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Abstract

Convex quadratic semidefinite programming (QSDP) has been widely ap-
plied in solving engineering and scientific problems such as nearest correla-
tion problems and nearest Euclidean distance matrix problems. In this paper,
we study an inexact primal-dual infeasible path-following algorithm for QSDP
problems of the form: minX{1

2X • Q(X) + C •X : A(X) = b, X � 0}, where
Q is a self-adjoint positive semidefinite linear operator on Sn, b ∈ Rm, and A
is a linear map from Sn to Rm. This algorithm is designed for the purpose of
using an iterative solver to compute an approximate search direction at each
iteration. It does not require feasibility to be maintained even if some iterates
happened to be feasible. By imposing mild conditions on the inexactness of
the computed directions, we show that the algorithm can find an ε-solution in
O(n2 ln(1/ε)) iterations.

keywords: semidefinite programming, semidefinite least squares, infeasible interior
point method, inexact search direction, polynomial complexity

1 Introduction

We consider the following linearly constrained convex quadratic semidefinite program-
ming (QSDP) problem defined in the vector space of n × n real symmetric matrices
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Sn endowed with the inner product
〈
A, B

〉
= A •B = Tr(AB):

(P ) min f(X) := 1
2
X • Q(X) + C •X

s.t. Ai •X = bi, i = 1, · · · ,m
X � 0,

(1.1)

where Q : Sn → Sn is a given self-adjoint positive semidefinite linear operator. Here,
Ai, C ∈ Sn, b ∈ Rm are given data and X � 0 (X � 0) indicates that X is in Sn+
(Sn++). The set Sn+ (Sn++) denotes the set of positive semidefinite (definite) matrices
in Sn. In addition, we assume that {Ai | i = 1, . . . ,m} is linearly independent. The
dual problem of (P ) is given as follows:

(D) max −1
2
X • Q(X) + bTy

s.t.
∑m

i=1 yiAi + Z = ∇f(X) = Q(X) + C

Z � 0.

(1.2)

The problem (P ) includes linear SDP as a special case when Q = 0. It also
includes the following linearly constrained convex quadratic programming (LCCQP)
[8]:

min
{1

2
xTQx+ cTx : Ax = b, x ∈ Rn

+

}
,

where Q is a given positive semidefinite matrix.

A recent application of QSDP is the nearest correlation matrix problem [3]. QSDP
also arises in nearest Euclidean distance matrix problems [1] and other matrix least
square problems [9]. Many problems in metric embeddings, covariance estimations,
and molecular conformations can also be formulated as QSDP, see for example [5]
and [13].

We use the following notation and terminology. Let n̄ = n(n + 1)/2. We define
the linear map svec : Sn → Rn̄ by:

svec(X) := (x11,
√

2x21, . . . ,
√

2xn1, x22,
√

2x32, . . . ,
√

2xn2, . . . , xnn)T .

The inverse map of svec is denoted by smat. The matrix representation of Q in
the standard basis of Sn is the unique matrix Q ∈ S n̄+ that satisfies svec(Q(X)) =
Q(svecX) for all X ∈ Sn. Also, let AT = [svecA1 svecA2 · · · svecAm], the matrix
representations of Ai •X (i = 1, · · · ,m) and

∑m
i=1 yiAi can be written as A(svecX)

and ATy respectively. Note that A has full row rank and hence AAT is non-singular.
The pseudo inverse of A is defined as A+ = AT (AAT )−1. We use ‖ · ‖ to denote the
Frobenius norm for a matrix or Euclidean norm for a vector, and ‖ · ‖2 to denote the
spectral norm of a matrix or the induced norm of a linear operator. For an n × n
matrix M , we ordered its eigenvalues λi(M) as follows: Reλ1(M) ≤ . . . ≤ Reλn(M).
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The perturbed Karush-Kuhn-Tucker (KKT) optimality conditions for the prob-
lems (P ) and (D) are as follows: −svec∇f(X) + ATy + svecZ

A(svecX)− b
XZ

 =

 0

0

νI

 , X, Z � 0, (1.3)

where ν ≥ 0 is a given parameter that is to be driven to zero explicitly. Note that
when ν = 0, (1.3) gives the optimal conditions for (P ) and (D). As the system (1.3)
has more independent equations than unknowns due to the fact that XZ is usually
nonsymmetric, the last equation XZ = νI is usually symmetrized to HP (XZ) = νI,
where for a given positive definite matrix P , HP : Rn×n → Sn is the following
symmetrization operator [20] defined by

HP (M) :=
1

2

[
PMP−1 + (PMP−1)T

]
.

In [20], P is chosen to be in the class C(X,Z) := {P ∈ Sn++ | PXP and P−1ZP−1 commutes}.
This class includes the common choices: P = Z1/2, P = X−1/2, and P = W−1/2 where
W is the Nesterov-Todd (NT) scaling matrix satisfying WZW = X [14]. It has been
shown in [20] that for X,Z ∈ Sn++ and P ∈ C(X,Z), HP (XZ) = νI if and only if
XZ = νI.

In this paper, we choose P to be the NT scaling matrix rather than any P ∈
C(X,Z) as considered in [20]. The main reasons for considering only the NT scaling
matrix are that it simplifies the complexity analysis and also gives the best itera-
tion complexity. In addition, it is employed in practical computations since it has
certain desirable properties that allow one to design efficient preconditioners for the
augmented system (3.5a) for computing search directions; see [16] for details.

Primal-dual path-following interior-point methods (IPM) are known to be highly
efficient methods for solving linear SDP problems, both in computation [15] and in
theoretical complexity [11, 20]. The earliest extension of standard primal-dual path-
following algorithms to solve QSDP was done in [1] where for each iteration, a linear
system of dimension m + p must be solved directly, say by Cholesky decomposition.
Here, p is the rank of Q, and p = n̄ if Q is nonsingular. For an ordinary desktop PC,
this direct approach can only solve small size problems with n less than a hundred
due to the prohibitive computational cost and huge memory requirement when n is
large.

