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ABSTRACT 
 

The aim of this project is to determine the solvability by radicals of polynomials of different 
degrees. Further, for polynomials which are solvable by radicals, the Galois- theoretic derivation 
of the general solution to the polynomial is sought. Where a degree k ≥ 5 polynomial is found to 
be insolvable, the project aims to prove this, as well as find more specific cases of the 
polynomial which can be solved. 
 
The solvability by radicals is shown through the use of Galois Theory as well as aspects of 
Group and Field theory. This solvability is demonstrated through the showing of the solvability 
of the Galois group of the polynomial. 
 
Polynomials of degree one and two are easily shown to be solvable by radicals due to the 
presence of a general formula for both. More complex formulas exist for cubic and quartic 
polynomials, and are thus solvable by radicals. However, general polynomials of degree five are 
not solvable, and hence no general formulas exist. Rather, more specific cases of polynomials of 
degree five are solvable, namely polynomials reducible over rational numbers, and cyclotomic 
polynomials. 
 
Research into the study of polynomials and the solving of  its roots is of practical and widespread  
use in computer  aided design and other computer applications in both the fields of physics and 
engineering. 
 
 

INTRODUCTION 
 
Polynomials are functions of the type  
 
ሻݔሺ݌ ൌ ܽ௡ݔ௡ ൅ ܽ௡ିଵݔ௡ିଵ ൅ ڮ ൅ ܽଵݔ ൅ ܽ଴   
 
where ܽ௡ ് 0. The root(s) of a polynomial are the value(s) of ݔ which satisfy ݌ሺݔሻ ൌ 0. 
Being able to solve for polynomial roots using radicals is not about finding a root, as this is 
known by the fundamental theorem of algebra that any polynomial of degree ݊ has ݊ complex 
roots, which need not be distinct. Solving a polynomial by radicals is the expression of all roots 
of a polynomial using only the four basic operations: addition, subtraction, multiplication and 
division, as well as the taking of radicals, on the arithmetical combinations of coefficients of any 
given polynomial.  
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Solving for polynomial roots by radicals, involves finding the general solution to the general 
form of a polynomial of some specific degree. 
 
The purpose of this research is thus to find out if all polynomials can be solved by radicals and to 
prove the resultant findings about the solvability of polynomials.  
 

RESULTS 
1. Cubic Functions 
Solving Cubic functions can be done using Cardano’s method, which transforms the general 
cubic equation into a depressed cubic without the ݔଶ term. 
 
The method is as follows. 
 
We begin with the general form of a polynomial of degree three. 
 

ଷݔܽ                                 ൅ ଶݔܾ ൅ ݔܿ ൅ ݀ ൌ 0.                           െ െሺ1ሻ 
 
Since it is easier to work with a polynomial of leading coefficient one, we can divide ܽ out of the 
entire equation to obtain 
 

ଷݔ ൅
ܾ
ܽ

ଶݔ ൅
ܿ
ܽ

ݔ ൅
݀
ܽ

ൌ 0. 

 
Substitute the following equation into (2) 

ݔ ൌ ݕ െ
ܾ

3ܽ
. 

 
The polynomial becomes  

൬ݕ െ
ܾ

3ܽ
൰

ଷ

൅
ܾ
ܽ

൬ݕ െ
ܾ

3ܽ
൰

ଶ

൅
ܿ
ܽ

൬ݕ െ
ܾ

3ܽ
൰ ൅

݀
ܽ

 

ൌ ଷݕ ൅ ݕ ቆ
ܾଶ

3ܽଶ െ
2ܾଶ

3ܽଶ ൅
ܿ
ܽ

ቇ ൅ ቆെ
ܾଷ

27ܽଷ ൅
ܾଷ

9ܽଷ െ
ܾܿ

3ܽଶ ൅
݀
ܽ

ቇ ൌ 0. 

