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ABSTRACT

In this paper, an adaptive neural network controller is presented for smart
materials robots using Singular Perturbation techniques by modeling the
flexible modes and their derivatives as the fast variables and link variables as
slow variables. The neural network (NN) controller is to control the slow
dynamics in order to eliminate the need for the tedious dynamic modeling and
the error prone process in obtaining the regressor matrix. In addition, inverse
dynamic model evaluation is not required and the time-consuming training
process is avoided except for initializing the NNs based on the approximate
~ function values at the initial posture at time 7 = 0. The smart materials bonded
along the links are used to active suppress the residue vibration. Simulation
results have shown that the controller can control the system successfully and
effectively. - o
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ADAPTIVE NEURAL NETWORK CONTROL FOR SMART MATERIALS
ROBOTS USING SINGULAR PERTURBATION TECHNIQUE

lar pérturbation.

I. INTRODUCTION

For high speed positioning applications, light-weight
manipulators are of considerable interest. With the prom-
ised advent of light-weight high strength composite
materials, much attention has been given to modeling and
control of flexible-link manipulators.

The control objective of a flexible robot system 1s
often set as point-to-point position control or regulation, 1n
which the main task is to suppress residue vibrations.
Many approaches have been reported in the literature for
such an objective, such as linear control [1], optimal con-
trol [2], sliding mode control [3], direct strain feedback
control [4], and energy-based control [5]. Although the
point-to-point position control is sufficient for certain
applications, such as the automatic manufacturing as-
sembly, it is more desirable to be able to drive the robot
along a pre-defined trajectory.

The tracking control problem of flexible robots 1s
often solved by converting the problem into two sub-
problems: (i) tracking of the joint motion (the dynamic
behaviour of the system is of minimum phase, if the output
is the joint angular position and the input is the torque at the
joint), and (ii) suppression of the elastic vibrations of the
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flexible links. Such a consideration directly leads to a
Singular Perturbation (SP) treatment [6]. The attractive
feature of this strategy is that the slow control can be
designed based on the well-established control schemes
for rigid body manipulators, such as computed torque
control [7], robust control [8] and adaptive control [9].
However, they rely on either the exact knowledge about
the nonlinear functions, the knowledge of bounds of
uncertainties, or the known nonlinear regression matrix of
robots, which are not easy to obtain in practice. To remove
these drawbacks, the approximation capabilities of neural
networks have been utilized to approximate the nonlinear
characteristics of the systems. The introduction of neural
networks can remove the need for the tedious dynamic
modeling and the error prone process in obtaining the
regression matrix.

As there are an infinite number of degrees of free-
dom to be controlled, yet only a finite number of actuators
are available for control action, there is a limit in further
improving the control performance for conventional flex-
ible link robots. The utilization of smart materials in
control of flexible manipulators is receiving increased
attention recently [10-12]. - -

In this paper, we shall investigate the problem of
adaptive neural network control for a smart materials
flexible robot where a finite number of segmented piezo-

~ electric patches are bonded along links. Singular per-

turbed model of the system is derived which allow the
controller design be split into two separate controller
designs for the two reduced-order subsystems. The adap-
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tive neural network controller for slow dynamics elimi-
nates the need for the tedious dynamic modeling and the
error prone process 1n obtaining the regressor matrix. For
the stabilization of the fast subsystem, active vibration

control using smart materials voltage is considered, which

turns out to be independent of the unknown dynamics of
the system. Since the design of joint torque control for the
fast subsystem depends on the unknown dynamics of the
system, it 1S dropped in the stabilization of the fast system.

The paper 1s organized as follows. In Section 2, the
problems of NN approximation is briefly introduced. The
singular perturbed model of smart materials robots is
presented in Section 3. In Section 4, adaptive NN compos-
ite controller design is presented for the smart materials
robotic system. Numerical simulations are given in Sec-
tion 5 to show the effectiveness of the proposed controller.

