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DIMENSION OF KERNELS OF LINEAR OPERATORST

By RoNG-QING J1A, SHERMAN RIEMENSCHNEIDER, and ZUOWEI SHEN

1. Introduction. The basic question addressed in this paper is one
of expressing the dimension of the intersection of kernels of linear op-
erators that arise naturally in multivariate approximation theory in terms
of the more easily computable dimensions of some basic building blocks.
The theory, as it has progressed, connects concepts arising in multivar-
iate approximation theory with ideas from general algebra and algebraic
geometry. We shall first describe the present setting for the problem
and then describe its development and our motivation from the point
of view of approximation theory.

Throughout this paper, G will denote a semigroup of commuting
linear operators on a linear space S over a field k with the group op-
eration taken as composition of linear operators. An important property
for our study is the s-dimensional additivity of such a semigroup G. This
concept appears, for example, in algebraic geometry as the additivity
of the intersection index (see e.g. the book of Shafarevich [19, p. 185]
and Section 3 below) and can be described as follows: From the two
subsets of linear operators

F1={ll,...,lj,...,ls} and F2={11,...,ij,...,ls}

in G, a new subset F is formed by
F:= {11,...,21'1]' ...,ls}.
We say that G has s-dimensional additivity if for arbitrary F;, F, and F
as above:
dim K(F) = dim K(F;) + dim K(F,),
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158 RONG-QING JIA, SHERMAN RIEMENSCHNEIDER, AND ZUOWEI SHEN

where, for any subset F* of s operators from G, K(F*) is the intersection
of kernel spaces

1.1) K(F*) := (l ker I, kerl:={fE€ S:If =0}

The kernels of interest to us arise when an external structure is
imposed on a subset of G through the structure of a finite index set.
Let X be an index set with cardinality | X| < . A matroid structure is
imposed on X by a collection of “independent” subsets, J, satisfying:
i) The empty set is in J. ii) If V € T, then any subset of V is in J. iii)
For arbitrary U, V € J with |U| = |V| + 1, there exists x € U\V such
that V U {x} € J. (See, for example, the book of Welsh [22] for a
detailed account of matroids.) Of course, there can be many matroid
structures on a given X, but we shall simply say the matroid X to refer
to X with some fixed matroid structure and only specify the structure
if it has some importance. One exception is that for an arbitrasy subset
Y of a matroid X, we will always assume that the submatroid structure
is imposed.

For any matroid there is a rank function, p : 2* — Z., defined on
subsets V C X by

p(V) := max{|Y|: YC V,Y € J}

A maximal independent subset of X is called a base for the matroid X.
Every base of X has the same cardinality, p(X), which is called the rank
of X. We deal mainly with matroids of rank s (this number is connected
with the s-dimensional additivity of G).

The collection B(X) of all bases for the matroid X is described as

B(X) := {BC X:|B| = p(B) = p(X)}.

For a subcollection B C B(X), we define (X, BI) to be all the
subsets of X which intersect all bases in B; i.e.,

X, BF):={VCX:VNB#0VYBeE BN}

We are now in a position to describe the kernel spaces of interest:
For a matroid X with rank p(X) = s, and the commutative semigroup
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G of linear operators on S, we take Ly to be the image of some mapping
X — G that associates a linear operator /., € G to each x € X. For any
subset V C X, we set

LV= {lx:xE V},
and define

lv = H lx,

xEV

to be the composition (in any order) of the operators from Ly.
The main problem addressed in this paper is to describe the di-
mension of the kernel spaces

(1.2)  K(Lx, BX) := {f € S: I,f = 0, YV € A(X, BX)},

in terms of the dimensions of the kernels K(L;) given in (1.1) for the
s linear operators L, B € B{®.

How did such a question arise from approximation theory and why
would its answer be interesting? Kernels of the type (1.2) appear in
de Boor and Hollig’s paper [3], the first one dealing extensively with
the properties of box splines. Without going into details, for a given set
of nonzero vectors X that span R’ (with the natural matroid structure
on X), the box spline is a compactly supported piecewise polynomial
function with the polynomial pieces from D(X) which is the kernel in
(1.2) with B¢ = RB(X) and the operators [, = D,, the directional
derivative in the direction of x, x € X. The dimension formula

(1.3) dim D(X) = |B(X)|

was first shown by Dahmen and Micchelli [9]. Its importance is derived
from the fact that when the directions X are in Z’, the polynomials in
the linear space spanned by the integer translates of the box spline are
precisely the functions in D(X), and this plays an essential role in both
de Boor and Hollig’s and Dahmen and Micchelli’s studies of the alge-
braic and approximation properties of such spaces ([3], & [8]-[10]).
There is a natural relation between the directional derivatives D,
and the difference operators V, : f — f — f(- — x), x € R°. The



160 RONG-QING JIA, SHERMAN RIEMENSCHNEIDER, AND ZUOWEI SHEN

corresponding kernel space V(X) given as in (1.2) with B = RB(X)
and [, = V,, and the formula ([10]) for its dimension

(1.4) dim V(X) = X |det B|,

BEMB(X)

were also crucial in Dahmen and Micchelli’s studies of the algebraic
properties of box splines.

As a natural extension of the box spline, Ron [18] introduced the
exponential box splines for a set of directions X and complex numbers
¢x = {¢:}rex. The kernels D (X) and V. (X) defined as in (1.2) for the
differential operators D, . := D, — c,, x € X, and the difference op-
erators V.. : f — f — exp(c.)f(- — x), x € X, played the same type
of essential role in the studies of exponential box splines by Dahmen
and Micchelli [4, 5], Ron [18], and Ben-Artzi and Ron [1]. In particular,
the dimension formulas for D.(X) and V. (X) are the same as given in
(1.3) and (1.4) respectively. This (nontrivial) extension precipitated two
separate but related lines of study into the deeper algebraic ideas behind
the box spline theory.