In recent applications such as the nearest Euclidean distance matrix completion
problems arising from molecular conformation or senor network localization, there is
an increasing demand for methods that can handle QSDP where n or m is large. This
motivated us to pursue the idea of solving the large linear system inexactly by an
iterative solver to overcome the bottleneck mentioned in the last paragraph. Infeasi-
ble primal-dual path-following algorithms using inexact search directions have been
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investigated extensively in LP, linear SDP, and more generally monotone linear com-
plementarity problems; see [2], [7], [12] and [18]. For linear SDP, an inexact infeasible
interior-point algorithm was introduced by Kojima et al. in [6] wherein the algorithm
only allowed inexactness in the component corresponding to the complementarity
equation (the third equation in (1.3)). Subsequently, Zhou and Toh [19] developed an
infeasible inexact path-following algorithm which allowed inexactness in the primal
and dual feasibilities, and complementarity equations. Furthermore, primal and dual
feasibilities need not be maintained even if some iterates happen to lie in the feasible
region. In [19], it is proved that the algorithm needs at most O(n2 ln(1/ε)) iterations
to compute an ε-optimal solution.

Our interest in this paper is to extend the inexact primal-dual infeasible path-
following algorithm in [19] to the case of QSDP. We will focus on establishing the
polynomial iteration complexity of the algorithm. In particular, we show that the
algorithm needs at most O(n2 ln(1/ε)) iterations to compute an ε-optimal solution
for (P ) and (D). This complexity result is the same as that established for a linear
SDP in [19]. The complexity analysis of our proposed algorithm is similar to the
case of a linear SDP in [19]. But there is a major difference in that we always have
to consider the effect of the quadratic term in the objective function of QSDP. In
particular, Lemma 3.4 shows that the complexity bound we obtained is dependent
on ‖Q‖2. We hope that the theoretical framework we developed here for QSDP can
lead to further development of inexact primal-dual infeasible path-following methods
for broader classes of SDP problems such as those with an objective function f(X) in
(P ) that is convex with a Lipschitz continuous gradient but not necessarily quadratic.

We should point out that the numerical implementation and evaluation of our
proposed inexact algorithm for QSDP has been thoroughly studied in [16] and [17].

The rest of this paper is organized as follows. In the next section, we define
the infeasible central path and its corresponding neighborhood. In addition, we also
establish some key lemmas that are needed for subsequent complexity analysis. In
section 3, we discuss the computation of inexact search directions. We also present our
inexact primal-dual infeasible path-following algorithm and establish a polynomial
complexity result for this algorithm. In section 4, we give detailed proofs on the
polynomial complexity result.

Throughout the paper, we made the following assumption.

Assumption 1. Problems (P) and (D) are strictly feasible. We say that (P) and
(D) are (strictly) feasible if there exists (X, y, Z) satisfying the linear constraints in
(1.3) and X,Z � 0 (X,Z � 0).
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2 An infeasible central path and its neighborhood

Let L = ‖Q‖2. Note that L is a Lipschitz constant of the gradient of f(X) defined
in (P ), i.e.,

‖∇f(X)−∇f(Y )‖ = ‖Q(X)−Q(Y )‖ ≤ L‖X − Y ‖. (2.1)

Let (X0, y0, Z0) be an initial point such that

X0 = Z0 = ρI, (2.2)

where ρ > 0 is a given constant. For given positive constants γp ≤ γd such that
γd + Lγp ∈ (0, 1), the constant ρ is chosen to be sufficiently large so that for some
solution (X∗, y∗, Z∗) to (P ) and (D), the following conditions hold:

(1− γp)X0 � X∗ � 0, (1− (γd + Lγp))Z0 � Z∗ � 0, (2.3)

Tr(X∗) + Tr(Z∗) ≤ nρ. (2.4)

Remark. Under the condition γd + Lγp < 1, γp could be close to 0 for a large L.
Without loss of generality, we may always assume L ≤ 1. This can be easily achieved
by scaling f(X) with a proper constant. In particular, for the case where ‖Q‖2 > 1,
we may consider the following pair of scaled primal and dual problems instead:

(P ′) min

{
1

2
X • Q̂(X) + Ĉ •X | A(svecX) = b, X � 0

}
,

(D′) max

{
−1

2
X • Q̂(X) + bTy | ATy + Z = Q̂(X) + Ĉ, Z � 0

}
,

where Q̂ = Q/‖Q‖2 and Ĉ = C/‖Q‖2.

We define

µ0 = X0 • Z0/n = ρ2, (2.5)

Rp
0 = A(svecX0)− b, (2.6)

svecRd
0 = −svec∇f(X0) + ATy0 + svecZ0. (2.7)

For θ, ν ∈ (0, 1], the following infeasible KKT system has a unique solution under
Assumption 1: −svec∇f(X) + ATy + svecZ

A(svecX)− b
HP (XZ)

 =

 θsvecRd
0

θRp
0

νµ0I

 , X, Z � 0. (2.8)
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Define the infeasible central path as:

P =
{

(θ, ν,X, y, Z) ∈ R++ × R++ × Sn++ × Rm × Sn++ such that (2.8) holds
}
.

The primary idea of a primal-dual infeasible path-following algorithm is to generate
a sequence of points (Xk, yk, Zk) such that (θk, νk, Xk, yk, Zk) ∈ P and (Xk, yk, Zk)
converges to a solution of (P ) and (D) when θk and νk are driven to 0. In practice of
course, the points are never exactly on the central path P but lie in some neighborhood
of P . In our inexact primal-dual infeasible path-following algorithm, we consider the
following neighborhood of P . Choose a constant γ ∈ (0, 1) in addition to γp and γd,
we define the neighborhood to be:

N =


(θ, ν,X, y, Z) ∈ (0, 1]× (0, 1]× Sn++ × Rm × Sn++ : θ ≤ ν,

−svec∇f(X) + ATy + svecZ = θ(svecRd
0 + ξd), ‖ξd‖ ≤ γdρ,

A(svecX)− b = θ(Rp
0 + ξp), ‖A+ξp‖ ≤ γpρ,

(1− γ)νµ0 ≤ λmin(XZ) ≤ λmax(XZ) ≤ (1 + γ)νµ0

 .