 
Thus we are reduced to the cubic polynomial of the form  
 
ଷݕ                                                                     ൅ ݕ݌ ൅ ݍ ൌ 0.                                                          െ െሺ2ሻ 

 
 
Here  
 
 

݌  ൌ
ܾଶ

3ܽଶ െ
2ܾଶ

3ܽଶ ൅
ܿ
ܽ

, ݍ ൌ െ
ܾଷ

27ܽଷ ൅
ܾଷ

9ܽଷ െ
ܾܿ

3ܽଶ ൅
݀
ܽ

, 

 
 
and observe that  
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                                                ሺݑ ൅ ሻଷݒ െ ݑሺݒݑ3 ൅ ሻݒ െ ሺݑଷ ൅ ଷሻݒ ൌ 0.                                    െ െሺ3ሻ 
 
Equation (2) corresponds to equation (3) since we can let 
 

ሺݑ ൅ ሻݒ ൌ ,ݕ ݒݑ3 ൌ െ݌, ଷݑ ൅ ଷݒ ൌ െݍ. 
 
Thus we can solve equation (3) for ݕ as follows: 
 

ݕ ൌ ௜ݓ

ۉ

ۈ
ඩെۇ

ݍ
2

൅ ඨቀ
ݍ
2

ቁ
ଶ

൅ ቀ
݌
3

ቁ
ଷయ

൅ ඩെ
ݍ
2

െ ඨቀ
ݍ
2

ቁ
ଶ

൅ ቀ
݌
3

ቁ
ଷయ

ی

ۋ
ۊ

, 

 
where ݅ א ሼ1,2,3ሽ and ݓ௜ is one of the 3rd roots of unity. 
 
Thus the general solutions for the equation (4) are  
 

ݔ ൌ െ
ܾ

3ܽ
൅

௜ݓ

3ܽ

ۉ

ۈ
ඩെۇ

ݍ
2

൅ ඨቀ
ݍ
2

ቁ
ଶ

൅ ቀ
݌
3

ቁ
ଷయ

൅ ඩെ
ݍ
2

െ ඨቀ
ݍ
2

ቁ
ଶ

൅ ቀ
݌
3

ቁ
ଷయ

ی

ۋ
ۊ

. 

 
We will consider the Galois group of the irreducible depressed cubic equation.  
 
The Galois group of the splitting field of a general cubic equation is ܵଷ . 
Thus we see that the possible Galois group of any cubic is isomorphic to either ܵଷ or ܣଷ. 
 
Let ݂ሺݔሻ ൌ ଷݔ ൅ ݔ݌ ൅  be an irreducible cubic in the polynomial ring F[x] over a field F of ݍ
characteristic zero (e.g. F = Q, R), with roots ݕଵ, ,ଶݕ  .ଷݕ
 
We have the relations ݕଵ ൅ ଶݕ ൅ ଷݕ ൌ 0, 
 

ଶݕଵݕ ൅ ଷݕଶݕ ൅ ଵݕଷݕ ൌ  ,݌
 

ଷݕଶݕଵݕ ൌ െݍ. 
 
Hence we have the chain of fields ܨ ؿ ଵሻݕሺܨ ك ܭ where ,ܭ ൌ ,ଵݕሺܨ ଶሻݕ ൌ ,ଵݕሺܨ ,ଶݕ  ଷሻ. This isݕ
because if two roots are in the field, the third automatically is. 
 
We know that either ܨሺݕଵሻ ൌ ଵሻݕሺܨ or ,ܭ ൏  .ܭ
 
Case I: ܨሺݕଵሻ ൌ ܭ Thus we know .ܭ ൌ ݅ ௜ሻ for anyݕሺܨ ൌ ሼ1,2,3ሽ, or ሾܭ: ሿܨ ൌ 3. Hence  
ሻܨ/ܭሺ݈ܽܩ ൌ   .ଷܣ
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The composition series of ݈ܽܩሺܨ/ܭሻ is thus ܣଷ ٲ 1.  
 
Case II: ܨሺݕଵሻ ൏   .ܭ
 
We know that ܩ ൌ   .ሻ is a subgroup of ܵଷܨ/ܭሺ݈ܽܩ
 
Since we know that ݂ሺݔሻ  factors over ܭ  , and ܨሺݕଵሻ  does not contain ଶݕ  , consider  ݄ሺݔሻ ൌ
ሺݔ െ ݔଶሻሺݕ െ :ܭଵሻ, hence ሾݕሺܨ ሻ is irreducible overݔଷሻ. We know that ݄ሺݕ ሿܨ ൌ 6. 
 