Dahmen and Micchelli realized in their investigations of exponential
box splines [12] that the problem could be formulated for (X)) in terms
of matroids and linear operators. Their results were announced previ-
ously in [11]. When | X| = s, the sums in (1.3) and (1.4) reduce to one
summand and the definitions (1.1) and (1.2) agree. Therefore, both
(1.3) and (1.4) are expressible as

(1.5) dim K(Ly, B(X)) = E( dim K(Lj).
BER(X)

Dahmen and Micchelli proved that the inequality

(1.6) dim K(Ly, B(X)) < 3 dim K(Ly)

always holds if X has a matroid structure [12, Theorem 3.1], and gave
a sufficient condition [12, Theorem 3.3] for equality based on the solv-
ability of certain systems of operator equations [12, Theorem 3.2].

In another paper [13], Dahmen and Micchelli investigated the di-
mensions of certain spline spaces and the relationship of these questions
to syzygies and the kernels of systems of differential equations. In par-
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ticular, they proved that if the linear operators in G are the partial
differential operators given by homogeneous polynomials on R®, then
(1.5) holds for B = B(X) in some very special cases and they con-
jectured that it would always hold. This conjecture initiated Shen’s study
that concluded with the following

(1.7) TueoreM. [20, Theorem 2.4] The semigroup G has s-dimen-
sional additivity if and only if for any matroid X of rank p(X) = s, and
any Ly C G associated with X,

(1.8) dim K(Lx, B(X)) = 2( dim K(Lp).

Along other lines, de Boor, Dyn, and Ron ([14], [15], [4]-[6], and
[2]) were taking advantage of polynomial ideals, their varieties and
codimensions to gain new insights and results for various problems in
multivariate interpolation, approximation and spline theory. They also
encountered dimension problems of the type considered here, usually
in the context of partial differential operators given by polynomials, but
sometimes free from any matroid structure. For example, in the case
when G consists of differential operators given by affine polynomials,
de Boor and Ron [5, Theorem 6.6] give the lower bound

dim K(Ly, B) = | B

for arbitrary B¢ C %B(X), in contrast to the upper bound in (1.6). They
also prove that equality holds for these special operators if B¢ is an
order closed subset of B(X) [5, Theorem 6.9].

The goal of this paper is to partially unite these two lines of study
by extending the above theorem of Shen. In Section 2, we extend Shen’s
theorem to an order closed subset B{*) of B(X); i.e., de Boor and Ron’s
theorem is extended to arbitrary linear operators from a semigroup G
with s-dimensional additivity. It should be noted that although we have
an underlying matroid structure, it is only the total order on X that
matters (in fact, only the elements of X appearing in some B € ®{")
since the trivial matroid structure given by the independent sets being
all subsets of cardinality < s can be used. In Section 3, we observe the
s-dimensional additivity for partial differential operators given by poly-
nomials while in Section 4 the s-dimensional additivity is observed for
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difference operators given by polynomials. In both cases we give some
examples where simple explicit formulas exist for dim K(Lg).

2. Dimension formula for an order closed set. We wish to deter-
mine some conditions on B under which the dimension formula in
Theorem 1.7 will still hold. For a matroid X, we say that a set of linear
operators Ly C G is well associated with (X, B), if dim K(L;) < o
for any B € B{. If, for any Ly C G, the formula

dim K(Lx, B%) = = dim K(Ls
BERD

holds, then G is said to be excellently associated with (X, B{).

Let us recall that B(X) is the collection of all bases for the matroid
X. For a subcollection B C B(X), we define A(X, B{X) to be all the
minimal subsets of X which intersect all bases in B; i.e.,

AX, BF) :={VCX:VNB#0VBE BX and
Vy € V 3 B € B such that (V\{y}) N B = 0}
We also set

MX, BF) 1= {X\V : V € (X, BF)}.

Equivalently, M(X, B(*) is all the maximal subsets of X such that X\M
intersect all B € B¢, or, the maximal subsets of X that do not contain
any elements of B{". When B = B(X), M(X, B) =: #(X) is the
set of “hyperplanes” for the matroid structure.

Note that we have changed the definition of (X, ®B{"), but this
does not affect the definition of the space K(Lyx, ).

In this section we are concerned with an order closed subset of
9%B(X) as introduced by de Boor and Ron [5]. Suppose that a total order
on X is given. This order induces a partial order on B(X);

B=(,...,x)=B=(f,...,5)©x<%, |

Il
—
M
-
[}
-
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where the elements of each sequence are arranged in an increasing order.
We say that B C %B(X) is an order closed subset of B(X), if

B, e B®, B,e®BX), and B, = B,> B, € BX.

Our aim in this section is to extend Shen’s Theorem 1.7 to an order
closed subset of B(X). We shall prove that if B is an order closed
subset of B(X), and G is a semigroup of linear operators with s-di-
mensional additivity, then G is excellently associated with (X, B{).
Our proof is based on the following theorem, which gives a solvability
criterion on a system of operator equations.

(2.1) THEOREM. Let X U { be a matroid with rank p(X U () = s
and let BFY C B(X U ). Suppose that Ly,, C G and M €
M(X, BX) are given and satisfy the following conditions:

i) Ly and Lyy, are well associated to (X, BY) and
(M U g, BMD) respectively;
i) G is excellently associated to (M U {, BMY);
iii) ‘For any B € BMY and y € X\M, (B\{{}) U {y} € BX.