Let θ0 = ν0 = 1. It follows from (2.2) that (θ0, ν0, X0, y0, Z0) ∈ N . It is easy to show
that if (θ, ν,X, y, Z) ∈ N and P ∈ C(X,Z), then HP (XZ) = PXZP−1 is symmetric
and has the same set of eigenvalues as XZ. From the definition of N , it is easy to
see that we have

(1− γ)νµ0I � HP (XZ) � (1 + γ)νµ0I (2.9)

(1− γ)νµ0 ≤ X • Z/n ≤ (1 + γ)νµ0. (2.10)

Next, we present two lemmas that are needed for the iteration complexity analysis
in section 3.

Lemma 2.1. For any rp and rd satisfying ‖rd‖ ≤ γdρ and ‖A+rp‖ ≤ γpρ, there exists

(X̃, ỹ, Z̃) that satisfies the following conditions:

− svec∇f(X̃) + AT ỹ + svecZ̃ = svecRd
0 + rd , (2.11)

A(svecX̃)− b = Rp
0 + rp , (2.12)

(1− γp)ρI � X̃ � (1 + γp)ρI , (2.13)

[1− (γd + Lγp)]ρI � Z̃ � [1 + (γd + Lγp)]ρI . (2.14)

Proof. Let

svecX̃ = svecX0 + A+rp ,

ỹ = y0 ,
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svecZ̃ = svecZ0 + rd +Q(svecX̃)−Q(svecX0) ,

(2.11)–(2.13) are readily shown. To show (2.14), we only need to establish the follow-
ing inequality:

‖rd +Q(svecX̃)−Q(svecX0)‖ ≤ ‖rd‖+ ‖Q(svecX̃ − svecX0)‖ ≤ (γd + Lγp)ρ.

Lemma 2.2. Given the initial conditions (2.2), (2.3) and (2.4), for any (θ, ν,X, y, Z) ∈
N , we have

θTr(X) ≤ 6νρn

1− (γd + Lγp)
, θTr(Z) ≤ 6νρn

1− γp
.

Proof. This proof is adapted from that for Lemma 2 in [19]. For (θ, ν,X, y, Z) ∈ N ,
we have

− svec∇f(X) + ATy + svecZ = θ(svecRd
0 + rd), ‖rd‖ ≤ γdρ, (2.15)

A(svecX)− b = θ(Rp
0 + rp), ‖A+rp‖ ≤ γpρ. (2.16)

By Lemma 2.1, there exists (X̃, ỹ, Z̃) satisfies conditions (2.11)–(2.14). Also, a solu-
tion (X∗, y∗, Z∗) to (P ) and (D) satisfies the following equations:

A(svecX∗)− b = 0,

−svec∇f(X∗) + ATy∗ + svecZ∗ = 0.

Let

X̂ = (1− θ)X∗ + θX̃ −X, ŷ = (1− θ)y∗ + θỹ − y, Ẑ = (1− θ)Z∗ + θZ̃ − Z.

Then we have

A(svecX̂) = 0, AT (ŷ) + svecẐ = Q svecX̂.

Hence
〈
X̂, Ẑ

〉
=
〈
X̂, Q(X̂)

〉
. Together with the fact that Q is positive semidefinite,

we have 〈
(1− θ)X∗ + θX̃, Z

〉
+
〈
X, (1− θ)Z∗ + θZ̃

〉
=

〈
(1− θ)X∗ + θX̃, (1− θ)Z∗ + θZ̃

〉
+
〈
X, Z

〉
−
〈
X̂, Q(X̂)

〉
≤

〈
(1− θ)X∗ + θX̃, (1− θ)Z∗ + θZ̃

〉
+
〈
X, Z

〉
. (2.17)

By using (2.4), (2.10), (2.13), (2.14), (2.17), and the fact that X∗•Z∗ = 0, X∗•Z, X •
Z∗ ≥ 0, we have that

θρ[(1− (γd + Lγp))I •X + (1− γp)I • Z] ≤ θ(Z̃ •X + X̃ • Z)

7



≤
〈
(1− θ)X∗ + θX̃, Z

〉
+
〈
X, (1− θ)Z∗ + θZ̃

〉
≤

〈
(1− θ)X∗ + θX̃, (1− θ)Z∗ + θZ̃

〉
+
〈
X, Z

〉
≤ θ(1− θ)(X∗ • Z̃ + X̃ • Z∗) + θ2X̃ • Z̃ +X • Z

≤ θ(1− θ)(1 + γd + Lγp)ρ(X∗ • I + I • Z∗) + θ2(1 + γp)(1 + γd + Lγp)ρ
2n+ (1 + γ)νµ0n

≤ 6νρ2n.

From here, the required results follow.

Remark. {(X, y, Z) | (θ, ν,X, y, Z) ∈ N} is bounded if θ = ν, since from Lemma
2.1 we have ‖X‖ ≤ Tr(X) ≤ O(ρn) and ‖Z‖ ≤ Tr(Z) ≤ O(ρn). Suppose we generate
a sequence {(θk, νk, Xk, yk, Zk)} ∈ N such that

νk ≥ θk, ∀k, and 1 = ν0 ≥ νk ≥ νk+1 ≥ 0.

If νk → 0 as k →∞, then any limit point of the sequence {Xk, yk, Zk} is a solution of
(P ) and (D). In particular, if θk = νk, then the sequence {Xk, Zk} is also bounded.

3 An inexact infeasible interior point algorithm

Let η1, η2 ∈ (0, 1] be given constants such that η1 ≥ η2. Given a current iter-
ate (θk, νk, Xk, yk, Zk) ∈ N , we want to construct a new iterate which remains in
N with respect to smaller θ and ν. To this end, we consider the search direction
(∆Xk,∆yk,∆Zk) determined by the following linear system: −Q AT I

A 0 0

Ek 0 Fk


 svec∆Xk

∆yk

svec∆Zk

 =

 −η1(svecRd
k + rdk)

−η1(Rp
k + rpk)

svecRc
k + rck

 , (3.1)

where for Pk = W
−1/2
k (Wk is the NT scaling matrix satisfying WkZkWk = Xk),

Ek = Pk ~ P−1
k Zk, Fk = P−1

k ~ PkXk

svecRd
k = −svec∇f(Xk) + ATyk + svecZk, Rp

k = A(svecXk)− b

Rc
k = (1− η2)νkµ0I −HPk

(XkZk).

