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Phosphine-Catalyzed Enantioselective [4 + 1] Annulation of 
Oxindoles with Allenic Ketones for the Construction of 
Spirocyclopentene oxindoles  

Xiaodong Tang,a,b Huanzhen Ni,a Yixin Lu*,a,b,c  

A phosphine-catalyzed enantioselective [4 + 1] annulation between allenic ketones and oxindoles has been developed. This 

annulation reaction makes use of allenic ketones as a dielectrophilic C4 synthon and oxindoles as a nucleophilic C1 reaction 

partner. A range of 3-spirocyclopentene-2-oxindoles with a quaternary stereogenic center were prepared in high yields and 

with excellent enantioselectivities. Synthetic elaborations of the [4 + 1] annulation product led to a facile total synthesis of 

(+)-debromoflustramide B.   

Spirooxindoles are important molecular skeletons that are often 

found in natural products and active pharmaceutical ingredients 

(API).1 In particular, spirooxindoles bearing a five-membered ring 

structure are one of the most common structural motifs. As shown 

in Figure 1, cyclopiamine B, marcfortine A and brevianamide A 

belong to prenylated indole alkaloids family which possess a diverse 

range of bioactivities including anti-tumor, anthelmintic, insecticidal, 

antibacterial and calmodulin-inhibition properties.2 Compound MI-5 

is an inhibitor designed from a natural lead compound, which 

demonstrated excellent anti-tumor activity.3 While synthetic 

methods for the preparation of spirooxindoles containing a 5-

membered heterocycle have been well investigated,4,5 on the other 

hand, strategies to access 5-membered carbocyclic spirooxindoles 

are less developed.  

Over the past two decades, phosphine catalysis has been firmly 

established as a powerful synthetic tool for the creation of cyclic 

structural motifs.6 By employing isatin-derived imines as a reaction 

partner, phosphine-catalyzed [3 + 2] annulation with allenes/MBH 

adducts led to effective formation of chiral 3,2'-pyrrolidinyl 

spirooxindoles.7 When the asymmetric synthesis of 5-membered 

carbocyclic spirooxindoles is concerned, there were only a handful of 

literature reports. In 2010, Marinetti et al.8 developed an asymmetric 

[3 + 2] annulation between allenoates and isatin derived alkenes for 

the production of carbocyclic spirooxindoles (scheme 1, a). 

Subsequently, we,9 and the Barbas group,10 disclosed highly 

enantioselective [3 + 2] annulations between MBH adducts and 

isatin-derived alkenes for the construction of optically enriched 3-

spirocyclopentene-2-oxindoles (Scheme 1, b). More recently, the 

Chen group11 made use of isatin-derived MBH derivatives in 

phosphine-mediated [3 + 2] annulation reaction to construct 

spirooxindoles containing a five-membered carbocyclic structure. 

(scheme 1, c). Notably, all the above approaches required the 

utilization of isatin derivatives as the starting material, making 

synthetic approaches less flexible. We question whether simple 2-

oxindoles could be employed as the starting material via phosphine 

activation to access five-membered carbocyclic spirooxindoles. We 

reckon that there are two key considerations: 1) the weak 

nucleophilicity of the 3-position of 2-oxindoles dictates the 

importance of selecting suitable electrophilic reaction partners; 2) 

cyclization modes other than [3 + 2] annulations would have to be 

devised to access the desired product. In the past decade, our group 

has been actively investigating asymmetric phosphine catalysis.12 

Very recently, we introduced a new type of allenic ketone as a

 

Figure 1. Natural products containing a 3-spirocyclopentene-2-

oxindole motif. 
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dielectrophilic C4 synthon, and demonstrated its utilization in 

phosphine catalyzed enantioselective [4 + 2] annulation reaction.13 

We reasoned such dielectrophilic allene ketone partner with 

enhanced electrophilicity may be used in conjunction with non-

decorated oxindole to promote a novel annulation reaction. Herein, 

we document a highly enantioselective [4 + 1] annulation between 

2-oxindoles and an allenic ketone for the efficient preparation of 

optically enriched 3-spirocyclopentene-2-oxindoles. 

Scheme 1. Strategies for the construction of spirocyclopentene 

oxindoles via phosphine catalysis 

 

We started our investigation by comparing reactivities of our 

allenic ketone and Tong’s allenoate14 in the projected [4 + 1] 

annulation reactions with oxindole substrate. Whereas the reaction 

between oxindole 2a and allenic ketone 1a catalyzed by 

triphenylphosphine furnished the annulation product in quantitative 

yield (eq. 1), the reaction employing allenoate 1a’ under otherwise 

identical conditions afforded the annulation product in 65% yield (eq. 

2). This confirmed that allenic ketone is essential for the projected 

transformation, as its high electrophilicity allows the employment of 

relatively weak-nucleophilic oxindoles in phosphine-mediated 

annulation reaction. 

 

Next, we focused on the development of the enantioselective [4 + 

1] annulation reaction between oxindoles 2a and allenic ketones 1a. 