Then the system

IX\Mf = ¢
If = 0VV € (X, BE){X\M}

2.2)

is solvable for any ¢ € K(Lyy;, BMY).

Proof. To each x € M U { we associate two linear operators I,
and /, as follows:

x

i {ILIX\M’ ifx = c

I, otherwise,

and

] Lo, ifx =¢
o L., otherwise.
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Then we set

Lyo:={l,:x€EMU{
and

ZMU(, ={lL.:xeEMUL.

Both L., and L, are well associated with (M U ¢, B{"9). Thus, for
any VC M U {, we have

- lV’ lfg ¢ V;
lv =
Lewly, ifLEV.

Hence, Ilynn maps K(Lyo, BMU9) into K(Luy, BMYY) with
K(Lyyg, BMYY) as its kernel. Moreover, since G has s-dimensional ad-
ditivity and is excellently associated to M U {, we have

dim K(Lyu, BM9) = = dim K(Lg)

BeRMD

> dim K(Ls) + X dim K(Lj)
BeR(MUD

Bean

dim K(Lyog, BMU9) + dim K(Lyo,, BMOY).
Hence Iy is surjective, since the dimension of K(l:Mu;, BMUDY s
finite.

Now that the image of the mapping lny is K(Lpyug, BMY),

for any given ¢ € K(Lyu, BMP), we can find a function
f € K(Luur, BEY) such that

lX\Mf = ¢.
We claim that this f also satisfies

If =0 YW € d(X, BEONX\M).
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Let W € A(X, BY)\{X\M}. Then there is y € X\M, such that y ¢
W. Otherwise, W = X\M by the minimal property of W. We want to
show that W intersects any base in B{*"". For this purpose, we pick
B € ®B{"Y. Then { € B, and B := (B\{{}) U {y} € B by iii). There-
fore,

WNB=WwWn(BJY) =WnNB#0.

This shows that W intersects any base in BM“Y. Therefore, by
the very definition of (M U {, BMY), W must contain some
VEAMU L, BMY). Since { ¢ W, we have { ¢ V, hence I, = I,. Now,
f € K(Lyug, BMY) and V € sd(M U ¢, BMUD) imply

If = Iyf = 0.
It follows that
wf = l.5lvf = 0.
Therefore, for the given ¢, the system (2.2) is solvable. O

We will see that the hypothesis iii) of Theorem 2.1 is satisfied when
R is order closed, but the theorem’s proof did not depend on this
property. Next we use the last theorem to prove the main result of this
section.

(2.3) THEOREM. Let X be a matroid with rank p(X) = s and
BY) be an order closed subset of B(X). If G is a semigroup of linear
operators on S with s-dimensional additivity, then, for arbitrary Ly C G,

dim K(Lx, B) = éw dim K(Lg).
€

Proof. If Lyis not well associated with (X, B{*), then the equality
holds simply because there exists a B € B{*) such that dim K(Ls) = o
and K(L3) C K(Lx, B).

For the case that Ly is well associated with (X, B{*), we will prove
the equality by induction on | X|. When p(X) = |X| = s, the theorem
is obviously true. Suppose now that the theorem holds for all X with s
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= |X| = n and p(X) = 5. We want to establish it for (Y, B{") with | Y]
= n + 1, where B is an order closed subset of B(Y) and p(Y) = s.
Let

{:=sup{y € Y:p(Y\{y}) = s}

We write X for Y\(. Then Y = X U (.
Let & be the mapping given by

QPf = (lX\Mf)MeM(X‘QSﬁX))’ f € K(Lxug, %SXUZ'))-

Since the mapping Iy, maps K(Lxu, BFYY) to K(Lyu, B{M°Y), the
mapping P maps K(Lxy;, B¥*°Y) to the Cartesian product

I K(Lwyuy, BMD).

MeM(X.BX)

Note that K(Lyu;, BMUWY) = 0 if BMUO = 0.
Observe that ker(®?) = K(Lx, Bi*’). Therefore,

(2.4) dim K(Lxy;, BFY)

< dim K(Lx, B%) + = dim K(Lpyu, BMW9).

MeM(X.B)

Equality will hold in (2.4) if the mapping % is surjective. Before
showing this, we pick out the nontrivial components in the image of %:
We claim

M E M(X, BF) and BMD = 0> M € H(X).

For this purpose, we shall show p(M) < s. Suppose to the contrary that
p(M) = s. Since BMYY # 0, there exists a base B € BMY; it follows
that { € B and p(B\{) = s — 1. But p(M) = s; hence there exists some
y € M such that p((B\{) U y) = s. By the very definition of {, we have
y < {. Therefore, B, := (B\{) U y € B¥“, because B¥*“? is order
closed. Thus, M would contain a base B; in B{¥. This contradicts the
choice of M. Hence, p(M) < s, so M C H for some H € #(X). But
(X\H) N B # 0, for any B € B(X); it follows that H = M by the
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maximality of M. In particular, this implies that the following union is
a disjoint union:

%SXUQ = %SX) U (UMGM(X‘%YY)) %gMUD)-

This fact will be used in (2.6) below.

