for points

that had a classification in the map of 1, 2, 3 and 4 respectively. These distributions reflected

the variability of the experts when classifying each size of fields. We then used these expert

uncertainty distributions to modify the field size values in the map used for our analysis, i.e.

we reproduced potential changes in the classification of the values that could have emerged

due to uncertainty in expert classfication. We did this for each point in our dataset for each

bootstrap run, by randomly selecting ten expert scores from the uncertainty distribution corre-

sponding to the field size map value observed at that point and summing them to obtain a

score to use in the model. This resulted in the same 10 to 40 integer-only scale present in the

field size map.

We selected the statistical models which were within an AIC value of 2 from the model with

the lowest AIC value. We then ran these 2 models 100 times, replacing the original field sizes

with scores from the expert validation dataset as described above. For each run we used model

weighting based on the AIC score to average the two models. After all of the runs, we deter-

mined average parameter values and constructed bootstrapped confidence intervals for each

parameter (Table 1).

Besides the effects of uncertainty in the field size map on our model results, we also tested

the sensitivity of our parameter estimates to our definition of deforestation. While we consid-

ered a cell deforested if at least one 1 second by 1 second sub-cell was deforested out of a 30

second by 30 second cell, we also raised our defined cutoff for deforestation and observed the
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effect on parameter estimates and standard errors for our top two models (Figures C and D in

S1 File).

Results

When overlaying the deforestation and field size maps for tropical and subtropical regions,

two main trends became apparent. Large field sizes are more commonly distributed in defor-

ested land in countries in Latin America, East Asia and Australia (Figs 1 and 2), with the larg-

est field sizes occurring in Australia, Argentina, and Uruguay. By contrast, smaller field sizes

tended to occur within deforested land in Africa and Southeast Asia (Figs 1 and 2), with the

smallest average field sizes occurring in Burundi, Madagascar, and Rwanda.

Following a similar pattern to the raw distribution of field sizes across geographic regions,

the random effects of the models with regards to individual countries corresponded well with

Fig 2. Distribution of cells deforested between 2000 and 2001 by field size across major regions (Figure E in S1 File shows a breakdown

for the individual countries analyzed). Oceania is dominated in area by Australia. Afr: Africa, Eur: Europe, N.Am: North America, Oce:

Oceania, R.Am: rest of America, SE.As: Southeast Asia R.As: rest of Asia.

https://doi.org/10.1371/journal.pone.0209918.g002

Table 1. Relationship between field size, protected area, and agricultural value resulting in the top averaged model. Protected area is a binary variable stating whether

or not an observation is in a protected area. The results shown are from the bootstrapped weighted average of the two models that are within an AIC value of 2 from the

model with the lowest AIC. The coefficient for protected area is robust given that the confidence interval does not include zero, while the coefficient for agricultural value

is not robust.

Variable Mean Value Median Value 95% Confidence Interval Lower Bound 95% Confidence Interval Upper Bound

Intercept 27.95 27.95 27.82 28.08

Protected Area -0.04 -0.03 -0.09 -0.006

Agricultural value -0.015 -0.007 -0.113 0.056

https://doi.org/10.1371/journal.pone.0209918.t001
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our expectations. Most of the variance in our models was explained by the random effect of

country, indicating the importance of each country’s socio-economic, cultural, and institu-

tional factors in determining the field sizes behind deforestation (R-squared for random effects

was 0.69). The estimates of the random intercepts by country indicated that tropical areas

deforested in countries with a large tradition of agricultural exports such as Australia, Argen-

tina, Uruguay, Paraguay, the United States and Brazil would be expected to have larger field

sizes on average (Fig 3). At the other end of the spectrum, nations predominantly from Africa

and Asia such as Burundi, Madagascar, Ethiopia, Bangladesh, India, and Laos were expected

to have in comparison smaller field sizes associated with deforestation (Fig 3). It therefore

appears that field sizes associated with deforestation follow specific regional patterns. For the

most part, this pattern matched what would be expected given the raw distribution of field

sizes in deforested areas in each region (Fig 2 and Figure E in S1 File).

