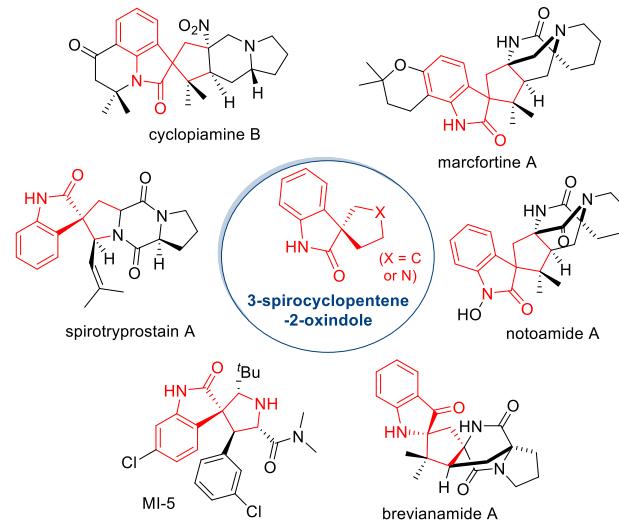


ARTICLE

Phosphine-Catalyzed Enantioselective [4 + 1] Annulation of Oxindoles with Allenic Ketones for the Construction of Spirocyclopentene oxindoles

Received 00th January 20xx,
Accepted 00th January 20xx

DOI: 10.1039/x0xx00000x


Xiaodong Tang,^{a,b} Huanzhen Ni,^a Yixin Lu*,^{a,b,c}

A phosphine-catalyzed enantioselective [4 + 1] annulation between allenic ketones and oxindoles has been developed. This annulation reaction makes use of allenic ketones as a dielectrophilic C4 synthon and oxindoles as a nucleophilic C1 reaction partner. A range of 3-spirocyclopentene-2-oxindoles with a quaternary stereogenic center were prepared in high yields and with excellent enantioselectivities. Synthetic elaborations of the [4 + 1] annulation product led to a facile total synthesis of (+)-debromoflustramide B.

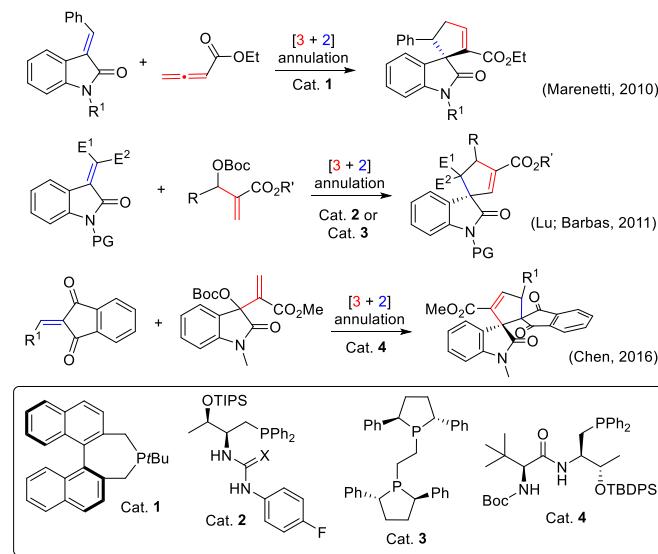
Spirooxindoles are important molecular skeletons that are often found in natural products and active pharmaceutical ingredients (API).¹ In particular, spirooxindoles bearing a five-membered ring structure are one of the most common structural motifs. As shown in Figure 1, cyclopamine B, marcfantine A and brevianamide A belong to prenylated indole alkaloids family which possess a diverse range of bioactivities including anti-tumor, anthelmintic, insecticidal, antibacterial and calmodulin-inhibition properties.² Compound MI-5 is an inhibitor designed from a natural lead compound, which demonstrated excellent anti-tumor activity.³ While synthetic methods for the preparation of spirooxindoles containing a 5-membered heterocycle have been well investigated,^{4,5} on the other hand, strategies to access 5-membered carbocyclic spirooxindoles are less developed.