The mapping & is surjective if and- only if for each
M € M(X, BX)) with BMUD 7 0, the system (2.2) is solvable for any
¢ € K(Lmug, BMU9). Thus, it suffices to prove that Theorem 2.1 can
be applied here. Condition i) of Theorem 2.1 holds since we have already
restricted ourselves to the well associated case. Condition ii) holds by
the induction hypothesis since |M U {| = | X|. Condition iii) holds be-
cause of the following reason. Suppose that BMYY # 0. Let B €
RBMUY and y € X\M. Note that B{MY # 0 implies p(M U {) = s. Thus,
if y € X\M, then p(X U {\y) = p(M U {) = s. Hence, by the choice
of {, we have y < {. Since B{*"? is order closed, for any B € R{M9
and y € X\M, we have B := (B\{) U y € B. Therefore, Theorem
2.1 can be applied and equality holds in (2.4):

(2.5) dim K(Lyy, BEW)

= dim K(Lx, %) + = dim K(Lyu, BM).

MeEMX.BX)

Finally, applying the induction hypothesis to X and to each
MU {, M € M(X, BY), we obtain

2.6) dim K(Lx, B®) + = dim K(Luuy, BMW9)

MeM(X.BX)

S dim K(Lg) + 2 > dim K(Ls)

BeRX) MEMX.BY) BeERMUD

Il

> dim K(Ls).

BeBXUD

Substituting this into (2.5) gives the desired result:

dim K(Lyug, BEW9) = = dim K(Ls). O

BeaFV)
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It should be remarked that the proof in [20, Theorem 2.4] shows
that the s-dimensional additivity of G is a necessary condition for Theo-
rem 2.3 to hold for arbitrary matroids of rank s.

3. Application to constant coefficient differential operators. The
first part of this section consists of background material from algebraic
geometry that is essentially known but not well known to our intended
audience. It is meant to give a concise account of the material that is
required for our purposes with appropriate references for the details.

Let k be an algebraically closed field, and &° the s-dimensional affine
space over k. Denote the ring of polynomials in s indeterminates over
the field k by k[Z] = k[Z,, . . . , Z,]. The ideal generated by p,, . . . ,
Pm € k[Z] will be denoted by (pi, . . ., p.). The codimension of an
ideal 1, denoted by codim(J), is the dimension of the quotient linear
space k[Z]/I over k.

For a multi-index o € N’, the formal differential operator D* on
k[Z] is defined by

B! —a
®-oZ "

Dz .=
Here we make the convention that Z*~* = 0, if B, < , for some j. For
a polynomial p(Z) = X, a.Z*, the corresponding differential operator
p(D) is defined by p(D) := =, a,D".
An ideal I of k[Z] determines its variety

Var(I) :={a € k' : p(a) = 0Vp € I}.

Such a variety is a finite irredundant union of irreducible varieties (e.g.,
see [16, p. 122]). Suppose that 6 = (0, . . . , 0,) is an isolated zero of
I; that is, {6} is one of the irreducible components of Var(I). Let

I= mI]
j=1

be a reduced primary decomposition, where I; is P-primary for j = 1,
., n, and the prime ideals P, ..., P, are all different. To the
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component {6} of Var(I) there corresponds one prime ideal, say P,
such that P, = (Z, — 01, . .., Z;, — 6,). Then we have

0 ¢ Var(P,) = Var(l)), j=2,...,n,

for otherwise {6} would not be a component of Var (7). In what follows
we write I, for I,.
The set

Sy ;= {g € k[Z] : g(0) # 0}

is a multiplicative set of k[Z] =: R. Let O, := S5 'R be the quotient ring
of R by S, (the localization of R at S,); i.e.,

0o = {flg : f, 8 € k[Z], g(6) # O}.
Thus, O, is the local ring of the point 6 (e.g. see [19, Chapter 2]). If 1
is an ideal of R, then S, 'I is an ideal of 0.
Lemma (3.1). So'1 = Si'LL.

Proof. Since 8 ¢ Var(l) for j > 1, we can find a polynomial f,
€ k[Z] such that f, vanishes on Var(l)) but f,(0) # 0. By Hilbert’s
Nullstellensatz, fi* € I, for some positive integer m. Thus, we have

fresSenl,.
It follows that
1€ 8 i=2,...,n
This gives
Se'l = Ny (Sa'L) = Sq'l,,
as desired. 0l
Let I be an ideal of k[Z,, . . . , Z,]. If 0 is an isolated zero of I, we

define the intersection index of 7 at 0 as follows:

indy(I) := dim (Cy/(Sq '])).
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If 0 is an isolated zero of I, then we also can talk about the mul-
tiplicity of I at 6. Let

Py :={p € k[Z] : p(D)f(8) = 0, Vf € I}.

The space P, is finite dimensional and is called the multiplicity space
of I at 6. The dimension of P;, is called the multiplicity of / at . It is
known that (e.g. see [5, (3.12) Proposition])

The following theorem shows that the multiplicity of I at 6 is just the

intersection index of I at 0.

THEOREM (3.2). Let I be an ideal of k|Z,, . .., Z,). If 0 is an
isolated zero of 1, then

dim (C¢/(Ss '1)) = dim P,,.

Proof. For g € 0,, the residue class of g in 0,/(Ss 'I) will be denoted
by g. Consider the following bilinear function between P;, and
04/(Ss 'I):

(p, 8 := p(D)g().

This is well defined on 0y/(S;'I), because for any p € P;, and
f € Si'I, p(D)f(6) = 0. We want to show that the bilinear function is
actually a scalar product. To this end, suppose that (p, g) = O forall g
€ 04/(Sq'I). Then for any f € k[Z],

p(D)f(8) = (p, fy = 0.

It follows that p = 0.