Since ሾܭ: ሿܨ ൌ 6, ܩ ൌ ܵଷ. ܵଷ has only one degree 3 subgroup, ܣଷ. This implies that there exists a 
field ܮ such that ሾܭ: ሿܮ ൌ |ଷܣ| ൌ 3, and ሾܮ: ሿܨ ൌ  ,is thus obtained by adjoining a square root ܮ .2
that of the discriminant, ܦ, where 
 

ܦ ൌ ෑ ൫ݕ௝ െ ௜൯ݕ
ଶ

ଵஸ௜ழ௝ஸଷ

. 

 
We realise that √ܦ is fixed by any even permutation of the roots , but that ߪሺ√ܦሻ ൌ െ√ܦ for 
any odd permutation ߪ, where ߪ acts naturally on the subscripts in the above expression of D. 
Thus we see that ܦ is fixed by all of ܵସ , so if ܦ is not a square, √ܦ ב :൯ܦ√൫ܨൣ hence ,ܨ ൧ܨ ൌ 2, 

or is a radical extension. Since ݈ܽܩሺܨ/ܭሻ ൌ ܵଷ, one can show that ܮ ൌ  .ሻܦ√ሺܨ 
 
Thus ܭ ൌ ,ଵݕሺܨ ଶሻݕ ൌ ,ܦ√൫ܨ  :ሻܨ/ܭሺ݈ܽܩ ଵ൯, and we have the composition series ofݕ
  

ܵଷ ٲ ଷܣ ٲ 1. 
 
We also realise that this is so because we find that  
 

ቀ
ݍ
2

ቁ
ଶ

൅ ቀ
݌
3

ቁ
ଷ

ൌ ቆെ
ܾଷ

27ܽଷ ൅
ܾଷ

9ܽଷ െ
ܾܿ

3ܽଶ ൅
݀
ܽ

ቇ
ଶ

൅ ቆ
ܾଶ

9ܽଶ െ
2ܾଶ

9ܽଶ ൅
ܿ

3ܽ
ቇ

ଷ

 

                       ൌ െ
1

108
ሺܾଶܿଶ െ 4ܾ݀ଷ െ 4ܽܿଷ ൅ 18ܾܽܿ݀ െ 27݀ଶܽଶሻ 

ൌ െ
1

108
ሺݕଵ െ ଶݕଶሻଶሺݕ െ ଵݕଷሻଶሺݕ െ  .ଷሻଶݕ

 
Thus we see that the adjoining of the square root of the discriminant gives rise to the field L 
which contains the term 

ඨቀ
ݍ
2

ቁ
ଶ

൅ ቀ
݌
3

ቁ
ଷ

. 

 
2. Quartic Functions 
Solving Quartic polynomials can be done using Ferrari’s method, which transforms a quartic 
polynomial into a depressed quartic which has no ݔଷ term. 
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We begin with the general form of a quartic equation. 
 
ସݔ                                                       ൅ ଷݔܽ ൅ ଶݔܾ ൅ ݔܿ ൅ ݀ ൌ 0.                                                െ െሺ4ሻ 
 
Indeed, we can reduce all quartic polynomials to the above monic polynomials by dividing 
throughout by the leading coefficient, and replacing the coefficients of the other terms with 
ܽ, ܾ, ܿ, ݀. 
 
Substitute the following into (5) 
 

ݔ                                                                     ൌ ݕ െ
ܽ
4

                                                                          െ െሺ5ሻ 

to get an equation of the form 
 
ସݕ                                                              ൅ ଶݕ݌ ൅ ݕݍ ൅ ݎ ൌ 0.                                                       െ െሺ6ሻ 
 
We can add 2ݕݖଶ ൅  ଶ to the above equation, to obtainݖ
 

ସݕ ൅ ଶݕݖ2 ൅ ଶݖ ൌ ሺ2ݖ െ ଶݕሻ݌ െ ݕݍ ൅ ሺݖଶ െ  .ሻݎ
 
Since we want the right hand side to be a square as well, we should let the discriminant of the 
quadratic on the RHS be 0. Namely, we assume that 
 

ଶݍ                                                      െ 4ሺݖଶ െ ݖሻሺ2ݎ െ ሻ݌ ൌ 0.                                                  െ– ሺ7ሻ 
 
Rearranging the terms we get a cubic in ݖ, 
 
ଷݖ8                                          െ ଶݖ݌4 െ ݖݎ8 ൅ ݌ݎ4 െ ଶݍ ൌ 0.                                         --- (8) 
 
We can thus find the root ݖ of this equation, and solve for  by substituting that value into (6) to 
get a quadratic in ݕଶ 
 
Solving the resultant quadratic in  ݕଶ gives the roots of the depressed quartic, from which we can 
derive . 
 