Only one model had a difference of less than 2 AIC value from the model with the lowest

AIC (Table B in S1 File). Of these top two models, one used protected area status alone as an

independent variable, and the other used agricultural value alone. Lower field sizes were asso-

ciated with protected areas, suggesting that deforestation within protected areas is generally

driven by smallholders (Table 1) once country effects are controlled for (R-squared for fixed

effects was 3.6 �10−6). Larger field sizes were associated on the other hand with lower agricul-

tural value, which could correspond to large concessions to agri-business corporations which

are often granted in intact forests, well beyond the traditional agricultural regions (R-squared

for fixed effects was 6.4 � 10−5) (Table 1). However, caution must be taken in the interpretation

of the fixed effects of these two model results because the variance explained by these two vari-

ables was very low, much lower than the variance explained by the random effects of country.

Other variables that we hypothesized would help explain the distribution of field sizes in

deforested areas were not included in our final models as selected by information theory.

While accessibility was expected to be a major player in where large corporations and large

field sizes could expand, it should be noted that contemporary deforestation frontiers occur in

relatively similarly inaccessible areas, which may undermine the capacity of the model in

observing an effect. Population density was also a promising potential predictor of field sizes,

however within countries it mostly reveals where cities are located which is not where defores-

tation is occurring. Population differences, types of agricultural systems and urbanization pat-

ters may certainly be associated with different field sizes, such as the smaller field sizes in

countries with high population density like China and India. However in our models this vari-

ation seems to have been explained by the random effects at the country level rather than the

spatially explicit variables (Fig 3). Besides protected areas and agricultural value, we were also

unable to find support for any interactions between explanatory variables or quadratic terms.

Through our bootstrap analysis, we found that the association of protected areas with

smaller field sizes was robust to the uncertainty contained by the field size map since the 95%

confidence interval did not overlap zero, while the association of higher agricultural value with

lower field sizes was not robust to uncertainty (Table 1). The random effects of country on

field size were found to be mostly robust, though some countries had significantly more uncer-

tainty in their effects when uncertainty was considered (Fig 3). When we raised our definition

of deforestation to require that a higher proportion of sub-cells be deforested for a cell to be

considered deforested, our sample size decreased dramatically, leading to an increase in stan-

dard errors. The effect sizes of protected area and agricultural value remained however consis-

tent up to relatively high thresholds of 10% deforestation for a cell to be considered deforested

(Figure C in S1 File), which was the threshold over which our sample size approximated very

low values (Figure D in S1 File). This shows that our results are robust to changes in our defini-

tion of deforestation.

Field sizes and tropical deforestation
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Discussion

The main results of our study are that, first, the country in which deforestation occurs plays

the largest role in determining the field size associated with that deforestation. Second, within

countries, small field sizes tend to be associated with protected areas and larger field sizes tend

to replace forests in areas that have lower agricultural value, although these latter results have

considerably less explanatory power. These results may help provide a better understanding of

the actors behind deforestation both within and between countries.

Fig 3. Random intercepts by country indicating the association between field size and deforestation within each country. Error bars are 95%

confidence intervals taken from the robustness analysis bootstrap. Positive random effects indicate an associated between large field sizes and

deforestation.

https://doi.org/10.1371/journal.pone.0209918.g003
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The finding that small field sizes are linked to deforestation in protected areas suggests that

the actors behind deforestation in these areas are more likely smallholders than large agri-busi-

nesses or large family operations. One explanation for this is that it could be easier for small-

holders than large agri-businesses or family operations to avoid regulations and encroach on

protected areas without repercussions from local governments, which could point towards

slash and burn farming or subsistence itinerary agriculture. Further research could look into

evaluating the nature and origin of these encroachments by small fields. For instance, knowing

whether these results are symptomatic of the displacement of smallholder farmers from large

scale concessions or of an increasing scarcity of land that pushes smallholders to protected

areas—pointing towards indirect land use change or leakage [30]—would be useful for conser-

vation management. The explanations of why small field sizes are associated to protected areas

are however likely to find varying degrees of support depending on the region and agricultural

system, requiring further and extensive on-the-ground verification.