On the other hand, suppose that (p, g) = O for all p € P,,. Let g
= flh, with f, h € k[Z] and h(8) # 0. Since P,, is D-invariant, by
Leibnitz’ formula, we have

p(D)f(0) = p(D)(gh)(6) = 0,  Vp € Py,.
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Hence, f € I,. This gives

g = iESe"'Ie = S,
h
ie,g=0.
Since ( , ) is a scalar product between P,, and 0y/(Ss'I), these
two spaces must have the same dimension. O

The following additivity theorem plays an essential role in our study
of kernels of differential and difference operators.

THEOREM (3.3). (Additivity). If 0 is an isolated common zero of
fi, ..., fs, and if f, is the product of two polynomials, f, = fif/,then

inde(f1, Ce ey fx—la fs)
= indo(fy, . . ., foor, £2) + inde(fy, . . ., fiou, £2).

Proof. This theorem can be proved as follows (see [19, Chapter
IV, Section 1.3]). We denote the ring Oy/(S5 '(fi, - . . , fo_1)) by 0, and
the images of f! and f in 0 under the canonical homomorphism by f’
and f”. Then

indo(f1, . - ., foo1, £) = dim(O/(F' ")),
indo(f1, . - - » fo-1, £) = dim (OA(f")),
indo(f1, . . . , foor, £7) = dim (0/(f")).
Since the sequence
0— (fF'f") — OI(f'f) — O/(f) — 0
is exact, we have
dim (0/(f'f")) = dim(0/(f")) + dim ((F")/(F'f")).

It can be shown that f” is not a zero divisor in O (see [19, Chapter IV,
Section 1.3, Lemma 1 and Lemma 2]). Then the homomorphism from
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0 to (f)/(f'f") given by f — ff" + (f'f") is surjective and has (f’) as
its kernel. Hence, dim ((f")/(f'f")) = dim(0/(f")). U

The result above combined with those of Section 2 can be used to
gain information about the kernels of linear partial differential operators
defined on the ring of formal power series in s indeterminates,
kl[Z,, . .., Z]] =: k[[Z]]. We take the commutative semigroup G of
linear operators to be the partial differential operators

Guz(D) := {p(D) :p €EK[Z,, ..., Z]}

defined in the usual way. For polynomials p,, . . . , p., there is a re-
lationship between the dimension of the kernel space,

Kopr.ow(D) := {f € K[[Z]] : p(D)f = 0, ..., pu(D)f = O},
and the cardinality of the variety Var(p,, . . . , p); namely,
dim K, /(D) < ® & |Var(py, . . ., pn)| <,

see [13, Proposition 2.1] and [5, Corollary 3.21]. In fact, [5] gives an
explicit formula

(3.4) dim K,,...,,(D) = codim(p, . . . , pm)

= 2 indo(pl, PR ’pm)

0EVar (py.....py)

These results were proved for C, but hold equally well for any algebra-
ically closed field k (the exponential function is defined by its formal
power series).

As an immediate consequence of Theorem 3.3 and (3.4), we have

CoroLLARY (3.5). If p, = p;pi, then the kernel spaces for the
ideals

I = (pl’ L] 7ps—17 ps), II = (pl, L] ,ps—l’ ps,)’

and 1" = (pl, LI ’ps—h p.’v’),
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satisfy the relation
dim(K«(D)) = dim(K;(D)) + dim(K;(D)).
In particular, Gyz(D) is a semigroup of linear operators with s-dimen-
sional additivity.
For any matroid X and a collection of bases B{*), we can consider

the kernel spaces (1.2) for arbitrary operators, Lx C Gyz(D), associated
with X. By Corollary 3.5 and Theorem 2.3, we have

THEOREM (3.6). If the matroid X has rank p(X) = s and B is
an order closed subset of B(X), then for Ly C Gyz(D),

dim K(Lx, B(") = B %}3{)0 dim K(Ls)-
€

We now give a formula for the intersection index for some special

polynomial ideals. Let (p;, . .., p;) be the ideal generated by the
homogeneous polynomials py, . . . , p; € k[Z,, . . . , Z/]. If zero is the
only common zero of p,, . . ., ps, then the intersection index of p,,
., ps at 0 is just codim(p;, . . . , p;). Moreover,
codim(py, . . ., p;) = 1l deg p.
i=1

When k£ = C, the complex field, Stiller [21] established a formula
for codim(py, . . ., p,), while Dahmen and Micchelli [13] pointed out
that his formula could be written in the above form. However, even for
an algebraically closed field k, this result was known, see [19, p. 200].

This result can be extended a little further. Let f,, . .., f, be
polynomials in k[ Z], which are not necessarily homogeneous. Then each
fi can be written as a sum of its homogeneous components

fl = Eofi.i, n; = deg fh
j=

where f;, is the homogeneous component of degree n; — j of f.
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THeorREM (3.7). If codim(fi, . . . , f;) < », and if zero is the only
common zero of the polynomials f,p, . . ., f.o, then

codim(fy, ..., fs) = lfl deg f.

Proof. Let fi be the homogenization of f; at Z, for each i = 1,
., S,

f(Zo, Z,, ..., Z) = 20 ZifiAZy, . .., Z).
pu

If (a, ai, . . . , a) € kK*'\{0} is a common zero of fi, . . ., j‘s, then
a, # 0; for otherwise, fig, . . ., f,o would have a common zero other
than zero. Since codim(fy, . . . , f,) <, f1, . . . , f, have finitely many
common zeros in P°(k), the s-dimensional projective space over k,
and the sum of the multiplicities of these zeros is II_; deg f: (see

[19, p. 200]). Since any common zero (ay, a1, . . . , a) of fi, ..., f,
has a, # 0, hence all these common zeros are in the affine space k*. We
conclude that codim (fi, . . . , f;) = IIj_; deg f.. O

The following result extends the result of Shen [20], who first con-
firmed the conjecture of Dahmen and Micchelli.