II. NEURAL NETWORK STRUCTURE

Neural networks have been widely used in modeling
and control of nonlinear systems because of their good
capabilities of nonlinear function approximation, learning
and fault tolerance. The feasibility of applying NNs to
dynamic system control has been demonstrated in many
studies [13-16]. In control engineering, an NN is usually
used to generate input/output maps using the property that
a multi-layer neural network can approximate any function,
under mild assumptions, with any desired accuracy. There
are two distinct problems in function approximation,
namely, the representation problem of choosing the best
‘approximating function f(y, x) for a given function f(x),
and the learning problem of fmdmg the training method to
obtain the optimal parameters .

The adaptive NN portion of the proposed controller
utilizes controller parameterization techniques coupled
with methods of direct adaptive control. Thus, the archi-
tecture of the NNs has to be chosen such that it can be
linearly parameterized (representation problem) and di-
rect adaptive laws can be used to update the parameters of
the networks on-line (learning problem) [15]. The RBF
network 1s most suitable for this application.

It has been demonstrated in [17] that a linear super-
position of Gaussian RBFs results in an optimal mean
square approximation to an unknown function which is
infinitely differentiable and whose values are specified at
a finite set of points in R”. Further, it has been proven in
[18] that any continuous function, not necessarily infi-
nitely smooth, can be uniformly approximated by a llnear
combination of Gaussian RBFs.

The Gaussian RBF neural network is a particular
network architecture [18] utilizing k numbers of Gaussian
radial basis functions (activation functions), a,(q), with
input variables g € R”", variance 6° € R and the center
vector ¢ = (cy, ..., ¢,)’ € R". Gaussian radial functions are
particularly attractive: they are bounded, strictly positive
and absolutely integrable on R”, and further, they are their

own Fourier transforms. Hence, for any given function,
y = flg), it can be approximated by a Gaus sian RBF neural

network expressed as

‘a(q) + € ' (1)

- dl

a,(q)=exp( )=exp (-4 ‘“")6(‘? SN

where W'=[w;],a=[a, @, ... @]',y € R, and €is the NN

reconstruction error.

I11. SINGULAR PERTURBED SMART
MATERIALS ROBOTS

Smart materials robots retain the benefit of the
flexible link robots and at the same time have additional

~ sensoring and control abilities via the piezoelectric mate-

rials bonded/embedded along the links. Different ap-
proaches such as Assumed Modes Method (AMM) [19]
and Finite Element Method (FEM) [19] can be utilized to
model smart materials robots. )

- Por those robots that are either operated in the
horizontal plane or deployed 1n space, the effect of gravity
is ignored. Using AMM, we can obtain the dynamics of
smart materials robots as follows

M(g)j +C(q,q)g +Kq=Fu (3)
where

1. g=lg, q+1" € R", n=n+ n, with g, € K the vector of
the rigid variables and g, € K7 the vector of the tlexible

- variables; |

2. M(g) € R**" 1s the symmetric pesmve definite inertia

matrix;
3. C(q, g)g € R represents the Coriolis and Centrifugal

forces;

4. K € R"""1s the stiffness matrix of the smart matenals
robot;

5. u=[1 w]' is the vector of generalized torque with T e
K" the vector of joint control torques, w € X" the vector
of the control voltages to the piezoelectric materials
where m is the number of the piezoelectric materials
actuators, and F = diagl[l, F] with I € K" is an
identity matrix and Fre K7*™ is of full row rank.

Note that the model obtained using AMM can guar-
antee that F;1s of full row rank.. On the other hand, it 1s not
necessarily true when FEM 1s used 1in dynamic modeling.