Here A ~ B denotes the symmetric Kronecker product of any two n × n matrices A
and B, and for any X ∈ Sn, it is defined by

(A~B)svec(X) :=
1

2
svec(AXBT +BXAT ). (3.2)
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We refer the reader to the appendix of [14] for some of its properties. The last
equation of (3.1) is equivalent to

HPk
(XkZk + ∆XkZk +Xk∆Zk) = (1− η2)νµ0I + smatrck. (3.3)

The search direction (∆Xk,∆yk,∆Zk) is just an “inexact” Newton direction for the
perturbed KKT system (2.8). On the right hand side of (3.1), Rd

k, R
p
k and Rc

k are
the residual components for infeasibilities and complementarity, whereas the vectors
rdk, r

p
k, r

c
k are the residual components for the inexactness in the computed search

direction.

Let {σk}∞k=1 be a given sequence in (0, 1] such that σ̄ :=
∑∞

k=0 σk < ∞. We
require the residual components in the inexactness in (3.1) to satisfy the following
accuracy conditions:

‖A+rpk‖ ≤ γpρθkσk, ‖rdk‖ ≤ γdρθkσk, ‖rck‖ ≤ 0.5(1− η2)γνkµ0. (3.4)

Remark. In practice, we can solve (3.1) by the following procedure:

1. Compute ∆yk and ∆Xk from the following augmented system:[
−Q− F−1

k Ek AT

A 0

][
svec∆Xk

∆yk

]
=

[
−η1(svecRd

k + rdk)− F−1
k svecRc

k

−η1(Rp
k + rpk)

]
(3.5a)

with the residual vectors rdk and rpk satisfying the conditions in (3.4).

2. Compute ∆Zk from

svec∆Zk = −F−1
k Eksvec∆Xk + F−1

k svecRc
k. (3.5b)

Here, we can see that ∆Zk is obtained directly from (3.3) with rck = 0. Thus, rck can
be ignored in the system (3.1). The dimension of the augmented system (3.5a) is
n2 +m, which is typically a large number even for n = 100. The computational cost
and memory requirement for solving (3.5a) by a direct solver is aboutO((n2+m)3) and
O((n2 +m)2) respectively, which are prohibitively expensive for large scale problems.
An iterative solver would not require the storage or manipulation of the full coefficient
matrix. However, the disadvantage of using an iterative solver is the demand of good
preconditioners to accelerate its convergence. In practice, constructing cheap and
effective preconditioners could be the most challenging task in the implementation of
an inexact interior-point algorithm for solving QSDP; see [16] for details.

After computing the search direction in (3.1), we consider the following trial
iterate to determine the new iterate:

(θk(α), νk(α), Xk(α), yk(α), Zk(α)) (3.6)
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= ((1− αη1)θk, (1− αη2)νk, Xk + α∆Xk, yk + α∆yk, Zk + α∆Zk), α ∈ [0, 1].

To find the new iterate, we need to choose an appropriate step length αk to keep the
new iterate in N . The precise choice of αk will be discussed shortly. Before that, we
present our inexact primal-dual infeasible path-following algorithm.

Algorithm IPC. Let θ0 = ν0 = 1. Choose parameters η1, η2 ∈ (0, 1] with η1 ≥ η2,
γp, γd ∈ (0, 1) such that γp ≤ γd and γd + Lγp < 1. Pick a sequence {σk}∞k=1 in (0, 1]
such that σ̄ :=

∑∞
k=0 σk <∞. Choose (X0, y0, Z0) satisfying (2.2), (2.3), (2.4). Note

that (θ0, ν0, X0, y0, Z0) ∈ N .

For k = 0, 1, . . .

1. Terminate when νk < ε.

2. Find an inexact search direction (∆Xk,∆yk,∆Zk) from the linear system (3.1).

3. Let αk ∈ [0, 1] be chosen appropriately so that

(θk+1, νk+1, Xk+1, yk+1, Zk+1) := (θk(αk), νk(αk), Xk(αk), yk(αk), Zk(αk)) ∈ N .

Let α0, α1, . . . , αk−1 be the step lengths that have already been determined in the
previous k iterations. For reasons that will become apparent shortly, we assume that
the step lengths αi, i = 0, . . . , k − 1, are contained in the interval

I :=
[
0,min{1, 1/(η1(1 + σ̄))}

]
. (3.7)

Let the primal and dual infeasibilities associated with (θk(α), νk(α), Xk(α), yk(α), Zk(α))
be

Rp
k(α) = A(svecXk(α))− b,

svecRd
k(α) = −svec∇f(Xk(α)) + ATyk(α) + svecZk(α).

We will show that Rp
k(α) and Rd

k(α) satisfy the first two conditions in N when α is
restricted to be in the interval I given in (3.7).

Lemma 3.1. Suppose the step lengths αi associated with the iterates (θi, νi, Xi, yi, Zi)
are restricted to be in the interval I for i = 0, . . . , k − 1. Then we have

Rp
k(α) = θk(α)(Rp

0 + ξpk(α)) (3.8)

Rd
k(α) = θk(α)(svecRd

0 + ξdk(α)) (3.9)

where
‖A+ξpk(α)‖ ≤ γpρ, ‖ξdk(α)‖ ≤ γdρ, ∀ α ∈ I.