Over the past two decades, phosphine catalysis has been firmly established as a powerful synthetic tool for the creation of cyclic structural motifs.⁶ By employing isatin-derived imines as a reaction partner, phosphine-catalyzed [3 + 2] annulation with allenes/MBH adducts led to effective formation of chiral 3,2'-pyrrolidinyl spirooxindoles.⁷ When the asymmetric synthesis of 5-membered carbocyclic spirooxindoles is concerned, there were only a handful of literature reports. In 2010, Marinetti et al.⁸ developed an asymmetric [3 + 2] annulation between allenotes and isatin derived alkenes for the production of carbocyclic spirooxindoles (scheme 1, a). Subsequently, we,⁹ and the Barbas group,¹⁰ disclosed highly enantioselective [3 + 2] annulations between MBH adducts and isatin-derived alkenes for the construction of optically enriched 3-

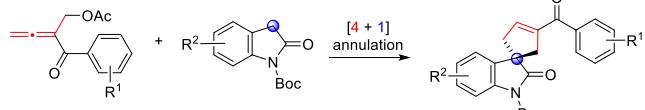
spirocyclopentene-2-oxindoles (Scheme 1, b). More recently, the Chen group¹¹ made use of isatin-derived MBH derivatives in phosphine-mediated [3 + 2] annulation reaction to construct spirooxindoles containing a five-membered carbocyclic structure. (scheme 1, c). Notably, all the above approaches required the utilization of isatin derivatives as the starting material, making synthetic approaches less flexible. We question whether simple 2-oxindoles could be employed as the starting material via phosphine activation to access five-membered carbocyclic spirooxindoles. We reckon that there are two key considerations: 1) the weak nucleophilicity of the 3-position of 2-oxindoles dictates the importance of selecting suitable electrophilic reaction partners; 2) cyclization modes other than [3 + 2] annulations would have to be devised to access the desired product. In the past decade, our group has been actively investigating asymmetric phosphine catalysis.¹² Very recently, we introduced a new type of allenic ketone as a

Figure 1. Natural products containing a 3-spirocyclopentene-2-oxindole motif.

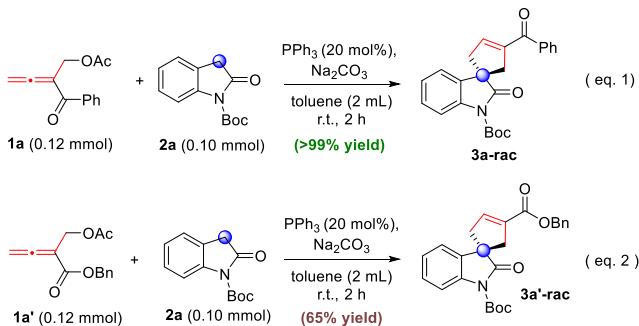
^a Department of Chemistry, National University of Singapore, 3 Science Drive 3, 117543, Singapore.


E-mail: chmlyx@nus.edu.sg.

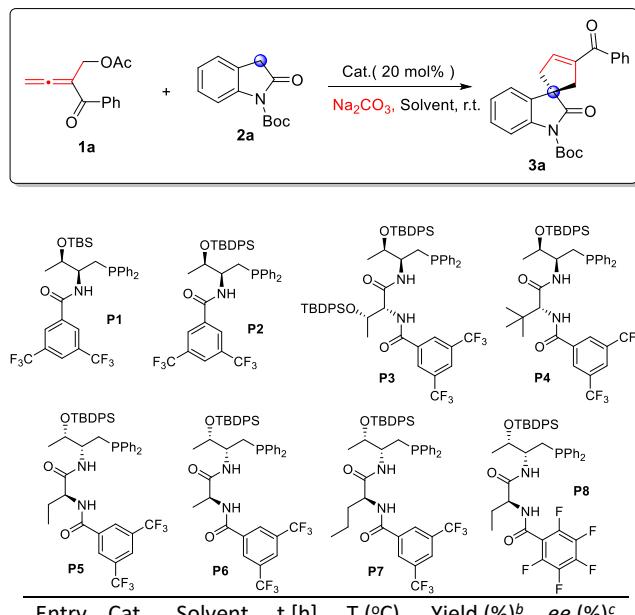
^b National University of Singapore (Suzhou) Research Institute, 377 Lin Quan Street, Suzhou Industrial Park, Suzhou, Jiangsu, 215123, China


^c Joint School of National University of Singapore and Tianjin University, International Campus of Tianjin University, Binhai New City, Fuzhou, Fujian, 350207, China.

dielectrophilic C4 synthon, and demonstrated its utilization in phosphine catalyzed enantioselective [4 + 2] annulation reaction.¹³ We reasoned such dielectrophilic allene ketone partner with enhanced electrophilicity may be used in conjunction with non-decorated oxindole to promote a novel annulation reaction. Herein, we document a highly enantioselective [4 + 1] annulation between 2-oxindoles and an allenic ketone for the efficient preparation of optically enriched 3-spirocyclopentene-2-oxindoles.