Thus we get the solutions for the quartic equation (4). One root of (8) is fixed in this formula. 
 

ݔ ൌ
1
2

ඥ2ݖ െ ݌ േ ඨ
1
2

ݖ െ
1
4

݌ േ ඥݖଶ െ ݎ െ
ܽ
4

. 

 
The Galois theoretic derivation of the formula is as follows. 
 
Solving for the roots of a quartic involves the solving of the cubic equation (8) in ݖ: 
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ଷݔ8 െ ଶݖ݌4 െ ݖݎ8 ൅ ݌ݎ4 െ ଶݍ ൌ 0. 
 
We know that for a ݈ܾ݃݁݊݁݁݅ܿݑ݀݁ݎݎ݅ ݈ܽݎ  quartic equation  ݂ in ܨሾݔሿ  the Galois group ܩ ൌ
  .ሻ  is ܵସܨ/ܧሺ݈ܽܩ
 
ܩ  ൌ ܵସ has the composition series: 
 

1 ൏ ٱ ߪ ൐ٱ ܸ ٱ ସܣ ٱ ܵସ, 
  
where ܸ is the Klein 4-group. ߪ is any of the 3 order 2 involutions in ܸ . 
  
The corresponding field extension is: 
 

ܧ ـ ఙܧ ـ ௏ܧ ـ ஺ర ܧ
ـ  .ܨ

 
The part  ܧ஺ర

ـ ସܣ corresponding to) ܨ ٱ ܵସ) is of degree two, and corresponds to the degree 
two extension in solving ݖ.  The element ݖ is solved through the taking of a degree two extension 
i.e., square root of the discriminant, and followed by a cubic root (as stated above for cubic 
equations). We note that ݈ܽܩሺܨ/ܧሻ ൌ ܵସ/ܸ , which is isomorphic to ܵଷ . Indeed, ܵସ ൌ ܸܵଷ ൌ
݄݃ |݃ in ܸ, ݄ in ܵଷሽ. The group ܸ acts on  ܧ௩ trivially and hence ܵସ/ܸ (identified with ܵଷ) acts on  
 .ܨ ௩ which fixes exactly elements inܧ 
 
The extension ܧఙ ـ ݖ௩  is of degree 2, and corresponds to the taking of either ඥ2ܧ െ ݌  or 

ଶݖ√ െ ݖThese are equivalent since from equation  we have that ሺ2 .ݎ െ ଶݖሻሺ݌ െ ሻݎ ൌ ௤మ

ସ
, 

which is a square. 
 
There are 3 possible groups ൏ ߪ ൐, which correspond to the adjoining of the 3 possible values of 

 as solutions of the equation (8). 
 
The last radical extension (ـ ܧ   ఙሻ corresponds to the taking ofܧ 
 

ඨെ
1
2

ݖ െ
1
4

݌ ൅ ඥݖଶ െ or ඨെ  ݎ
1
2

ݖ െ
1
4

݌ െ ඥݖଶ െ  .  ݎ

 
Adjoining either of these two to ܧఙ will give rise to the same field ܧ since the degree ሾܧ :ܧఙሿ  ൌ
 2. 
 
3. Quintic Functions 
Generally, quintic polynomials are insolvable by radicals. This proof makes use of group theory 
and Galois Theory, and is unlike Abel’s 1819 paper. We will use the result below: 
 
Theorem 1. An irreducible polynomial ݂ሺݔሻ defined over a field ܨ of characteristic zero (e.g. 
ܨ ൌ ܳ, ܴ) is solvable by radicals if and only if the Galois group ݈ܽܩሺܨ/ܧሻ of the splitting field 
 is a solvable group.[1],[2] ݖ of the polynomial ܧ
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Let ݕଵ, … ହ be independent transcendental elements over the field Էݕ  of rational numbers. 
Consider 
 