10



Proof. Note that Rp
k(α) has exactly the same form as in the inexact interior-point

algorithm considered in [19] for a linear SDP. Using the result in [19], we have

Rp
k(α) = θk(α)(Rp

0 + ξpk(α)),

where

ξpk(α) = ξpk −
αη1

(1− αη1)θk
rpk = −

k−1∑
i=0

αiη1

(1− αiη1)θi
rpi −

αη1

(1− αη1)θk
rpk. (3.10)

The quantity Rd
k(α) is different from its counterpart in a linear SDP as it contains an

extra term coming from the quadratic term in the objective function. Thus, we need
to investigate the details. Given that the current iterate belongs to N , we have

svecRd
k(α) = −svec∇f(Xk(α)) + ATyk(α) + svecZk(α)

= −svec∇f(Xk) + ATyk + svecZk + α[−Q(svec∆Xk) + AT∆yk + svec∆Zk]

= svecRd
k − αη1(svecRd

k + rdk)

= (1− αη1)θk(svecRd
0 + ξdk)− αη1r

d
k

= (1− αη1)θk

(
svecRd

0 + ξdk −
αη1

(1− αη1)θk
rdk

)
= θ(α)(svecRd

0 + ξdk(α)),

where

ξdk(α) = ξdk −
αη1

(1− αη1)θk
rdk = −

k−1∑
i=0

αiη1

(1− αiη1)θi
rdi −

αη1

(1− αη1)θk
rdk. (3.11)

From (3.10) and (3.11), we see that since αi ≤ 1
η1(1+σ̄)

for i = 1, . . . , k − 1, we have

‖A+ξpk(α)‖ ≤ γpρ, ‖ξdk(α)‖ ≤ γdρ, ∀ α ∈ I.

Let

ᾱk = min
{

1,
1

η1(1 + σ̄)
,

0.5(1− η2)γνkµ0

‖HPk
(∆Xk∆Zk)‖

}
. (3.12)

Next, we check the last condition in N . The following lemma generalizes the result
of Lemma 4.2 in [20].

Lemma 3.2. For (θk, νk, Xk, yk, Zk) ∈ N and ∆Xk,∆Zk satisfying (3.1), we have

(a) HPk
(Xk(α)Zk(α)) = (1− α)HPk

(XkZk) + α(1− η2)νkµ0I

+α smatrck + α2HPk
(∆Xk∆Zk)

(b) (1− γ)νk(α)µ0 ≤ λi(Xk(α)Zk(α)) ≤ (1 + γ)νk(α)µ0 ∀ α ∈ [0, ᾱk].

11



Proof. (a) The proof of part (a) is quite standard and uses equation (3.3).
(b) The proof uses the fact that for any matrix B ∈ Rn×n, the real part of its spectrum
is contained in the interval given by [λmin(B+BT )/2, λmax(B+BT )/2]. In particular,
for any nonsingular matrix P , we have

Reλi(B) = Reλi(PBP
−1) ∈ [λmin(HP (B)), λmax(HP (B))] ∀ i = 1, . . . , n.

Using the above fact, we have for any i = 1, . . . , n,

λi(Xk(α)Zk(α))− (1− γ)νk(α)µ0

≥ λmin(HPk
(Xk(α)Zk(α)))− (1− γ)νk(α)µ0

≥ (1− α)(1− γ)νkµ0 + α(1− η2)νkµ0 − α‖rck‖ − α2‖HPk
(∆Xk∆Zk)‖ − (1− γ)νk(α)µ0

= αγ(1− η2)νkµ0 − α‖rck‖ − α2‖HPk
(∆Xk∆Zk)‖

≥ 0.5α(1− η2)γνkµ0 − α2‖HPk
(∆Xk∆Zk)‖

≥ 0 for α ∈ [0 , ᾱ].

The proof that λi(Xk(α)Zk(α)) ≤ (1 + γ)νk(α)µ0 for all α ∈ [0 , ᾱ] is similar, and we
shall omit it.

Lemma 3.3. Under the conditions in Lemmas 3.1 and 3.2, for any α ∈ [0, ᾱk], we
have

(θ(α), ν(α), X(α), y(α), Z(α)) ∈ N .

Proof. The result follows from Lemmas 3.1 and 3.2.

Lemma 3.4. Suppose the conditions in (2.2), (2.3) and (2.4) hold. Then

‖HPk
(∆Xk∆Zk)‖ =

O(1)

(1− (γd + Lγp))2
n2νkµ0. (3.13)

The proof of Lemma 3.4 is non-trivial and we devote the next section to its proof.

We are now ready to present the main result of this paper, the polynomial iteration
complexity of Algorithm IPC.

Theorem 1. Let ε > 0 be a given tolerance. Suppose the conditions in (2.2), (2.3)
and (2.4) hold. Then νk ≤ ε for k = O(n2 ln(1/ε)).

Proof. From (3.12), Lemma 3.3 and Lemma 3.4, we know that

αi ≥ ᾱ := min

{
1,

1

η1(1 + σ̄)
,
O(1)

n2

}
, i = 0, . . . , k.

12



Then we have

νk =
k−1∏
i=0

(1− αiη2) ≤ (1− ᾱη2)k ≤ ε for k = O(n2 ln(1/ε)).

4 Proof of Lemma 3.4

For a given (θk, νk, Xk, yk, Zk) ∈ N , the purpose of Lemma 3.4 is to establish an upper
bound for ‖HPk

(∆Xk∆Zk)‖. Throughout this section, we shall consider only the NT

direction, where Pk = W
−1/2
k , with Wk ∈ Sn++ satisfying WkZkWk = Xk.

It is easy to verify that

Wk = P−2
k = Z

−1/2
k (Z

1/2
k XkZ

1/2
k )1/2Z

−1/2
k = X

1/2
k (X

1/2
k ZkX

1/2
k )−1/2X

1/2
k , (4.1)

and consequently

λmax(Wk) ≤ λmax

(
(X

1/2
k ZkX

1/2
k )−1/2

)
λmax(Xk), (4.2)

λmin(Wk) ≥ λmin

(
(Z

1/2
k XkZ

1/2
k )1/2

)
λmin(Z−1

k ). (4.3)

To facilitate our analysis, we introduce the following notation:

X̂k = PkXkPk, Ẑk = P−1
k ZkP

−1
k ;

∆X̂k = Pk∆XkPk, ∆Ẑk = P−1
k ∆ZkP

−1
k ;

Êk = Ek(P
−1
k ~ P−1

k ) = Ẑk ~ I,

F̂k = Fk(Pk ~ Pk) = X̂k ~ I.