Scheme 1. Strategies for the construction of spirocyclopentene oxindoles via phosphine catalysis

This work:

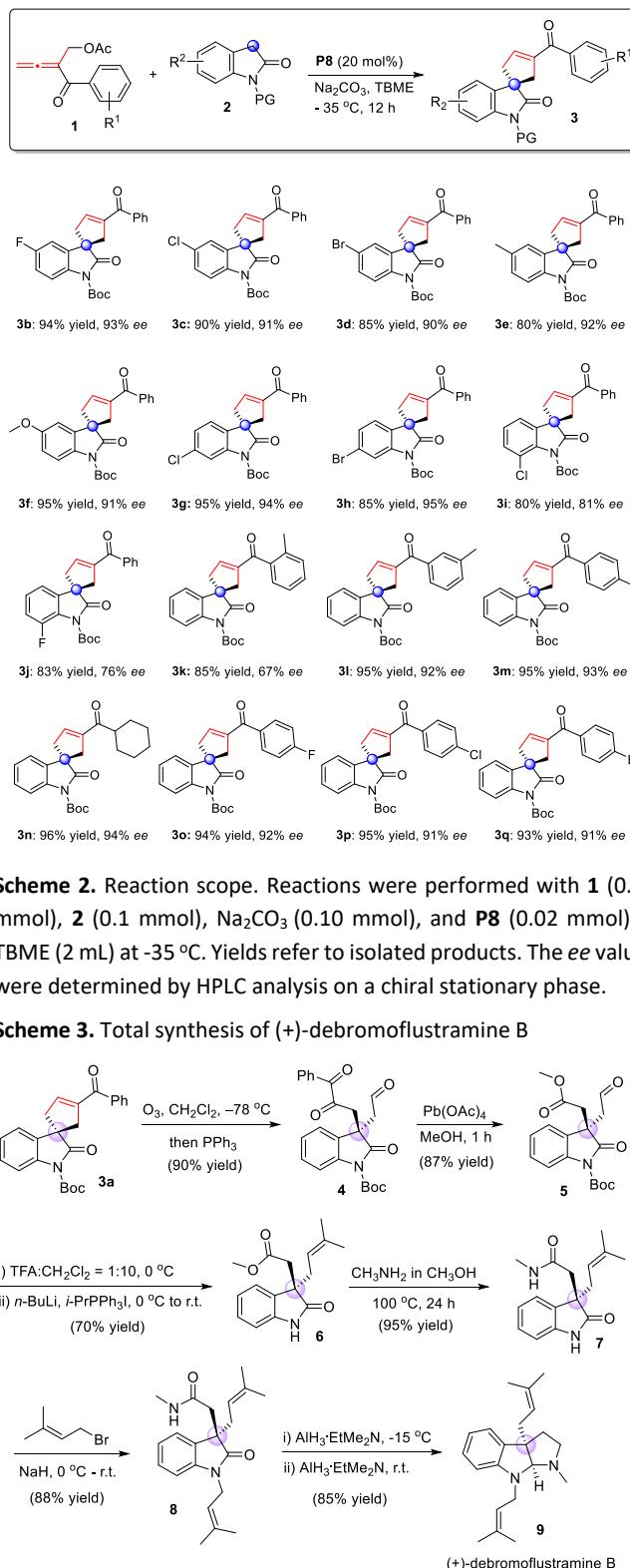


We started our investigation by comparing reactivities of our allenic ketone and Tong's allenoate¹⁴ in the projected [4 + 1] annulation reactions with oxindole substrate. Whereas the reaction between oxindole **2a** and allenic ketone **1a** catalyzed by triphenylphosphine furnished the annulation product in quantitative yield (eq. 1), the reaction employing allenoate **1a'** under otherwise identical conditions afforded the annulation product in 65% yield (eq. 2). This confirmed that allenic ketone is essential for the projected transformation, as its high electrophilicity allows the employment of relatively weak-nucleophilic oxindoles in phosphine-mediated annulation reaction.