Exploiting the natural time-scale separation between
the faster flexible mode dynamics and the slower desired
rigid mode dynamics, we use singular perturbation theory
to formulate a boundary layer correction that stabilizes
non-minimum phase internal dynamics. Dynamic equa-
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tion (3) can be partitioned as

: -M”‘M’f 1r |+ H, M B (4)

| My My |[97] | He| [Kpqp| |F L
where

H.=C,q4,+C 4;

. Hf=Cﬁqr+Cﬁ‘qf

It should be noted that M -2Cis skew-symmetnc as
in the rigid robot case. Correspondmgly, M, —2C, is also
skew—synunetnc Since inertia matrix M is posmve deﬁmte
its inverse exists and 1s denoted by Das

m=p=|PrPr G
D, Dg o
Whére-_
D, =M, -M MM ®
D, =—M_ M, Mz~M,M, M)~ - (7.)
D,=-M;M,M, M, MzM;)" - (8)
D y=(My—M,M;'M )" I
Solving Equation (4) for §. and (j f yields .
g, —D,H D,fH D,fKﬁrqf+D r+D,fFfw -
_ 0 (10)
qf-—DﬁH DﬁH —;DﬁKﬁqf+Df,T+Dﬁchw
(11)
Introducing an appropriate scale factor £ Such that
Kﬁ=k1? e (12

The following new vaﬂables can be defined as & :=
kKq,. Now define e® := 1/k, equatlons (10) and (1 1)
become |

q-r=_Drr(q;’ €2§)Hr(Qr’ q'r’ 625’ 62&)
_Dﬂ(qfo Eza ‘g)Hf(qiﬂq rsfzé Ezé) o . |

-D(q,€ COE+D (4, 25)T+D¢(qﬂ €’C)F pw
- (13)

'€2§=_D '-ﬁ‘(q_'r& Ezé)H r(q 7 6255 € 2&) .

| —D g, € OHq,.q, €% €Y

~Dy(q, €HE+D (g, €9T+Dyg , EEOF w
(14)

which is a singular perturbed model of the smart materials
robot arm. Notice that all variables on the right hand sides
of (13) and (14) have been scaled by K. Formally, setting
¢ = 0 and solving for & in (14), we obtain

E=D;'@,0[-Ds(d,0H G,§,0,0)+D(d,07]
T

where the overbars are used to indicate that the system 1s
con31dered with € = 0. Substltute (15) 1nto (13) with € =0

ylelds

§,=[D,d,0-D #4,.0D5 @,0Dsd,0]
[-H¢,4,000+71 (16)
Utilizing the expressions (6)-(9) yields

rr( rao) Drj(qraO)Dﬁ“ (Qr’O)Dfr(qJﬂO) Mrr(Q)
| (17)

Thus, equation (16) becomes '
| B L3 .1 |
M, G)+C4,4)4,=F " (18)

which corresponds to the rigid body robot djfnamic model.

Remark 3.1 It can be seen that w does not appear in

" equation (16), it means that the voltage control w has no

influence on the slow subsystem thus, w = 0. It coincides

with the physical function of the voltage control of the

smart materials robots. '
o _

To identify the fast subsystem, define a fast ti
= t/€ and boundary layer correction variables zy =

and 7, = E’g’ rom(14) and the fact that df/d?:t 5
' ”--0 we have
dz, R ' | |
. —= = | | | ' 19
©dr, Ly o (19)
/ '.dzz f €2 -
Dfr(qrs (Z1 +E))H (qraqrr (zl +E) 622)

_. | .dfz:,__
KA _Dﬁ(q,ﬁ,62(z1'+3))Hf(q;a%fz(ﬁlf*g)’ezz)

. “Dﬁf(qraGZ(Zﬁf))(zl+§)+Dﬁ(qr,62(z1+3))f

- +Dgg, EZ(ZI+E))Ffw - _. (26)
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Setting € = 0, and substituting for £ from (15) results in

dz, | | |
d’l'i =<3 (21)
dz

(22)

which 18 a linear system parameterized in the slow variable
g,and T,=7T-7. | |

IV. COMPOSITE CONTROL OF SMART
MATERIALS ROBOTS

As shown 1n the previous section, using the singular
perturbation theory, the full system can be modeled as two
subsystems: linear fast dynamics (21)-(22) and nonlinear
slow dynamics (18). Therefore, a composite control
strategy can be pursued. The main control objective is to
let the rigid motion g,(z) track a desired trajectory g(¢) and
at the same time provide active damping to the flexible
motion of the flexible links.