Most of the countries with the greatest field sizes behind deforestation were in the Americas

and Oceania (in which Australia dominates in terms of contribution to the dataset, Fig 3), which

reflects both a high level of development and a dominance of large operations in agriculture and

agricultural expansion. However, countries known to be experiencing rapid expansion in agri-

business in the period of study, such as Malaysia and Indonesia, also had medium to large field

sizes associated with deforestation (Fig 3). These field sizes were behind a sizable proportion of

deforestation in other countries in SE Asia and the Americas (Fig 2 and Figure E in S1 File that

show the breakdown by countries), pointing towards oil palm agri-businesses in Southeast Asia as

major actors behind deforestation by taking advantage of large agricultural concessions [31]. Our

results agree with previous studies on patch size of deforestation in the Amazon in which smaller

patch sizes (~0.5ha) were observed in Ecuador than in Brazil (~15.6 ha) [32]. In addition, previous

studies have found a high proportion of small field sizes (<10 ha) behind deforestation in Western

and Central Africa (~ 90%) in 2001, with this proportion being medium (~65% in SE Asia) and

low in South America (~40%) [33]. Our results also resonate with a global study identifying higher

rates of deforestation by large agribusinesses in Latin America and Southeast Asia, as opposed to

Africa where the main drivers relate to smallholders and shifting cultivation [18].

Our results further point towards a link between deforestation to large field sizes and areas

of low agricultural value, which could point towards economies of scale and international

investment into land reserve areas [34]. Less valuable land presents lower human disturbance

and higher biodiversity value, turning large, distant concessions to agri-businesses into a large

threat to biodiversity, especially since 34% of large concessions occur at the expense of remote

forests [35]. These results suggest that a wide range of actors associated with large field sizes

are contributing to deforestation for agriculture in these areas. Thus, our results in combina-

tion suggest a narrative of large concessions in areas of less value displacing subsistence farm-

ers towards protected areas. This narrative is however hard to test given the complexities in

the interactions between large concessions and subsistence farmers, their potential coopera-

tion and the sequence over time of their operations [36]. In reality, the displacement effects of

large concessions are complex and cannot be assessed from global datasets, requiring on-the-

ground analyses on a case by case basis.

Among countries with the smallest field size are both countries that are less developed, like

Bangladesh or Madagascar, and countries that are more developed but not associated with

large agri-business development, such as China and Japan, making again a case for cultural-

institutional factors dominating income and level of development when explaining deforesta-

tion (Fig 3).

This study presents several limitations, chiefly associated with the uncertainty inherent to

the datasets employed. Among this, the main source of uncertainty resides in the field size

Field sizes and tropical deforestation

PLOS ONE | https://doi.org/10.1371/journal.pone.0209918 January 30, 2019 9 / 14

https://doi.org/10.1371/journal.pone.0209918


dataset that involves crowdsourcing and interpolation across space [19]. The map was created

using a qualitative ranking system based on visual inspection and categorization of field size in

satellite photographs, rather than a quantitative measurement of field areas [19]. To try to miti-

gate this situation we employed a robustness analysis using the original expert data used to val-

idate the field size map. Employing bootstrapping methods to modify the datasets showed,

however, that the signals we found at the country level and protected area encroachment by

small field sizes were robust to uncertainty.

The dataset on deforestation [5], while quite a fine scale map, is known to have difficulties

distinguishing between natural forests and tree plantations. This also brings uncertainties due

to its definition of deforestation as loss of vegetation taller than 5 meters. Some of the identi-

fied deforestation could thus include replacement of trees in tree plantations such as those for

oil palm. However we are not aware of global maps of tree crops distribution to correct the

original deforestation maps, making this an inherent limitation of the analysis. Other sources

of uncertainty are present in the datasets used to create the predictor for agricultural value.

This variable was based on potential yields and prices that were later attributed to the most

common crop in the cell. This is problematic as the most common crop in the cell is not neces-

sarily the crop that is causing the deforestation. In addition, the distribution of the crops was

created using satellite images and ground-based agricultural census statistics [37] which some-

times aggregated crops across large areas and a large periods of time around the year 2000.

While this aggregation increases uncertainty and could explain the weaker effect of this vari-

able, to date there are no available accurate high resolution maps of the distributions of major

crops [38]. Similarly, there are no maps of capital inputs, technology or level of mechanization

of production across the tropics, preventing us for controlling for these factors in production

costs. Future research should thus leverage on new maps generated by crowdsourcing and sat-

ellite images of increasing resolution to better understand agricultural value across space.

Another limitation with the agricultural value variable is that deforestation does not respond

to the rents generated by a single crop but by the expected range of benefits from multiple

sequential economic activities (e.g. in Latin America deforestation may follow a sequence of

initial logging, pasture for cattle ranching and later crops such as maize and soybean). Future

research could thus look into partitioning deforestation due to each economic activity [39].