Next, we focused on the development of the enantioselective [4 + 1] annulation reaction between oxindoles **2a** and allenic ketones **1a**. While L-thr-derived phosphine–amide catalysts **P1** and **P2** were poor catalysts (entries 1 and 2), thr-based dipeptide phosphines were much more effective (entries 3–8), and among which, phosphine **P8** was most efficient in inducing asymmetry. A quick solvent screening identified *t*-butyl methyl ether (TBME) as the solvent of choice (entries 9–13). The enantioselectivities of the reaction were further enhanced by running the reaction at lower temperatures (entries 14–18). At last, when the reaction was performed at -35 °C in TBME, the desired [4 + 1] annulation product **3a** was formed in high yield with 92% ee (entries 16–17). Notably, when the optimized reaction condition were applied to allenoate substrate **1a'** (eq. 2), no reaction was observed, further confirming the reactivity difference between allenic ketone and allenoate. A gram scale reaction was also performed, with a good chemical yield and well-maintained enantioselectivity (entry 19).

Table 1. Reaction screening^a

Entry	Cat.	Solvent	t [h]	T (°C)	Yield (%) ^b	ee (%) ^c
1	P1	CH ₂ Cl ₂	2	r.t.	99	-9
2	P2	CH ₂ Cl ₂	2	r.t.	99	-11
3	P3	CH ₂ Cl ₂	2	r.t.	99	-64
4	P4	CH ₂ Cl ₂	2	r.t.	98	-53
5	P5	CH ₂ Cl ₂	2	r.t.	98	74
6	P6	CH ₂ Cl ₂	2	r.t.	98	71
7	P7	CH ₂ Cl ₂	2	r.t.	98	66
8	P8	CH ₂ Cl ₂	2	r.t.	98	75


9	P8	THF	2	r.t.	80	84
10	P8	Toluene	2	r.t.	99	85
11	P8	1,4-dioxane	2	r.t.	85	70
12	P8	Ether	2	r.t.	98	87
13	P8	TBME	2	r.t.	98	88
14	P8	TBME	4	0	98	88
15	P8	TBME	6	-25	95	90
16	P8	TBME	12	-35	95	92
17	P8	TBME	24	-40	93	92
18 ^d	P8	TBME	12	-35	87	92
19 ^e	P8	TBME	12	-35	71	92

^aReactions were performed with **1a** (0.12 mmol), **2a** (0.10 mmol), Na_2CO_3 (0.10 mmol), and the catalyst (0.02 mmol) in solvent specified (2 mL) at temperatures specified. ^bYields of isolated products. ^cDetermined by HPLC analysis on a chiral stationary phase. ^dCatalyst loading decreased to 10 mol%. ^e**1a** (4.8 mmol), **2a** (4 mmol), Na_2CO_3 (4 mmol), and the catalyst (0.8 mmol) in TBME (20 mL). TBME: *tert*-butyl methyl ether.

After identifying the best conditions, we proceeded to establish the substrate scope (Scheme 2). The annulation reaction was applicable to various 2-oxindoles, tolerating different types of substituents and electronic nature of groups on the oxindole ring (**3b**–**3h**). Moreover, allenic ketones containing different aryl moieties could also be employed. Substrates bearing *ortho*-, *meta*-, or *para*-methyl substituted, or different halogen atom-substituted phenyl rings (**3k**–**3m**, & **3o**–**3q**) were well-tolerated. In addition, a cyclohexyl-containing allenic ketone (**3n**) was found to be suitable as well. This annulation did not work well for certain types of substrates, when 7-substituted oxindoles (**3i** and **3j**), or an allenic ketone with an *ortho*-substituent (**3k**) were employed, enantioselectivities of the reactions dropped dramatically. In all the other examples examined, the [4 + 1] annulation products were obtained in very good yields and with excellent enantioselectivities. When the unprotected oxindole or oxindoles with *N*-methyl or *N*-benzyl group were employed, no desired [4 + 1] annulation product was observed.