4.1 Adaptive NN control for slow subsystem
Given a desired trajectory g,(f) € R which is twice

differentiable for the slow part of the flexible link dynamics,
the tracking error is '

e=q,~q4, (@3
- gu=q,+Ae ' (29
r=qg,—q,=¢é+Ae _ - (25)

where A 1s a symmetric positive definite matrix.
Differentiating r(¢) and using (18), the dynamic

equation can be written in term of the new tracking

measure r as |

(q )i"_' Crr(qJ**? q )?’— T +Mrr(q )q p Crr(q r q )Q’u
(26)

Now, consider the general controller of the form
T =A7Irrqu+ér,qu+Kpr+Kssgn () - (27)

where (¥) be the estimate of (*) and the estimation error

given as (¥) = (¥) — (%), K, > 0, K| will be designed later.

Using NN, m,(g,) and c{q, g, ) can be approxi-
mated as

m{q,)=V;jo/q,)+€y ; (28)

c{d,4)=08d.d) e, - (29)

where v, o;; are the weight vectors; 0,4 ,), {(G,. g,) are
(Gaussian RBFs; and €u,» €c, are the NN reconstruction

errors respectively.
Using the notation for “GL” matrix and operator

[15], the function emulators (28)-(29) can be collectively
expressed as |

M @)=I¥Y S AN+E,  (30)
C.d.d)=lAY *ZN+E. (D)

where [{‘P} {A}] and [{A}, {Z}] are the desired parameter
and baS1s function pairs of the NN emulatlon ofM,(q.), C,,
(q,,, q.) respectlvely, and EM, E_ are the collectlve NN

reconstruction errors respectively.
Now, the estimates (%) required in (27) be provided

by NN so that
M, (G)=[{¥} *{A}] (32

C,q,4)=UAY *zn ' - (33)

Substituting (27) and (32)-(33) into (26) yields the closed-
loop system error equatmn

M, 7+C r+K r+K sgn(r)
=[{F} *{A}lg,+[{A) *(Z}1g ,+E (34)
where E=E, G, + Eq,,.

The stability of the closed-loop system (34) are
given by the following theorem.

Theorem 4.1 For a closed-loop system given in (34),
asymptotic stability, 1.e., r — 0 as ¢ — oo, is achieved if X,

>0, K, 2 H E “ and the parameter adaptation laws are given
by '

w,=T;¢{0}G,r, ' (35)
o,=W,®{{}q,r, ' (36)

where I'; and W, are dimensional compatible symmetnc
posmve deﬁmte matrices, then ¥;, &; € L™;and e € L N
L7, ¢ € L., eis continuous and e, é > 0ast— oo,

Proof. See [14].
4.2 Active stabilization of fast subsystem

Though flexible manipulators have advantages in
terms of speed, mobility and reduced energy consumption,
their vibrational characteristics make control more difficulit.
Passive damping of flexible robot arm is not adequate due
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to its additional mass and its inability to adjust to changing
flexibility effects. Hence, some kind of active damping 18
desired to control the vibrations. o

- Examining the fast subsystem (21) and (22), 1t can be
seen that there are two kinds of control inputs 7 and w to
stabilize the fast variables, z. However, the design of 7;1s
difficult because (i) the dynamics of the system are as-
sumed to be unknown, and (11) there 1s no nice property
about D;(q ,, 0) can be used. Fortunately, for the design of
voltage control w, we can fully utilize the positivity of Dy
- (g,, 0) to design a controller which 1s independent of the
unknown dynamics yet stabilizes the fast subsystem. Thus,
we shall investigate the scheme where the slow subsystem
is controlled by 7, and the fast subsystem is controller by
- wonly by choosing 7, =0 in this paper. -
By letting 7,= 0, the fast subsystem reduces to

2
d’'z,
d T

+D(q,,02,=D g, OF ;w (37)

where Dy(q,, 0) is positive definite and Fis an known full

row rank matrix.

