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dimy(E) = sup{s | H*(E) = oo} = inf{s | H*(E) = 0}.

:H.S

Lemma

dimy is invariant under isometries.
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Marstrand’s Projection Theorem (J. Marstrand (1954), P.
Mattila (1975))

Let E C R? be analytic. For almost all § we have

dimy(pe(E)) = min{dimy(E), 1}.

This also holds for R" and projections onto R™.
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What do we know?

Theorem (N. Lutz and Stull (2018))

If E C R? and dimy(E) = dimp(E) then Marstrand’s theorem
applies.

Theorem (Davies (1979))

(CH)) There exists E C R? such that dimy(E) = 1 while
dimy(pe(E)) = 0 for all 6.



Question

What is the “simplest” set failing Marstrand’s theorem?
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String complexity <— description length

Definition
For any p.c. function f, define

Co(r) = {min{@(o) |f(o) =71} if such o exists;

00 otherwise.

Definition (Solomonoff (1964); Kolmogorov (1965); Chaitin
(1966))

C(7) = Cp(7) where h is universal

@® C is within a constant of every Cr
® C(o7) < C(o)+ C(7)+2log(C(0))+ ¢
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What if codes should be uniquely decodable?

message ‘ codeword

a 0 What does 01 decode to?
b 1 01=c
c 01 0&1=ab

Definition (Levin (1973); Chaitin (1975))

K(7) = min{l(c) | (o) = 7} where h’ is universal for prefix-free
machines

@ K is within a constant of every Cr
® K(or) < K(o)+K(1)+ ¢
Definition (Chaitin (1975); Levin (1976))

f € 2¥ is Kolmogorov random if there exists a constant c for which
K(f[n]) > n—c.
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Lutz (2003)

Hausdorff dimension on 2% can be characterised in terms of gales.
It can also be effectivised, and yields dim for all reals in 2%.

Theorem (Mayordomo (2003))

dim(f) = liminf K10

n— 0o n

Lemma

e Iff € 2¥ is computable then dim(f) = 0.
e Iff € 2¥ is Kolmogorov random then dim(f) = 1.
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Theorem (Hitchcock (2003))

If X C 2% js a union of I'Ifl’-sets then

dimgy(X) = sup dim(f).
fex

Two questions

Can this characterisation be extended:
® to other spaces (R”, for instance)?
® beyond MY sets?



“Definition”

and so

Ki(x) = min{K(q)|q € QN By (x)}

dim(x) = Iirlianer).



Point-to-set Principle (J. Lutz, N. Lutz (2018))

For E C R"” we have

dimy(E) = AIEIZQU sggdimA(X).



Counterexamples
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The first counterexample

Recall Marstrand’s theorem @
If E is analytic and dimy(E) > 1 then dimy(pg(E)) = 1 for almost

all .
Theorem (R)

(V=L) There exists a co-analytic E C R? such that dimy(E) =1
and dimy(py(E)) = 0 for all 6.



The idea

Recall: dimy(E) :/Xni2n sup dim?(x)
€2¥ xcE

s




Idea

Ensure all projections have dimension 0

Recall: dimy is invariant under isometries.




How do we construct co-analytic sets?

K= S lomcwf o
B= 3 (4 <w X € F (XM )

Z. Vidnyanszky's co-analytic recursion principle (2014)

(V=L) Recursion on co-analytic subsets of Polish spaces with
sufficiently nice candidates produces co-analytic sets.

<u Co el
FESMxBXM Y r

@?l: 3&6#((@)’; ) F)
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WMinimal
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How do we construct reals?

Lemma (N. Lutz, Stull (2020))

If x € R and x € 2¥ is x coded in its binary expansion, then
dim(x) = dim(X). This also works in R".

Also works in polar coordinates!
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How do we control dimension?

Recall: dimyy(E) = mifmsup dim”(x)
€2¥xcE

Lemma
If E C R? meets every line through O then dimy(E) > 1.

Proof.

Let A € 2¢. Take 6 random relative to A. There exists r € R such
that (r,0) € E. Hence

dim”(r,0) > dim”(9) = 1.