To demonstrate synthetic utility of this novel annulation reaction, we carried out an asymmetric total synthesis of (+)-debromoflustramie B (Scheme 3). The [4 + 1] annulation product **3a** was subjected to ozonolysis to furnish intermediate **4**, which was oxidized by lead tetracetate to form ester **5**. After cleavage of the *N*-Boc group, a Wittig reaction afforded terpenyl **6**. The subsequent amidation with methylamine and an *N*-alkylation led to the

formation of **7**. Followed by protecting the oxindole with 1-bromo-3-methylbut-2-ene afford **8**. At last, treatment of **8** with $\text{AlH}_3\text{-EtMe}_2\text{N}$, induced reductive cyclization to yield tricyclic lactam, which was further reduced to give natural product (+)-debromoflustramie B (**9**) with an overall yield of 38.9%. The absolute configuration of which was confirmed by comparing the optical rotation of our synthetic (+)-debromoflustramie B with the value reported in the literature.¹⁵

In conclusion, we developed a novel asymmetric [4 + 1] annulation by utilizing allenic ketones as a C4 dielectrophilic reaction partner, allowing simple oxindole to be utilized as a C1 reaction component. Remarkably, 3-spirocyclopentene-2-oxindoles containing a quaternary stereogenic center were constructed via a simple one-step operation, in very high chemical yields and with excellent enantioselectivities. Furthermore, the power of synthetic strategy reported herein was demonstrated in a concise total synthesis of (+)-debromoflustramine B. We believe the excellent electrophilicity of allenic ketone-derived C4 synthon will find more applications in phosphine catalysis, enabling the discovery of novel catalytic processes.

Conflicts of interest

There are no conflicts to declare.

Acknowledgements

Y.L. acknowledges the Singapore National Research Foundation, Prime Minister's Office for the NRF Investigatorship Award (R-143-000-A15-281). Financial supports from the National University of Singapore (R-143-000-695-114) and the National Natural Science Foundation of China (21672158) are also gratefully acknowledged.