Relatedly, we are using deforestation data from 2000–2001 associated to field size data

observed for the year 2005. Our rationale was to use deforestation data as close in time as pos-

sible to the agricultural data and to have several years between deforestation and field size esti-

mation for agricultural fields to have time to be established and identified. Identification of

agricultural fields four years since deforestation would certainly be possible for annual herba-

ceous crops and even tree crops like oil palm that require only two to three years to start pro-

duction [40]. This time gap introduces however a limitation as the field sizes may have

changed during the years since deforestation to field size observation. Although rapid changes

of field sizes would not be expected in such a short period of time, some exceptions could be

due to slash and burn farming and other forms of shifting cultivation that may occur and shift

rapidly, leaving the land to be used by other actors. Such rapid turnaround is, however, not so

common. Although a large fraction of plots would change crop annually through rotation, the

cycle for slash and burn agriculture typically involves multiple years of growing crops (2–4

years) with the nutrients in the soil after conversion taking 2–3 years to peak and followed by a

longer fallow cycle [41]. Hence, we would expect that our four year time lag from conversion

to field size observation would be able to capture most swidden farmers that performed the

conversion towards the end of their cultivation years or the beginning of their fallow period.

One reason, however, in which field size and actors could change rapidly may be due to new

regulations. For instance, the large agricultural fields in the Brazilian Amazon were divided
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under the Land Reform from a size of thousands of hectares into properties of up to 100 hect-

ares [42]. As a result, what would seem to be deforestation from small field sizes would in real-

ity be due to large-scale farming.

Future work should also focus on updating the time period of analysis as soon as more

recent field size maps and agricultural maps are available. In addition, considering only one

year of deforestation is not ideal. Future work would ideally focus on multiple years of defores-

tation and multiple layers of field sizes once these datasets become available. The role of large

field sizes in deforestation would be even more apparent in recent years (the field size map is

from 2005) given intercontinental knowledge transfer innovating deforestation frontier crops

to other continents. This is exemplified by large agri-businesses oil palm expansion in Africa

[43] and in Latin America [44] including the Peruvian Amazon [45] or soybean from Latin

America into Southern African savannah and dry forests [46].

Although field size is known to correlate with farm size, income and level of mechanization

[12–14], large field sizes may not always be indicative of large agri-businesses, as this will

depend on the agricultural system and crop considered which will itself vary depending on the

country. For instance, a large field size in Southeast Asia may be indicative of an oil palm agri-

business company but it may mean large family farm operations in countries such as Paraguay.

These idiosyncrasies make difficult to translate field sizes into actual actor typologies but none-

theless field sizes could represent a step forward into gaining insight of potential actors in each

region. We nonetheless acknowledge that our analysis is only a small step towards identifying

actors behind deforestation and we are still far from identifying, at the pantropical level, the

distribution of specific actors with certainty. This highlights the need for map sharing of agri-

business locations and agricultural concessions by local government or by the companies

themselves. This information is currently only available for a few countries.

Despite these limitations, our analysis could help understand agricultural field sizes within

deforested areas, which can in turn help to plan biodiversity conservation interventions. For

instance, for countries where the analysis shows that small field sizes are associated with defor-

estation, such as the case of Africa and areas of Southeast Asia, payments for ecosystem ser-

vices, Reducing Emissions from Deforestation and forest Degradation (REDD+) projects,

smallholder certification schemes (e.g. existing for coffee and cacao) or alternative livelihoods

may be suitable interventions. On the other hand, associations between large field sizes in

regions such as Latin America and Southeast Asia may point towards commodity crops such

as soybean and sugarcane or oil palm and rubber respectively. In these situations, knowing

that large fields of these cash crops may present with high opportunity costs difficult to meet

through payments for ecosystem services [47, 48], international consumers’ pressure for envi-

ronmental performance that can translate into zero-deforestation commitments by agri-busi-

nesses [49] can be more effective conservation interventions to help balance tropical and

subtropical conservation and agricultural production.

The analyses developed here are a small step forward in the characterization of agricultural

field sizes behind deforestation with an ultimate end goal to contributing to the identification

of the actors behind deforestation across the tropics. While the study revealed the connection

between protected areas and deforestation by small field sizes and the influence of country and

regional characteristics on field sizes spatially associated to deforestation, more accurate and

detailed global datasets have the potential to improve this type of analysis. Increasing our

understanding of who drives deforestation will help in turn devise better land-use strategies to

contribute to biodiversity conservation, food security, climate resilience and ecosystem service

provision.
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