From the fact that W
1/2
k ZkW

1/2
k = W

−1/2
k XkW

−1/2
k , we have

Ẑk = X̂k, Êk = F̂k. (4.4)

It is readily shown that F̂k, Êk, F̂kÊk ∈ Sn̄++. Let the eigenvalue decompositions of

X̂k and Ẑk be:

X̂k = Ẑk = QkΛkQ
T
k , (4.5)

where QT
kQk = I, Λk = diag(λ1

k, . . . , λ
n
k), and λ1

k ≤ . . . ≤ λnk . From (2.9), we have

(1− γ)νkµ0 ≤ (λ1
k)

2 ≤ · · · ≤ (λnk)2 ≤ (1 + γ)νkµ0. (4.6)

13



Let

Ŝk := F̂kÊ
T
k =

1

2
(X̂k ~ Ẑk + X̂kẐk ~ I) (4.7)

=
1

2
(Qk ~Qk)(Λk ~ Λk + Λ2

k ~ I)(Qk ~Qk)
T .

Then the eigenvalues of Ŝk are given by

Λ(Ŝk) =
{1

4
(λki + λkj )

2 : 1 ≤ i ≤ j, j = 1, . . . , n
}
.

From (4.5) and (4.6), we have,

(1− γ)νkµ0I � Ŝk � (1 + γ)νkµ0I, (4.8)

and

‖Ŝk‖2 ≤ (1 + γ)νkµ0, ‖Ŝ−1
k ‖2 ≤

1

(1− γ)νkµ0

. (4.9)

Now we state a few lemmas, which lead to the proof of Lemma 3.4.

Lemma 4.1. For any M ∈ Rn×n,

‖(Pk ~ Pk)svecM‖2 ≤ 1

(1− γ)νkµ0

‖Zk‖2‖M‖2,

‖(P−1
k ~ P−1

k )svecM‖2 ≤ 1

(1− γ)νkµ0

‖Xk‖2‖M‖2.

Proof. First we note that Z
1/2
k XkZ

1/2
k , X

1/2
k ZkX

1/2
k , andXkZk are similar, and λmin(XkZk) ≥

(1− γ)νkµ0. From (4.2), (4.3), we have

λmax(Wk) ≤
‖Xk‖√

(1− γ)νkµ0

, λmin(Wk) ≥
√

(1− γ)νkµ0

‖Zk‖
. (4.10)

By (4.10), we have

‖(Pk ~ Pk)svecM‖2 ≤ ‖Pk ~ Pk‖2
2‖M‖2

≤ λ2
max(W−1

k )‖M‖2 ≤ 1

(1− γ)νkµ0

‖Zk‖2‖M‖2.

Similarly, by (4.10), we have

‖(P−1
k ~ P−1

k )svecM‖2 ≤ ‖P−1
k ~ P−1

k ‖
2
2‖M‖2

≤ λ2
max(Wk)‖M‖2 ≤ 1

(1− γ)νkµ0

‖Xk‖2‖M‖2.
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Lemma 4.2.

‖svec∆X̂k‖2 + ‖svec∆Ẑk‖2 + 2∆X̂k •∆Ẑk = ‖Ŝ−1/2
k (svecRc

k + rck)‖2,

‖HPk
(∆Xk∆Zk)‖ ≤

1

2

(
‖svec∆X̂k‖2 + ‖svec∆Ẑk‖2

)
.

Proof. The last equation of (3.1) can be rewritten as

Êk(svec∆X̂k) + F̂k(svec∆Ẑk) = svecRc
k + rck. (4.11)

Multiplying (4.11) by Ŝ
−1/2
k from the left, we have

svec∆X̂k + svec∆Ẑk = Ŝ
−1/2
k (svecRc

k + rck).

From here, the first equation in the lemma follows.

For the second inequality, by Lemma 4.6 of [10], we have

‖HPk
(∆Xk∆Zk)‖ =

1

2
‖Pk∆Xk∆ZkP

−1
k + P−1

k ∆Zk∆XkPk‖

≤ ‖Pk∆Xk∆ZkP
−1
k ‖ = ‖∆X̂k∆Ẑk‖ ≤ ‖∆X̂k‖‖∆Ẑk‖

≤ 1

2

(
‖svec∆X̂k‖2 + ‖svec∆Ẑk‖2

)
.

Lemma 4.3. We have

‖Ŝ−1/2
k (svecRc

k + rck)‖2 = O(nνkµ0).

Proof. From (3.4) and (4.9), we have

‖Ŝ−1/2
k rck‖2 ≤ ‖Ŝ−1

k ‖2‖rck‖2 ≤ 0.25[(1− η2)γνkµ0]2

(1− γ)νkµ0

=
[(1− η2)γ]2νkµ0

4(1− γ)
. (4.12)

Observe that from (4.5),

svecRc
k = (Qk ~Qk)svec((1− η2)νkµ0I − Λ2

k).

Thus

‖Ŝ−1/2
k svecRc

k‖2 ≤ ‖Ŝ−1
k ‖2‖svecRc

k‖2

≤ 1

(1− γ)νkµ0

n∑
i=1

(
(1− η2)νkµ0 − (λki )

2
)2

≤ nνkµ0

1− γ
(γ + η2)2, by (4.6). (4.13)

The required result follows from (4.12) and (4.13). This completes the proof.
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In the rest of our analysis, we introduce an auxiliary point (X̃k, ỹk, Z̃k) whose
existence is ensured by Lemma 2.1. From Lemma 3.1, we have the following equations
at the kth iteration:

− svec∇f(Xk) + ATyk + svecZk = θk(svecRd
0 + ξdk), ‖ξdk‖ ≤ γdρ, (4.14)

A(svecXk)− b = θk(svecRp
0 + ξpk), ‖A

+ξpk‖ ≤ γpρ. (4.15)

Thus by Lemma 2.1, there exists (X̃k, ỹk, Z̃k) such that

− svec∇f(X̃k) + AT ỹk + svecZ̃k = svecRd
0 + ξdk (4.16)

A(svecX̃k)− b = Rp
0 + ξpk (4.17)

(1− γp)ρI � X̃k � (1 + γp)ρI , (4.18)

[1− (γd + Lγp)]ρI � Z̃k � [1 + (γd + Lγp)]ρI. (4.19)

Lemma 4.4. Let

Xk = Xk −X∗ − θk(X̃k −X∗), Zk = Zk − Z∗ − θk(Z̃k − Z∗).