Notes and references

- For selected reviews of spirooxindoles, see: (a) Williams, R. M.; Cox, R. J. Paraherquamides, Brevianamides, and Asperparalines: Laboratory Synthesis and Biosynthesis. An Interim Report. *Acc. Chem. Res.* 2003, **36**, 127–139. (b) Galliford, C. V.; Scheidt, K. A. Pyrrolidinyl-Spirooxindole Natural Products as Inspirations for the Development of Potential Therapeutic Agents. *Angew. Chem. Int. Ed.* 2007, **46**, 8748–8758. (c) Miller, K. A.; Williams, R. M. Synthetic Approaches To The Bicyclo[2.2.2]diazaoctane Ring System Common To The Paraherquamides, Stephacidins and Related Prenylated Indole Alkaloids. *Chem. Soc. Rev.* 2009, **38**, 3160–3174. (d) Trost, B.; Brennan, M. Asymmetric Syntheses of Oxindole and Indole Spirocyclic Alkaloid Natural Products. *Synthesis* 2009, **2009**, 3003–3025. (e) Ball-Jones, N. R.; Badillo, J. J.; Franz, A. K. Strategies For The Enantioselective Synthesis of Spirooxindoles. *Org. Biomol. Chem.* 2012, **10**, 5165–5181. (f) Singh, G. S.; Desta, Z. Y. Isatins As Privileged Molecules in Design and Synthesis of Spiro-Fused Cyclic Frameworks. *Chem. Rev.* 2012, **112**, 6104–6155. (g) Hati, S.; Tripathy, S.; Dutta, P. K.; Agarwal, R.; Srinivasan, R.; Singh, A.; Singh, S.; Sen, S. Spiro[pyrrolidine-3, 3'-oxindole] as Potent Anti-Breast Cancer Compounds: Their Design, Synthesis, Biological Evaluation and Cellular Target Identification. *Sci. Rep.* 2016, **6**, 32213. (h) James, M. J.; O'Brien, P.; Taylor, R. J.; Unsworth, W. P. Synthesis of Spirocyclic Indolenines. *Chem. Eur. J.* 2016, **22**, 2856–2881. (i) Zhou, L. M.; Qu, R. Y.; Yang, G. F. An Overview of Spirooxindole as A Promising Scaffold For Novel Drug Discovery. *Expert Opin. Drug Discov.* 2020, **15**, 603–625.
- (a) Paterson, R. R. M.; Simmonds, M. J. S.; Klemmelmeyer, C.; Blaney, W. M. Effects of Brevianamide A, Its Photolysis Product Brevianamide D, and Ochratoxin A From two Penicillium Strains on the Insect Pests *Spodoptera Frugiperda* and *Heliothis Virescens*. *Mycol. Res.* 1990, **94**, 538–542. (b) Kato, H.; Yoshida, T.; Tokue, T.; Nojiri, Y.; Hirota, H.; Ohta, T.; Williams, R. M.; Tsukamoto, S. Notoamides A-D: Prenylated Indole Alkaloids Isolated from a Marine-Derived Fungus, *Aspergillus* sp. *Angew. Chem. Int. Ed.* 2007, **46**, 2254–2256.
- Ding, K.; Lu, Y.; Nikolovska-Coleska, Z.; Qiu, S.; Ding, Y.; Gao, W.; Stuckey, J.; Krajewski, K.; Roller, P. P.; Tomita, Y.; Parrish, D. A.; Deschamps, J. R.; Wang, S. Structure-Based Design of Potent Non-Peptide MDM2 Inhibitors. *J. Am. Chem. Soc.* 2005, **127**, 10130–10131.
- For selected examples via metal catalysis, see: (a) Antonchick, A. P.; Gerding-Reimers, C.; Catarinella, M.; Schurmann, M.; Preut, H.; Ziegler, S.; Rauh, D.; Waldmann, H. Highly Enantioselective Synthesis and Cellular Evaluation of Spirooxindoles Inspired by Natural Products. *Nat. Chem.* 2010, **2**, 735–740. (b) Suman, K.; Srinu, L.; Thennarasu, S. Lewis Acid Catalyzed Unprecedented [3 + 2] Cycloaddition Yields 3,3'-Pyrrolidinyldispirooxindoles Containing Four Contiguous Chiral Stereocenters with Two Contiguous Quaternary Spirostereocenters. *Org. Lett.* 2014, **16**, 3732–3735. (c) Arai, T.; Ogawa, H.; Awata, A.; Sato, M.; Watabe, M.; Yamanaka, M. Pyridine-Cu(OTf)₂-Catalyzed Asymmetric [3 + 2] Cycloaddition with Imino Esters: Harmony of Cu-Lewis Acid and Imidazolidine-NH Hydrogen Bonding in Concerto Catalysis. *Angew. Chem. Int. Ed.* 2015, **54**, 1595–1599. (d) Zhao, J. Q.; Wu, Z. J.; Zhou, M. Q.; Xu, X. Y.; Zhang, X. M.; Yuan, W. C. Zn-Catalyzed Diastereo- and Enantioselective Cascade Reaction of 3-Isothiocyanato Oxindoles and 3-Nitroindoles: Stereocontrolled Syntheses of Polycyclic Spirooxindoles. *Org. Lett.* 2015, **17**, 5020–5023.
- For selected examples via organic catalysis. see: (a) Chen, X. H.; Wei, Q.; Luo, S. W.; Xiao, H.; Gong, L. Z. Organocatalytic Synthesis of Spiro[pyrrolidin-3,3'-oxindoles] with High Enantiopurity and Structural Diversity. *J. Am. Chem. Soc.* 2009, **131**, 13819–138125. (b) Wang, L.; Shi, X. M.; Dong, W. P.; Zhu, L. P.; Wang, R. Efficient Construction of Highly Functionalized Spiro[γ-butyrolactone-pyrrolidin-3,3'-oxindole] Tricyclic Skeletons via an Organocatalytic 1,3-Dipolar Cycloaddition. *Chem. Commun.* 2013, **49**, 3458–3460. (c) Mukaiyama, T.; Ogata, K.; Sato, I.; Hayashi, Y. Asymmetric Organocatalyzed Michael Addition of Nitromethane to a 2-Oxoindoline-3-ylidene Acetaldehyde and the Three One-Pot Sequential Synthesis of (–)-Horsfiline and (–)-Coerulescine. *Chem. Eur. J.* 2014, **20**, 13583–13588. (d) Dai, W.; Jiang, X. L.; Wu, Q.; Shi, F.; Tu, S. J. Diastereo- and Enantioselective Construction of 3,3'-Pyrrolidinyldispirooxindole Framework via Catalytic Asymmetric 1,3-Dipolar Cycloadditions. *J. Org. Chem.* 2015, **80**, 5737–5744. (e) Bella, M.; Kobbelgaard, S.; Jorgensen, K. A. Organocatalytic Regio- and Asymmetric C-Selective S_NAr ReactionsStereoselective Synthesis of Optically Active Spiro-pyrrolidone-3,3'-oxoindoles. *J. Am. Chem. Soc.* 2005, **127**, 3670–3671.
- For selected reviews of phosphine catalysis: (a) Ni, H.; Chan, W. L.; Lu, Y. Phosphine-Catalyzed Asymmetric Organic Reactions. *Chem. Rev.* 2018, **118**, 9344–9411. (b) Guo, H.; Fan, Y. C.; Sun, Z.; Wu, Y.; Kwon, O. Phosphine Organocatalysis. *Chem. Rev.* 2018, **118**, 10049–10293. (c) Li, H.; Lu, Y. Enantioselective Construction of All-Carbon Quaternary Stereogenic Centers by Using Phosphine Catalysis. *Asian J. Org. Chem.* 2017, **6**, 1130–1145. (d) Li, W.; Zhang, J. Recent Developments in the Synthesis and Utilization of Chiral β-Aminophosphine Derivatives as Catalysts or Ligands. *Chem. Soc. Rev.* 2016, **45**, 1657–1677. (e) Liu, T. Y.; Xie, M.; Chen, Y. C. Organocatalytic Asymmetric Transformations of Modified Morita-Baylis-Hillman Adducts. *Chem. Soc. Rev.* 2012, **41**, 4101–41012. (f) Wang, T.; Han, X.; Zhong, F.; Yao, W.; Lu, Y. Amino Acid-Derived Bifunctional Phosphines for Enantioselective Transformations. *Acc. Chem. Res.* 2016, **49**, 1369–1378. (g) Wang, Z.; Xu, X.; Kwon, O. Phosphine Catalysis