݂ሺݔሻ ൌ ሺݔ െ ଵሻݕ … ሺݔ െ ହሻݕ ൌ ହݔ െ ସݔଵݏ ൅ ଷݔଶݏ െ ଶݔଷݏ ൅ ݔସݏ െ  .ହݏ
 
By Vieta’s formula, we know that  
 
ଵݏ ൌ ଵݕ ൅ ڮ ൅ ,ହݕ ଶݏ ൌ ଶݕଵݕ ൅ ڮ ൅ ,ହݕସݕ … , ହݏ ൌ  ,ହݕସݕଷݕଶݕଵݕ
 
 are elementary symmetrical functions in ݕ௜ . Thus ݂ሺݔሻ is a polynomial defined over the field 
ܨ ൌ ܳሺݏଵ, … ,    .ሻ is not solvable by taking radicalsݔହሻ .We now show that this ݂ሺݏ
 
Set ܧ ൌ ܳሺݕଵ, … ,   .as its splitting field ܧ ሿ hasݔሾܨ ሻ inݔହሻ. Then the polynomial ݂ሺݕ
Suppose on the contrary that ܩ ൌ  ሻ of degreeݔሻ is solvable for the above polynomial ݂ሺܨ/ܧሺ݈ܽܩ
five. 
 
Consider the composition series of subgroups from ܩ ൌ ௥ܩ ଴  toܩ ൌ 1: 
 

ܩ ൌ ଴ܩ ٲ ଵܩ ٲ ڮ ٲ ௥ିଵܩ ٲ  .௥ܩ
 
This corresponds to the following extension of fields: 
 

ܨ ൌ ଴ܨ ؿ ଵܨ ؿ ڮ ؿ ௥ିଵܨ ؿ  .௥ܨ
 
Each extension is cyclic and Galois. 
 
We know that ܵହ ൌ ,ሻ the commutator group ሾܵହܨ/ܧሺ݈ܽܩ ܵହሿ ൌ  ହ has no nontrivialܣ ହ and thatܣ
normal subgroup. Indeed, the composition series of ܵହ  is as follows: 
 

ܵହ ٲ ହܣ ٲ 1. 
 
Thus ݈ܽܩሺܨ/ܧሻ is not solvable. Hence ݂ሺݔሻ is not solvable by radicals by Theorem 1.  
 
Special Solvable Cases 
 
By the proof above, we know that it is impossible to solve all quintics by radicals, and thus no 
general solution can be found. However, there are many cases of quintics which are solvable by 
radicals. A case will be discussed below. 
 
a. Cyclotomic Polynomials 
 
Consider the cyclotomic polynomial  ݔହ െ 1 ൌ 0. 
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By Theorem 1, we know that a polynomial is solvable if and only if its Galois group is solvable. 
This equation is solvable in radicals as its splitting field is generated by the 5th roots of unity, so 
the resultant Galois group is also solvable. 
 
The roots of this equation are simply the 5th roots of unity,  
 

௞ݓ ൌ ݁
ଶగ௜௞

ହ , 
 
where  ݇ א ሼ0,1,2,3,4ሽ. 
 
These roots of unity can be expressed by radicals. 
 
Similarly, all equations of the formݔହ െ ݉ ൌ 0, where ݉ is a constant, are solvable by radicals, 
since the roots are simply 
 

௞ݓ ൌ ݁
ଶగ௜௞

ହ √݉ఱ  . 
 
Polynomials and the solving of its roots have practical and widespread use in computer 
applications, the foremost of which is cryptography, or the encryption of sensitive data for 
sending over the internet. This is especially useful in banking transactions where secrecy and 
privacy of the individual customer is paramount. Polynomials can be used in public key 
encryption, as a means to encrypt information. The decryption of a polynomial is hence directly 
linked to the solvability of this polynomial. Only those with the required decryption key will get 
to know the real message behind the encrypted message. Being able to solve for a polynomials 
roots will enable one to create a decryption key, and hence solvability or the lack thereof of such 
a polynomial, is important in choosing a polynomial as a possible encryption key so that it 
cannot be hacked. 
 

DISCUSSION 
 
In general, polynomials of degree 5 or greater than 5 cannot be solved using radicals. 
Polynomials of degree 0,1,2,3 and 4 all can be solved generally by radicals, as there is the 
quadratic formula for polynomials of degree 2, Cardano’s method for polynomials of degree 3, 
and Ferrari’s method for polynomials of degree 4. 
 
While polynomials of degree five or larger cannot be solved by radicals generally, there are 
many more specific types of polynomials ݂ሺݔሻ that can be solved by radicals.  
 
Polynomials of the form ݔହ െ ݉ for some real number ݉ are solvable, as the Galois group of its 
splitting field is solvable. 
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