The following equations hold:〈
Xk, Zk

〉
=
〈
Xk, QXk

〉
, (4.20)

〈
svec(∆Xk + η1θk(X̃k −X∗)) + η1A

+rpk, svec(∆Zk + η1θk(Z̃k − Z∗)) + η1r
d
k

〉
=
〈
svec(∆Xk + η1θk(X̃k −X∗)) + η1A

+rpk, Q svec(∆Xk + η1θk(X̃k −X∗))
〉
. (4.21)

Proof. By (4.14)–(4.17) and the fact that

AsvecX∗ − b = 0,

−svec∇f(X∗) + ATy∗ + svecZ∗ = 0,

we have

AsvecXk = 0

AT (yk − y∗ − θk(ỹk − y∗)) + svec(Zk) = Q svec(Xk),

which implies (4.20). Next, by (3.1), and (4.14)–(4.17), we have

A
(
svec(∆Xk + η1θk(X̃k −X∗)) + η1A

+rpk

)
= 0

AT
(

∆yk + η1θk(ỹk − y∗)
)

+ svec(∆Zk + η1θk(Z̃k − Z∗)) + η1r
d
k

= Q svec(∆Xk + η1θk(X̃k −X∗)),

which implies (4.21).
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Let

T1 =
(
‖svec∆X̂k‖2 + ‖svec∆Ẑk‖2

)1/2

(4.22)

T2 =
(
‖(Pk ~ Pk)svec(X̃k −X∗)‖2 + ‖(P−1

k ~ P−1
k )svec(Z̃k − Z∗)‖2

)1/2

(4.23)

T3 =
(
‖(Pk ~ Pk)A

+rpk‖
2 + ‖(P−1

k ~ P−1
k )rdk‖2

)1/2

(4.24)

T4 = ‖(P−1
k ~ P−1

k )Q (A+rpk)‖. (4.25)

Then we have the following lemma.

Lemma 4.5.

T1 ≤ 2η1(θkT2 + T3 + T4) +
√
T5,

where

T5 = ‖Ŝ−1/2
k (svecRc

k + rck)‖2 +2η2
1θ

2
k

〈
X̃k−X∗, Z̃k−Z∗

〉
+2η2

1

(
θkT2T3 +T 2

3 +θkT2T4

)
.

Proof. By (4.21), we have that

−
〈
∆X̂k, ∆Ẑk

〉
= −

〈
∆Xk, ∆Zk

〉
= η1θk[

〈
∆Xk, Z̃k − Z∗

〉
+
〈
X̃k −X∗, ∆Zk

〉
] + η1[

〈
svec∆Xk, r

d
k

〉
+
〈
A+rpk, svec∆Zk

〉
]

+ η2
1θk[

〈
svec(X̃k −X∗), rdk

〉
+
〈
A+rpk, svec(Z̃k − Z∗)

〉
] + η2

1

〈
A+rpk, r

d
k

〉
+ η2

1θ
2
k

〈
X̃k −X∗, Z̃k − Z∗

〉
− η1

〈
A+rpk, Q svec(∆Xk + η1θk(X̃k −X∗))

〉
−
〈
∆Xk + η1θk(X̃k −X∗), Q (∆Xk + η1θk(X̃k −X∗))

〉
.

Also, we have the following inequalities:

|
〈
∆Xk, Z̃k − Z∗

〉
+
〈
X̃k −X∗, ∆Zk

〉
|

= |
〈
∆X̂k, P

−1
k (Z̃k − Z∗)P−1

k

〉
+
〈
Pk(X̃k −X∗)Pk, ∆Ẑk

〉
| ≤ T1T2

|
〈
svec∆Xk, r

d
k

〉
+
〈
A+rpk, svec∆Zk

〉
| ≤ T1T3

|
〈
svec(X̃k −X∗), rdk

〉
+
〈
A+rpk, svec(Z̃k − Z∗)

〉
| ≤ T2T3

|
〈
A+rpk, r

d
k

〉
| ≤ T 2

3

|
〈
A+rpk, Q svec(X̃k −X∗)

〉
| ≤ T2T4

|
〈
A+rpk, Q svec∆Xk

〉
| ≤ T1T4
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−
〈
∆Xk + η1θk(X̃k −X∗), Q (∆Xk + η1θk(X̃k −X∗))

〉
≤ 0.

In the above, we used the Cauchy-Schwartz inequality and the fact that ac + bd ≤√
a2 + b2

√
c2 + d2 for a, b, c, d ≥ 0.

By Lemma 4.2, and the above inequalities, we have

T 2
1 = ‖Ŝ−1/2

k (svecRc
k + rck)‖2 − 2

〈
∆X̂k, ∆Ẑk

〉
≤ 2

(
η1θkT1T2 + η1T1T3 + η2

1θkT2T3 + η2
1T

2
3 + η2

1θkT2T4 + η1T1T4

)
+‖Ŝ−1/2

k (svecRc
k + rck)‖2 + 2η2

1θ
2
k

〈
X̃k −X∗, Z̃k − Z∗

〉
= 2η1T1(θkT2 + T3 + T4) + T5.

The quadratic function t2 − 2η1(θkT2 + T3 + T4)t− T5 has a unique positive root at

t+ = η1(θkT2 + T3 + T4) +
√
η2

1(θkT2 + T3 + T4)2 + T5,

and it is positive for t > t+, hence we must have T1 ≤ t+ ≤ 2η1(θkT2 + T3 + T4) +√
T5.

Lemma 4.6. We have

T 2
3 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.

Proof. By (3.4), we have

‖A+rpk‖ ≤ θkγpρ, ‖rdk‖ ≤ θkγdρ. (4.26)

By Lemma 4.1 and the fact that ‖M‖ ≤ Tr(M) for M ∈ Sn+, we have

‖(Pk ~ Pk)A
+rpk‖

2 ≤ 1

(1− γ)νkµ0

‖A+rpk‖
2‖Zk‖2

≤
γ2
pρ

2

(1− γ)νkµ0

θ2
k‖Zk‖2 ≤

γ2
pρ

2

(1− γ)νkµ0

θ2
k[Tr(Zk)]

2

=
γ2
pρ

2

(1− γ)νkµ0

36

(1− γp)2
n2ν2

kρ
2 =

O(1)

(1− γp)2
n2νkµ0 by Lemma 2.2.