of Allenes With Electrophiles. *Chem. Soc. Rev.* 2014, **43**, 2927–2940. (h) Wei, Y.; Shi, M. Lu's [3 + 2] Cycloaddition of Allenes with Electrophiles: Discovery, Development and Synthetic Application. *Org. Chem. Front.* 2017, **4**, 1876–1890. (i) Hu, F. L.; Wei, Y.; Shi, M. Phosphine-Catalyzed Asymmetric [4 + 1] Annulation of Activated α,β -Unsaturated Ketones with Morita-Baylis-Hillman Carbonates: Enantioselective Synthesis of Spirooxindoles Containing Two Adjacent Quaternary Stereocenters. *Chem. Commun.* 2014, **50**, 8912–8914. (j) Lei, Y.; Zhang, X.-N.; Yang, X.-Y.; Xu, Q.; Shi, M. Regio- and Diastereoselective Construction of 1',2'-(Dihydrospiro[indoline-3,3'-pyrrol]-2'-yl)acrylates Through Phosphine-Catalyzed [4 + 1] Annulation of Morita-Baylis-Hillman Carbonates with Oxindole-Derived α,β -Unsaturated Imines. *RSC Adv.* 2015, **5**, 49657–49661.

7 (a) Han, X.; Chan, W. L.; Yao, W.; Wang, Y.; Lu, Y. Phosphine-mediated Highly Enantioselective Spirocyclization with Ketimines as Substrates. *Angew. Chem. Int. Ed.* 2016, **55**, 6492–6496. (b) Sankar, M. G.; Garcia-Castro, M.; Golz, C.; Strohmann, C.; Kumar, K. Engaging Allene-Derived Zwitterions in an Unprecedented Mode of Asymmetric [3 + 2] -Annulation Reaction. *Angew. Chem. Int. Ed.* 2016, **55**, 9709–9713. (c) Sankar, M. G.; Garcia-Castro, M.; Golz, C.; Strohmann, C.; Kumar, K. L-Isoleucine Derived Bifunctional Phosphine Catalyses Asymmetric [3 + 2]-Annulation of Allenyl-Esters and -Ketones with Ketimines. *RSC Adv.* 2016, **6**, 56537–56543.