CorOLLARY (3.8). Under the assumption of Theorem 3.6, if the
hypothesis of Theorem 3.7 is satisfied for {ps}res, V B € B, then

dim K(Ly, B%) = 2 II deg p,.

BeRX) beB

Another case in which an explicit formula can be given is discussed
in the following example.

Example (3.9). Consider the semigroup Gp(D) C Gz (D) defined
by products of linear polynomials in k[Z]; i.e.,

Gu(D) := {P(D) p(2) = fll NZ =¢)NEK,

c,ek,j=1,...,m,m=m(p)},
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where N-Z := N(1)Z;, + --- + Ns)Z, for A = (N(1), . . ., \(5)) E K
and Z = (Z,, ..., Z,). Let X be a matroid and Ly C Gn(D) be the
associated operators. For each polynomial

my
pb(Z) = 1_[1 ()\b,j'Z - Cb,j), be X,
j=

there is a corresponding set of elements from k° given by
Ab:= {)\b,,‘:jz 1,. .. ,mb}.

For any B € B(X), we consider Az to be the set of all possible matrices
in k°** with columns indexed by b € B and with the bth column chosen
from A,. Let Qp be the set of all matrices in Ag of rank < s.

CoROLLARY (3.10). If the set Ly C Gu(D) is well associated to the
matroid X, p(X) = s, and B is an order closed subset of B(X), then

dim K(Ly, 3%) = 2 [II degp, — |Qs]].

BERX) beEB

Proof. By Theorem 3.6, we only have to show that

dim K(Lg) = [II degp, — |Qs]], V B€E BX.
beEB

From given B € %B(X) and the associated L, we construct a matroid
Y5 and a corresponding set of operators LyB. The matroid Y5 consists
of the elements b taken deg p, times with the notion of independence
inherited from B. For the operators l:yH, we take any one-to-one cor-
respondence between {y € Y : y = b} and the linear factors of p,.
Thus, a basis W € B(Yj5) corresponds to a selection of linear factors
from p,, b € B, i.e. to a matrix A(W) = [\ jw)lses € As, and the
operators Ly, are just the linear partial differential operators {(\, jw,* D
= Cjom)}- i

With the above construction, K(Ls) = K(Lv,) and

1, if A(W) € Ap\Qy;

dim k(Ly) =
0, if A(W)€E Qs
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Therefore, by Theorem 3.6 once again,

dim K(L;) = dim K(Ly,) = 2 dim K(Lw)
WER(Yp)
O
= II degp, — |Qs].
beB
When k = C, X = {\, ..., \,} CC*" has nonzero columns, and

Ly = {D, — ¢\, A € X}, then Corollary 3.10 contains the result of
de Boor and Ron [5, Theorem 6.9].

4. Application to linear difference operators. Let Z be the set of
integers and s be a positive integer. As before k is an algebraically closed
field. A mapping from Z’ to k is called an s-variate k-sequence, and we
denote the linear space of all s-variate k-sequences by A. We wish to
consider translation operators on A. These can be best described using
the primitive translation operators 7; given by

wf = f(- + ¢, j=1,...,s, for fE€A,
where
e=@,...,1,...,0),
jth

j=1,...,s,are the canonical unit vectors in Z’. For a multiindex o
€ N’°, we define
o

T = T T,

For a polynomial p € k[Z,, . . ., Z], p(Z) = 2 a,Z*, there is a cor-
responding translation operator

p(7) i= 2 aa".
Similarly, for 8 € k*, we define

p(07) 1= 2 a0°.
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If g € k[Z,, . . ., Z]], then the sequence given by B — q(B), B €
Z° will also be simply denoted by ¢q. Similarly, if Q is a subspace of
k[Z,, . . ., Z], then the sequence space {B — ¢q(B) : ¢ € O} will again
be denoted by Q. For any pair of polynomials p, g € k[Z], the notation
p(7)g means the sequence obtained by applying the difference operator
p(7) to the sequence q : B — q(B), B € Z>.

Given an ideal I of k[Z], the kernel space K,(t) of all the difference
operators p(7), p € I, is defined by

K(t):={f€A:p)f =0Vp €I}
We wish to single out some special elements in K,(t). Let

kN0 ={(ar,...,a)E K :a,#0,...,a # 0}

For any 6 € (k\{0})’, we denote by 6 ’ the sequence given by B — 6°,
B € Z°. It follows from the definition of K,(t) that

0 ) € Ki(1) & 6 € Var(]).

THEOREM (4.1). The dimension of K(t) is finite if and only
if the set Var(I) N (k\{0})° is finite. Moreover, in this case, to each
0 € Var(l) N (k\{0}), there corresponds a translation invariant space
Q1.6 of polynomials such that

K[(T) = @ 9( )Q,‘g.

6 Var ()N (k\{0})*
Proof. When k = C, the proof of this theorem can be found from
[17], [7], and [6]. Their proofs can be easily carried over for the case

when k is an algebraically closed field. Let us find the spaces Q,, ex-
plicitly. Observe that for « € N* and g € A, we have

(0 ’q) = 6° (6°1°9).
It follows that for any f € I,

f(@)(0 q) = 6 (f(61)q).
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Thus,
0 )g € K{(1) © f(b1)g = 0, Vf € I.
This shows that
4.2) Q1o = {q € K[Z] : f(01)g = 0, Vf € I}. U

Recall that if 6 is an isolated zero of I, then the multiplicity space,
Py, of I at 0 is defined as

Py = {p € k[Z] : p(D)f(6) = 0, Vf € I}.