Similarly, we have

‖(P−1
k ~ P−1

k )rdk‖2 ≤ 1

(1− γ)νkµ0

‖rdk‖2‖Xk‖2

≤ γ2
dρ

2

(1− γ)νkµ0

θ2
k‖Xk‖2 ≤ γ2

dρ
2

(1− γ)νkµ0

θ2
k[Tr(Xk)]

2
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=
γ2
dρ

2

(1− γ)νkµ0

36

(1− (γd + Lγp))2
n2ν2

kρ
2 =

O(1)

(1− (γd + Lγp))2
n2νkµ0 by Lemma 2.2.

From here, the required result follows.

Lemma 4.7. Under the conditions (2.2), (2.3) and (2.4),〈
X̃k −X∗, Z̃k − Z∗

〉
≤ 4nµ0.

Proof. The result follows from Lemma 11 in [19], and (4.18) and (4.19).

Lemma 4.8. Under the conditions (2.2), (2.3), and (2.4),

θ2
kT

2
2 = O(n2νkµ0).

Proof. By the fact that 0 � X̃k −X∗ � (1 + γp)ρI, we have

‖(Pk ~ Pk)svec(X̃k −X∗)‖ = ‖Pk(X̃k −X∗)Pk‖

≤ Tr(Pk(X̃k −X∗)Pk) =
〈
W−1
k , X̃k −X∗

〉
=

〈
(Z

1/2
k XkZ

1/2
k )−1/2, Z

1/2
k (X̃k −X∗)Z1/2

k

〉
by (4.1)

≤ λmax((Z
1/2
k XkZ

1/2
k )−1/2)

〈
Zk, X̃k −X∗

〉
≤ 1√

(1− γ)νkµ0

〈
Zk, X̃k −X∗

〉
.

Similarly, from 0 � Z̃k − Z∗ � (1 + γd + Lγp)ρI, we have

‖(P−1
k ~ P−1

k )svec(Z̃k − Z∗)‖ = ‖P−1
k (Z̃k − Z∗)P−1

k ‖

≤ Tr(P−1
k (Z̃k − Z∗)P−1

k ) =
〈
Wk, Z̃k − Z∗

〉
=

〈
(X

1/2
k ZkX

1/2
k )−1/2, X

1/2
k (Z̃k − Z∗)X1/2

k

〉
by (4.1)

≤ λmax((X
1/2
k ZkX

1/2
k )−1/2)

〈
Xk, Z̃k − Z∗

〉
≤ 1√

(1− γ)νkµ0

〈
Xk, Z̃k − Z∗

〉
.

Therefore, we have

θ2
kT

2
2 ≤ θ2

k

(
‖(Pk ~ Pk)svec(X̃k −X∗)‖+ ‖(P−1

k ~ P−1
k )svec(Z̃k − Z∗)‖

)2
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≤ θ2
k

(1− γ)νkµ0

(〈
Zk, X̃k −X∗

〉
+
〈
Xk, Z̃k − Z∗

〉)2

.

From (4.20) and the facts that X∗ •Z∗ = 0, Xk •Z∗, X∗ •Zk, X̃k •Z∗, Z̃k •X∗ � 0,
we have

θk
〈
X̃k −X∗, Zk

〉
+ θk

〈
Xk, Z̃k − Z∗

〉
= Xk • Zk −Xk • Z∗ −X∗ • Zk +X∗ • Z∗

+ θk
(〈
X∗, Z̃k − Z∗

〉
+
〈
X̃k −X∗, Z∗

〉)
+ θ2

k

〈
X̃k −X∗, Z̃k − Z∗

〉
−
〈
Xk −X∗ − θk(X̃k −X∗), Q(Xk −X∗ − θk(X̃k −X∗))

〉
≤ Xk • Zk + θk

(
X∗ • Z̃k + X̃k • Z∗

)
+ θ2

kX̃k • Z̃k

≤ (1 + γ)νkµ0n+ θk(1 + γd + Lγp)ρ(X∗ • I + I • Z∗) + θ2
k(1 + γp)(1 + γd + Lγp)ρ

2n

≤ 8νkµ0n.

Thus θ2
kT

2
2 = O(n2νkµ0).

Lemma 4.9.

T 2
4 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.

Proof. By Lemma 4.1, we have

T 2
4 ≤ 1

(1− γ)νkµ0

‖Xk‖2‖Q(A+rpk)‖
2

≤ 1

(1− γ)νkµ0

‖Xk‖2L2‖A+rpk‖
2

≤
γ2
pρ

2L2

(1− γ)νkµ0

θ2
k‖Xk‖2

≤
γ2
pL

2

(1− γ)νk

O(1)

(1− (γd + Lγp))2
n2ν2

kρ
2, by Lemma 2.2

=
O(1)

(1− (γd + Lγp))2
n2νkµ0.

The following proof directly leads to Lemma 3.4.

Lemma 4.10.

T 2
1 =

O(1)

(1− (γd + Lγp))2
n2νkµ0.
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Proof. From Lemma 4.5 to Lemma 4.9 and the fact that (a+b)2 ≤ 2a2 +2b2, we have

T 2
1 ≤

(
2η1(θkT2 + T3 + T4) +

√
T5

)2

≤ 8(θkT2 + T3 + T4)2 + 2T5

≤ 8(θkT2 + T3 + T4)2 + 2‖Ŝ−1/2
k (svecRc

k + rck)‖2 + 4θ2
k

〈
X̃k −X∗, Z̃k − Z∗

〉
+4θkT2T3 + 4T 2

3 + 4θkT2T4

≤ O(1)

(1− (γd + Lγp))2
n2νkµ0 +O(nνkµ0).

Thus, by Lemma 4.2 and Lemma 4.10, we have

‖HPk
(∆Xk∆Zk)‖ ≤

1

2
T 2

1 =
O(1)

(1− (γd + Lγp))2
n2νkµ0.
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