8 Voituriez, A.; Pinto, N.; Neel, M.; Retailleau, P.; Marinetti, A. An Organocatalytic [3 + 2] Cyclisation Strategy for the Highly Enantioselective Synthesis of Spirooxindoles. *Chem. Eur. J.* 2010, **16**, 12541–12544.

9 Zhong, F.; Han, X.; Wang, Y.; Lu, Y. Highly Enantioselective [3 + 2] Annulation of Morita-Baylis-Hillman Adducts Mediated by L-Threonine-Derived Phosphines: Synthesis of 3-Spirocyclopentene-2-oxindoles having Two Contiguous Quaternary Centers. *Angew. Chem. Int. Ed.* 2011, **50**, 7837–7841.

10 Tan, B.; Candeias, N. R.; Barbas, C. F. Core-Structure-Motivated Design of a Phosphine-Catalyzed [3 + 2] Cycloaddition Reaction: Enantioselective Syntheses of Spirocyclopenteneoxindoles. *J. Am. Chem. Soc.* 2011, **133**, 4672–4675.

11 Zhan, G.; Shi, M. L.; He, Q.; Lin, W. J.; Ouyang, Q.; Du, W.; Chen, Y. C. Catalyst-Controlled Switch in Chemo- and Diastereoselectivities: Annulations of Morita-Baylis-Hillman Carbonates from Isatins. *Angew. Chem. Int. Ed.* 2016, **55**, 2147–2151.

12 For our recent selected examples, see: (a) Chan, W. L.; Tang, X.; Zhang, F.; Quek, G.; Mei, G. J.; Lu, Y. Phosphine-Catalyzed (3 + 2) Annulation of Isoindigos with Allenes: Enantioselective Formation of Two Vicinal Quaternary Stereogenic Centers. *Angew. Chem. Int. Ed.* 2019, **58**, 6260–6264. (b) Li, K.; Goncalves, T. P.; Huang, K. W.; Lu, Y. Dearomatization of 3-Nitroindoles by a Phosphine-Catalyzed Enantioselective [3 + 2] Annulation Reaction. *Angew. Chem. Int. Ed.* 2019, **58**, 5427–5431. (c) Zhang, J.; Chan, W.-L.; Chen, L.; Ullah, N.; Lu, Y. Creation of Bispiro[pyrazolone-3,3'-oxindoles] via a Phosphine-Catalyzed Enantioselective [3 + 2] Annulation of the Morita-Baylis-Hillman Carbonates with Pyrazoloneyldiene Oxindoles. *Org. Chem. Front.* 2019, **6**, 2210. (d) Li, K.; Jin, Z.; Chan, W.-L.; Lu, Y. Enantioselective Construction of Bicyclic Pyran and Hydrindane Scaffolds via Intramolecular Rauhut–Currier Reactions Catalyzed by Thiourea-Phosphines. *ACS Catal.* 2018, **8**, 8810. (e) Ni, H.; Tang, X.; Zheng, W.; Yao, W.; Ullah, N.; Lu, Y. Enantioselective Phosphine-Catalyzed Formal [4 + 4] Annulation of α,β -Unsaturated Imines and Allene Ketones: Construction of Eight-Membered Rings. *Angew. Chem. Int. Ed.* 2017, **56**, 14222–14226.

13 Tang, X. D.; Tan, C. X.; Chan, W. L.; Zhang, F. H.; Zheng, W. R.; Lu, Y. Dielectrophilic Allenic Ketone-Enabled [4 + 2] Annulation with 3,3'-Bisoxindoles: Enantioselective Creation of Two Contiguous Quaternary Stereogenic Centers. *ACS Cat.* 2021, **11**, 1361–1367.

14 Zhang, Q.; Yang, L.; Tong, X. 2-(Acetoxymethyl)buta-2,3-dienoate, a Versatile 1,4-Biselectrophile for Phosphine-Catalyzed [4 + n] Annulations with 1,n-Bisnucleophiles (n = 1, 2). *J. Am. Chem. Soc.* 2010, **132**, 2550–2551.

15 Craig, R.; Sorrentino, E.; Connon, S. J. Enantioselective Alkylation of 2-Oxindoles Catalyzed by a Bifunctional Phase-Transfer Catalyst: Synthesis of (–)-Debromoflustramine B. *Chem. Eur. J.* 2018, **24**, 4528–4531.