While L-thr-derived phosphine−amide catalysts P1 and P2 were poor 

catalysts (entries 1 and 2), thr-based dipeptide phosphines were 

much more effective (entries 3−8), and among which, phosphine P8 

was most efficient in inducing asymmetry. A quick solvent screening 

identified t-butyl methyl ether (TBME) as the solvent of choice 

(entries 9−13). The enantioselectivities of the reaction were further 

enhanced by running the reaction at lower temperatures (entries 

14−8). At last, when the reaction was performed at -35 oC in TBME, 

the desired [4 + 1] annulation product 3a was formed in high yield 

with 92% ee (entries 16−17). Notably, when the optimized reaction 

condition were applied to allenoate substrate 1a’ (eq. 2), no reaction 

was observed, further confirming the reactivity difference between 

allenic ketone and allenoate. A gram scale reaction was also 

performed, with a good chemical yield and well-maintained 

enantioselectivity (entry 19). 

Table 1. Reaction screeninga 

 
 

 
Entry Cat. Solvent t [h] T (oC) Yield (%)b ee (%)c 

1 P1 CH2Cl2 2 r.t. 99 -9 

2 P2 CH2Cl2 2 r.t. 99 -11 

3 P3 CH2Cl2 2 r.t. 99 -64 

4 P4 CH2Cl2 2 r.t. 98 -53 

5 P5 CH2Cl2 2 r.t. 98 74 

6 P6 CH2Cl2 2 r.t. 98 71 

7 P7 CH2Cl2 2 r.t. 98 66 

8 P8 CH2Cl2 2 r.t. 98 75 
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9 P8 THF 2 r.t. 80 84 

10 P8 Toluene 2 r.t. 99 85 

11 P8 
1,4-

dioxane 
2 r.t. 85 70 

12 P8 Ether 2 r.t. 98 87 

13 P8 TBME 2 r.t. 98 88 

14 P8 TBME 4 0 98 88 

15 P8 TBME 6 -25 95 90 

16 P8 TBME 12 -35 95 92 

17 P8 TBME 24 -40 93 92 

18d P8 TBME 12 -35 87 92 

19e P8 TBME 12 -35 71 92 

aReactions were performed with 1a (0.12 mmol), 2a (0.10 mmol), 

Na2CO3 (0.10 mmol), and the catalyst (0.02 mmol) in solvent 

specified (2 mL) at temperatures specified. bYields of isolated 

products. cDetermined by HPLC analysis on a chiral stationary phase. 
dCatalyst loading decreased to 10 mol%. e1a (4.8 mmol), 2a (4 mmol), 

Na2CO3 (4 mmol), and the catalyst (0.8 mmol) in TBME (20 mL). TBME: 

tert-butyl methyl ether. 

 

After identifying the best conditions, we proceeded to establish 

the substrate scope (Scheme 2). The annulation reaction was 

applicable to various 2-oxindoles, tolerating different types of 

substituents and electronic nature of groups on the oxindole ring 

(3b−3h). Moreover, allenic ketones containing different aryl moieties 

could also be employed. Substrates bearing ortho-, meta-, or para-

methyl substituted, or different halogen atom-substituted phenyl 

rings (3k−3m, & 3o−3q) were well-tolerated. In addition, a 

cyclohexyl-containing allenic ketone (3n) was found to be suitable as 

well. This annulation did not work well for certain types of substrates, 

when 7-substituted oxindoles (3i and 3j), or an allenic ketone with an 

ortho-substituent (3k) were employed, enantioselectivities of the 

reactions dropped dramatically. In all the other examples examined, 

the [4 + 1] annulation products were obtained in very good yields and 

with excellent enantioselectivities. When the unprotected oxindole 

or oxindoles with N-methyl or N-benzyl group were employed, no 

desired [4 + 1] annulation product was observed. 

To demonstrate synthetic utility of this novel annulation reaction, 

we carried out an asymmetric total synthesis of (+)-

debromoflustramie B (Scheme 3). The [4 + 1] annulation product 3a 

was subjected to ozonolysis to furnish intermediate 4, which was 

oxidized by lead tetraacetate to form ester 5. After cleavage of the 

N-Boc group, a Wittig reaction afforded terpenyl 6. The subsequent 

amidation with methylamine and an N-alkylation led to the 

formation of 7. Followed by protecting the oxindole with 1-bromo-3-

methylbut-2-ene afford 8. At last, treatment of 8 with AlH3
.EtMe2N, 

induced reductive cyclization to yield tricyclic lactam, which was 

further reduced to give natural product (+)-debromoflustramie B (9) 

with an overall yield of 38.9%. The absolute configuration of which 

was confirmed by comparing the optical rotation of our synthetic (+)-

debromoflustramie B with the value reported in the literature.15 

 

 

Scheme 2. Reaction scope. Reactions were performed with 1 (0.12 

mmol), 2 (0.1 mmol), Na2CO3 (0.10 mmol), and P8 (0.02 mmol) in 

TBME (2 mL) at -35 oC. Yields refer to isolated products. The ee values 

were determined by HPLC analysis on a chiral stationary phase. 

Scheme 3. Total synthesis of (+)-debromoflustramine B 
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In conclusion, we developed a novel asymmetric [4 + 1] annulation 

by utilizing allenic ketones as a C4 dielectrophilic reaction partner, 

allowing simple oxindole to be utilized as a C1 reaction component. 

Remarkably, 3-spirocyclopentene-2-oxindoles containing a 

quaternary stereogenic center were constructed via a simple one-

step operation, in very high chemical yields and with excellent 

enantioselectivities. Furthermore, the power of synthetic strategy 

reported herein was demonstrated in a concise total synthesis of (+)-

debromoflustramine B. We believe the excellent electrophilicity of 

allenic ketone-derived C4 synthon will find more applications in 

phosphine catalysis, enabling the discovery of novel catalytic 

processes. 
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