Theorem 4.2 For the fést subsystem (37), if F;1s a full row

rank matrix and known, then system (37) 1s uniform ex-
ponential stable if the control is chosen as

w=—ekUF ;£ k>0 (38)

where U is the permutation matrix such that FU = [Ff1 F ﬂ]
with F; € RY*" is non-singular, and the right inverse F;
is, for any dimensionally compatible matrix Fg;, given by

[20]

F:'-F'F.F _
F;= f1 f17 f2 13 - (39)
Ff | |
3

Proof. Consider the Lyapunov function candidate

V= é z1+2szﬁ(q,_,0)zl | | (40)

where z, denotes dz,/dT,.

Since E is considered constant in the boundary layer,
control law (38) can be rewritten in the fast time scale as

=— ekUF 2, =—kUF 7, @
Substituting (41) into the fast subsystem, we have

d’ 2
dt;

+d21
' d T,

+kD (g , O)F [UF ]

+Dﬁ<q,.,0)zl—0 (42

By noting FU = [F, F,] where F; € RY""/is non-
singular, and itsright inverse F ; is given by (39), we know

that FUF; =1.. Thus,__ﬁquation (42) becomes

0)— +Dﬁ(q,,, O)z{1 =0 (43)

Accordingly, along trajectory (43), we have

dv __

dr, TDﬁ‘(q- r O)Z; <0 | | - (44)

Global asymptotic stability of the boundary layer
system (42) then follows from LaSalles’s Theorem. Since
the system is linear and it is uniform in 4, the fast

- subsystem is exponentially uniformly stable for fixed g,.

Under these conditions, the following statements

“can be made based on Tikhonov’s theorem.

If the slow subsystem (18) has a unique solution
defmed on an interval ¢ € [0, #,] and if the fast subsystem
(37) is exponentially uniformly stable in (7, g,), there

‘exists € such that for all e< €

'.§(I)=E(t)+z1('rr)+0(€) - R (45)__
- q;r(t) :q—- r(t) n O(e') o . - | (46)
hold uniformly for ¢ € [0, #].

Remark 4.1 When the system model is known, then both
7.and w can be used to control the fast subsystem. In this
case, the fast subsystem can be written as

dz _ | _
d’i =Az+B u; . 47)

~ where z= [z, z;]" and

- - | ” 1 Y
-D(g,,0) 0 D;(q,0) Dyq,0F,

By examining the equation (47), we can find that
there are two kinds of control inputs 7, and w can be used
to suppress the vibrations, z. |

If w is unavailable or not activated, the fast sub-

system becomes

%:Az+BZTf T L)

{
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~Table 1. System parameters.