A is arbitrary, so PTS completes the argument. Ol



Constructing E by recursion

use co-analytic recursion on lines 6

find r so that dim(py,(r)) = dim(ajr) =0

enumerate (r,0) into E

at step 0, take all previous lines 6, 01,05, . ..



Constructing E by recursion

® use co-analytic recursion on lines 0
® at step 6, take all previous lines 6, 01,05, . ..
e find r so that dim(pg,(r)) = dim(ajr) =0

® enumerate (r,6) into E

_—
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Stage a: constructing r on line

@ Suppose E [ a={(r,0;)]|i <w}, Ap ={ai|i < w}
® Build r in stages:

Stage 0: start with the empty string ry
Stage k + 1: decode k + 1 = (i, n); find extension py of rx such
that ap[pk] C [7], where 7T ends in enough zeroes

© Let r = rk. Enumerate (r,6) into E.

How many zeroes are enough? Ensure {(px) = P



The verification

Suppose E = {(ra,0a) | < w1}
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The second counterexample

Recall Marstrand's theorem @

If E is analytic and dimy(E) > 1 then dimy(pg(E)) = 1 for almost
all 6.

Theorem (R)

(V=L) For every € € (0,1) there exists a co-analytic E. C R? such
that dimy(E.) =1+ € and dimy(pg(Ec)) = € for all 6.
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Similar ideas, but obstacles

Fix e > 0.
Problems

® meeting every line only ensures the set has dimension at least
1, notl+e

® controlling the dimension of the projection is more intricate:
long zero strings do not suffice

Instead, find a complicated T € 2%, code pieces into all
projections!
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A few open questions

e What about dimy(E) < 1?7 Generalisations using gauge
functions?

® Packing dimension? Characterisations exist!
PTS for packing dimension (J. Lutz, N. Lutz (2018))
dimp(E) = mi Dim*
imp(E) /grenzrligg im”(x)

where

Dim(x) = lim sup 7

r—oo r

...does not admit Marstrand-like result (Jarvenpaa (1994);
Howroyd and Falconer (1996))

® Extensions of point-to-set principle?
® QOther applications: Kakeya sets, Furstenberg sets
(applications to harmonic analysis)...



Thank you
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Thm 1: verification details dimy(E)

Suppose E = {(ra,0a) | < wi}.
Lemma

Fix a line . Let k, be the projection factor of (ry,0,) onto .
There exists X such that sup,, ., dim*(roks) = 0.

Proof.

The line ¢ appeared in the induction: suppose @1, @2, 3, ...
appeared before . Then P rik; computes all projections of points
of E enumerated before . All points (rg, 63) after ¢ were defined
so that their projection rgks has dimension 0. Thus X = @ rik;
works. [

Now the point-to-set principle gives

dimpy(ps(E)) = 52'25'0 sgp dim?(rakq)
a<wi

< sup dim*(raky) = 0.

a<wi
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At condition 0:

Don't: find r and enumerate (r,0)

Do: find ¢ random relative to 6
code complicated T into r
code 6 into r
enumerate (r, )

What does a suitable r look like?

Let {a;|i < w} be projection factors, Y = (P a;) €0 & ¢.
If dimY(r) = € then

dim?(r, ©) > dim®() + dim®?(r) > 14 €
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Recall Y = (B ai) ® 6 @ .
The construction of r (sketch)
Stage —1: find T with dim(T) = dimY(T) = .
Stage 0: rp = ()

Stage k + 1: decode k+ 1 = (i, n); find px > r such that a,[p«]
contains long substrings of T




Are coded strings of T long enough?
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Are coded strings of T long enough?

No.
How many bits of r are needed to determine 1 bit of ra;?

Depends on a;! Can be fixed by saving blocks.
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Bringing it all together

Recall Y = (B ai) ® 6 @ .
Given E we have:
® dim(ra;) =€, so as in counterexample 1,
dimH(pg(E)) = €.
e for every 6 there is (r,¢) € E such that

> dim?(¢) + dim?#(r)
> dim?(p) + dim" (r)
> 1+e

dim’(r, o)

So PTS and dimy(pg(E)) > dimy(E) — 1 imply

dimH(E) =1+e.