The following theorem shows that the spaces Q,, and P, have the same
dimension.

THEOREM (4.3). dim(Qe) = dim(Py).

Proof. To prove that dim(Q;,) = dim(P,,), it suffices to establish
a linear isomorphism between the spaces P, and Q,,. For this purpose,
we introduce

(2P := [Z\)> -+ [Z2]> BEN,
with
(Z):= Z(Z, - 1) -+ (Z; - B, + 1).
Let A; be the jth forward difference operator:
Ag:=q(- +¢) — q, q EA.

It is easy to verify that

NP = ol P

Here we make the convention that [ [*7* = 0if §; < o, for some ;.
To each p € k[Z], p(Z) = Z; byZP, we associate q(Z) =
2 b0~ P[Z]°. The mapping o : p — q is a linear automorphism on k[ Z].
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We want to show that o is an isomorphism from P;, to Q;,. For this
purpose, we compute p(D)f(0) and f(67)q as follows. Suppose f(Z) =
3, a,(Z — 0)°. Then

p(D)f(8) = 2 ab.a!,

and

f(61)q(2) = (= aa(ﬁA)“)(% bsd~*[Z]%)

B!
s 3

— ~(B-o)[7]B-«
iaabp(ﬁ T

= 2 aubary(a + ¥)) %[Z]v.

Let g € Qs and p = o7 '(q). Then for any f € I, f(67)g = 0; hence,
2, ab,o! = 0 from the above formula. It follows that p(D)f(68) = 0,
Vf € I;i.e.,p € P;,. Conversely, suppose p € P;o and ¢ = o(p). Then
D'p € P, for any y € N, since P, is D-invariant. We have

Yy = _B’_ B=v = X b MZB
Dp=2bg g 2 = ey 2
Therefore,
0 = (Dp)(D)f(®) = = aa-(l—-g—'g)—!baﬂal = 2 aubaiy(a + ).

This shows that f(81)g = 0 for all f € I; i.e., ¢ € Q,5. We conclude
that o is a linear isomorphism from P,y to Q. O

Suppose now that [ is generated by s polynomials f,, . . . , f; from
k[Z], and that Var () N (k\{0})’ is a finite set. Then dim (K(t)) is finite,
so by Theorem 4.1 and Theorem 4.3, we have

dim (K,(T)) = 2 dim (QI‘O)

8€ Var (I)N(k\{0})*
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= 3 dim(Py)

8E€ Var (N(k\{0})*

= 2 inde(fla cee s f-V)

o€ Var (NN(K\{0})°

THEOREM (4.4). Suppose fi, . .., fo-1, fi, fi € k[Z] and f, =
fifs. For the ideals

I = (fl, ey fs—l, fs), I' = (fl, ce ey fs—l, fs,),
and I' = (fy, . . ., -1, f),

we have the relation
dim (K,(1)) = dim(K;(7)) + dim(K;(1)).

Proof. If one of the dimensions of K,(7) or K(7) is infinite, then
the dimension of K/(7) is also infinite, since K/() contains both K,(7)
and K;(t). Suppose that both K,(7) and K,(t) are finite dimensional.
Then Var(I') N (k\{0})’ and Var(I") N (k\{0})* are finite sets, hence
Var (I) N (k\{0})* is finite as well. Thus, by Theorem 3.3 and the above
results, we obtain

dim (K/(7)) = 06Var§(k\{0))’ indo(f1, - - -, foo1s f)
= 2 (inde(fly R} fs—l, fs,)
8EVarN(k\{0})°
+ inde(fy, - - -, foo1, 1))
= dim(K,(1)) + dim(Kx(7)). O

Again we can combine this theorem with the results in Section 2
to obtain information about the kernels of partial difference equations
on the sequence space A. The semigroup of commutative operators in
this case will be

Guz(t) :={p(r) :p €K[Z,, ..., Z]}

The statement of Theorem 4.4 is simply the s-dimensional additivity of
Guz(7).
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THEOREM (4.5).  The semigroup Gz (v) of difference operators has
s-dimensional additivity. In particular, Theorem 2.3 holds for Gyz(7).

A special case of this theorem has arisen previously in the study of
the algebraic properties of box splines and exponential box splines. In
that case an explicit formula for dim K(L;), B € B¢, can be given.
Our next example extends these explicit formulae to a wider class of
polynomials.

Example (4.6). Let k = C be the field of complex numbers. The
polynomials in C[Z] to be associated with the matroid X in this example
will be taken from the subset

Q:: {H (Z)\’ - u,):)\,ENsand HJEC\{O},] = 1,. .. ,m}.
j=1

The translation operators, Q(7) := {p(1) : p € Q}, correspond to prod-
ucts of difference operators (with p = exp(c))

Avfi=f(- + N = exp()f(*)
=: V)\‘Cf(‘ + )\) = T)\V)\,c‘f.