names

| v.alues._ I

: symbols (unit)
| pure beam thickness -~ a(m) 0.008
piezoelectric actuator thickness _a(m) | 0.0008
‘piezoelectric sensor .thickness' cz(m) ' 0.0004 '
width of the beam L N b(m) 0.01 - B
| length of the plezoelectrle matenal | (m) 0.01
length of the beam Lm) 1
density of the pure beam _ pl_(kg/m) | 0.1 |
) density of the piezoelectric material ) p.(kg/m’) 1800
- moment inertia of the hub - I(kgm®) - 3.0 | -
tip payload ms(kg) 0.001 |
stiffness of the beam c" (N/mb) 6 x 10°
| stiffness of the piezoelectric material ¢, (N/m?) 8 x 10° l
| permeability of the piezoelectric material Ju33'(H/:m) 1.2x10°
coupling parameter ] _ | hyo(V/m) | Sx10"
| impermittivity B,,(m/F) 4 x 10" ’
where Runge-Kutta program with adaptive-step-size is used to
_ numerically solve the ODEs [15]. The sampling interval
o 0 7 0 is set to be 0.005s.
A= - O,Bz= N (50) |
~Dyq, .) D;(q,0) 51 TraJectory planmng
It 7;1s not used, the fast subsystem becomes The-des1red trajectory for rigid joint angle 1§ €X-~
| ' pressed as a Hermite polynomial of the fifth degree in ¢
dZ _ A, +B.w (51) with continuous bounded position, velocity and bounded
drT, o | acceleration. The general expressron for the desired
position trajectory 1s
where
| S 4
q ,t, td)=q0+(6.0, — 15-——+10‘0 )(qf q, (53)
A= 0_ ! , B, = 0 (52) td td td |
_Dﬁ‘(q?"o) 0 Dﬁ(qrsO)Ff - | § . _
t,represents the time that the desired arm trajectory reaches

Under the assumptions that pairs (A, B,), (A, B;) and
hence (A, B
trajectory g ,(?), different linear control strategies such as
LQR and pole placement methods can be used to design
the fast feedback control law u; = Kz to make the fast
subsystem uniform exponential stable.

V. SIMULATION TESTS

To verifly its effectiveness, numerical simulations
are carried out for a single-link smart materials robot
operating in the horizontal plane. The smart materials
robot 1s simulated using a 4 modes dynamic model (See
Appendix A for detailed derivation). A fourth-order

;) are uniformly stabilizable for any slow

the desired final position g, starting from the desired imtial
position g,. In this paper, g, = 0 0,9,=1.0and ¢,=2.0
seconds.

It has been shown that the simple joint PD control
can stabilize the flexible robots [21], therefore, we will
show the performance of PD controller first. When the
weight adaptatlons (35)- (36) of the neural network con-
troller were not activated, i.e., I'; =0 and W, = 0, the con-
troller (27) becomes the tradltlonal PD controller 1t 18

given by PD:

T ;—-Kpr:KPe' +K,e (54)

The adaptive NN composrte controller for mmulatron 1S
given by ANNC:
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u=[Tl—[?- Meru+ér,qu+Kpr+Kssgn(r)

lw] 1w —ekK &
(55)
- where
M) | ey oAy t?f_,- | Tet8)an,
C.(q,4)| | 1A) -{Z}j Wi e {64,
(56)

For both controllers, the following parameters were
chosen as K, = 10, A =5, while K, was set to zero in order
to test the robustness of the proposed controller. For the
element of M, 50 nodes static networks were chosen, while
200 nodes dynamic networks were chosen for the elements
of €, and u =0, o = 10. The weight adaptations (35)-(36)
of the neural network controller were activated by I; = 0.
5 and W,;=0.1. To test the effectiveness of the proposed
controller, only one pair of piezoelectric actuator and
sensor is used in the simulation. The pair of piezoelectric
patches are located at x = 0.1L of the beam. Hence, only
the first mode’s shape function was used in the controller
design, and kK, = —500 to make kDy(q,, 0) F K, po'sitive
definite.

Figure 1 shows the joint angle trajectory under PD
and ANNC control. It can be seen that PD control gives
worse performance whereas ANNC can make the joint
angle track the desired trajectory quickly and smoothly.
Fig. 2 shows the tip deflections of the smart materials robot
by using PD and ANNC controllers. It can be seen that the
tip deflections under ANNC converge faster than that
under PD control. ANNC can suppress the vibration ef-
fectively, there is no residue vibration at steady state for
ANNC. By utilizing the smart materials, active vibration
damping are applied to the system and better control
performances can be obtained. |