4.7

The difference operators V, . arise quite naturally in the study of
exponential box splines. Their relation to our situation is quite clear
from (4.7): If p(Z) = Z" — exp(c),l =1,...,s, then

K(Pl ----- P,)(T) = Vc, ..... c:([)\l, cee )\s])
= {f:Vx,,c,f =0,l=1,... ,S}

4.8)

(in the notation of [12]). Whendim V., . ([\i, . . . , \,]) <=, an explicit
formula for the dimension can be given:

4.9 dim V. (N1, ..., N]) = |det]n, ..., A

This was proved in [1, Lemma 5.1] and [12, Lemma 6.1], when \,, . . . ,
\; € Z’ are linearly independent. If \,, . . . , A, are linearly dependent,
on whether p,, . . . , p;have no common zeros in (C\{0})° or (necessarily)
infinitely many common zeros in (C\{0})‘.
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The formula (4.9) is a special case of the following setup: Let X =
A be a matrix of rank s in Z°**" with nonzero columns. To each A € A
we choose a ¢, € C and associate the difference operator given by

Viof = f —exp(c)f(- = M)
For VC A, let V., := Il.ev V.. Then the kernel space
Vo(A) i= {f : Vue,f = 0, VH € H(A)}
has dimension given by

dim(Ve,(A) = 2 )ldet<B>l

(see [1, Theorem 1.1] and [12, Theorem 6.1]). As was done in Example
3.9, we wish to separate the matroid structure from the associated linear
difference operators, using the matroid only as an index set for Ly (as
opposed to using it to give the directions of the translations), and at the
same time for each index we consider a product of difference operators
(induced by the polynomials from Q). In order to state the result, let
Az be the set of all possible matrices with columns indexed by b € B
and with the bth column chosen from the exponents in p,, namely, A,
== 1,. .., m}

COROLLARY (4.10). Let the set Ly C Q(7) be associated with a
matroid X, p(X) = s, and suppose B is an order closed subset of
B(X). If for every B € B, the polynomials {p,},cs have only finitely
many common zeros in (C\{O}), then

dim K(Ly, 3%) = 2 X |det W|.

BEBRX) weAg
Proof. By Theorem 4.5, we only need to show that

dim K(Lp) = WEA |det W|.

This can be done using the techniques in the proof of Corollary 3.10
together with (4.8) and (4.9) above. Ul



KERNELS OF LINEAR OPERATORS 183

Acknowledgment. The authors wish to thank Professors de Boor
and Ron and Professors Dahmen and Micchelli for making preprints of
their work available.

UNIVERSITY OF ALBERTA, EDMONTON, CANADA T6G 2G1

REFERENCES

[1] A. Ben-Artzi and A. Ron, Translates of exponential box splines and their related spaces,
Trans. Amer. Math. Soc., 309 (1988), 683-709.

[2] C. de Boor, N. Dyn and A. Ron, On two polynomial spaces associated with a box spline,

Pacific J. Math., 147 (1991), 249-267.

and K. Hollig, B-splines from parallelepipeds, J. d’Anal. Math., 42 (1982/3), 99-

(3]

115.

[4] — and A. Ron, On multivariate polynomial interpolation, Constr. Approx., 6 (1990),
287-302.

[5] and , On polynomial ideals of finite co-dimension with applications to box

spline theory, J. Math. Anal. and Appl., to appear.

and , Polynomial ideals and multivariate splines, in Multivariate Approxi-
mation Theory V, W. Schempp and K. Zeller eds, Birkhauser Verlag, Basel (1990),
31-40.

[7] W. Dahmen, R. Q. Jia and C. A. Micchelli, On linear dependence relations for integer
translates of compactly supported distributions, Math. Nachr., to appear. )
and C. A. Micchelli, Translates of multivariate splines, Linear Algebra and Appl.,

52/53 (1983), 217-234.
and , On the local linear independence of translates of a box spline, Studia
Math., 82 (1985), 243-263.

6]

(8]
19

[10] and , On the solution of certain systems of partial difference equations and
linear dependence of translates of box splines, Trans. Amer. Math. Soc., 292
(1985), 305-320.

[11] — and , On the theory and application of exponential splines, in Topics in
Multivariate Approximation, C. K. Chui, L. L. Schumaker and F. I. Utreras eds,
Academic Press, Boston (1987), 37-46.

[12] and , On multivariate E-splines, Adv. in Math., 76 (1989), 33-93.

[13] and , Local dimension of piecewise polynomial spaces, syzygies, and so-

lutions of systems of partial differential equations, Math. Nachr., 148 (1990), 117-
136.

[14] N. Dyn and A. Ron, Local approximation by certain spaces of exponential polynomials,
approximation order of exponential box splines and related interpolation prob-
lems, Trans. Amer. Math. Soc., 319 (1990), 381—403.

[15] — and , On multivariate polynomial interpolation, in Algorithms for Approx-
imation 11, J. C. Mason and M. G. Cox eds, Chapman and Hall, London (1990),
177-184.




184 RONG-QING JIA, SHERMAN RIEMENSCHNEIDER, AND ZUOWEI SHEN

[16] K. Kendig, Elementary Algebraic Geometry, Springer-Verlag, New York (1977).

[17] M. Lefranc, Analyse Spectrale sur Z,, C. R. Acad. Sc., 246 (1958), 1951-1953.

[18] A. Ron, Exponential box splines, Constr. Approx., 4 (1988), 357-378.

[19] L. R. Shafarevich, Basic Algebraic Geometry, Springer-Verlag, New York (1974).

[20] Z. Shen, Dimension of certain kernel spaces of linear operators, Proc. Amer. Math. Soc.,
112 (1991), 381-390.

[21] P. Stiller, Vector bundles on complex projective spaces and systems of partial differential
equations 1, Trans. Amer. Math. Soc., 298 (1986), 537-548.

[22] D. J. A. Welsh, Matroid Theory, Academic Press, New York, 1976.