What we care about most is the trajectory of the tip.
The tip is required to track the desired trajectory fast with
as small residual vibration/overshoot as possible to im-
prove positioning accuracy. Under the assumption of
small deflection, the tip pos1t10n of the robot can be
approximated by - |

.pt=L6(t)+w(L,t) ._ .- ._ (5D

where p, is the tip position, w(L, f) is the tip deflection of
the smart materials robot and the angular position should
be represented in radians instead of degrees. The tip
positions under different controllers are depicted in Fig. 3.
It can be seen that the tip position of the ANNC can
converge faster than that of the PD and there 1s no residue
vibration at steady state for ANNC. | |
For completeness and clarity in presentation, other
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Fig. 1. Joint angle trajectory of PD and ANNC.
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Fig. 3. Tip position trajectory of PD and ANNC.

signals 111 the iclosedi—loop are included. Figure 4 shows the
bounded joint control torque signals under both controllers,
while Fig. 5 shows the control voltages in ANNC.

ﬂ..-u-
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Fig. 4. Torque control of PD and ANNC.,
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In fact, we have conducted extensive simulation
studies but only one 1s presented. It is found that, in
general, PD control 1s not sufficient and has residue
vibrations for a long time. In addition, high PD gains
result large overshoots, and low PD gains lead to slow
responses. No matter how to change the gains of PD
control, the residue vibrations cannot be suppressed
effectively, unless to make the response very slow. On the
other hand, the proposed controller can control the system
etfectively.

Ditferent tracking performance can be achieved by
adjusting parameter adaptation gains and other factors,
such as the size of the networks. Because neural networks
are used to approximate system’s functions, the require-
ments on the initial knowledge of the system is greatly
reduced. Though only a single-link smart materials robot
is used to simulate the effectiveness of the proposed
controller, it can be used to control higher degrees—of—
freedom robots as well. | o

V1. CONCLUSION

In this paper, an adaptive neural network controller
for smart materials robots was investigated based on the
singular perturbation technique. An adaptive neural net-
work controller has been developed to control the slow
subsystem. It was shown that if bounded basis function
networks such as Gaussian Radial Basis Function net-
works are used, uniformly stable adaptation and tracking
are achieved. For the fast subsystem, active suppression
of the fast variables has been designed through voltage
control. Better control performance has been obtained by
applying smart materials to the flexible link robot control.
The approach proposed is computationally less expensive
than control designs based on full dynamic model. Nu-
merical simulation has been used to illustrate the perfor-

~ mance of the controller designed using this approach.

APPENDIX

A. Dynamic mbdeling of smart materials robots

The smart materials robot under study is a tlexible
link robot where m segmented piezoelectric materials
patches are bonded along the link, acting as actuators or
sensors for better controller performance. One end of the
beam is rigidly attached to the rotor of a motor in the
horizontal plane, the tip payload is considered as a point
mass. The schematics of the system is shown in Fig. 6 and
the notations are defined in the Nomenclature.

In this paper, we make the standard assumption of

small deflection and that electrical displacement D(x, 7) is

perpendicular to the beam in the plane of OX,Y,. Thus its
z component D, = 0. Moreover, due to the small deflection,
we have D, << D,, therefore, we assume that D, =0. The
magnetic field intensity H is perpendicular to the plane
OX,Y;; consequently, H,= H,= 0. We will only consider
about D, and H, in the followmg discussion.

In order to find the dominant physical properties of

the proposed system and simplify the system model, it is

assumed that the whole beam is very thin, which means
that the deflection w is only a function of x and 1s indepen-
dent of the thickness. Furthermore, by choosing the
polarization directions of the upper and lower layer of
smart materials opposite to each other, D, in the upper
layer is equal to that of the lower layer When the beam is
under small deflections. Therefore, no different notation
is used here. ' '

For the quantities defined in the Nomenclature, we
have the following fundamental relationships: |

1. Piezoelectric etfects:
F°=¢°S - hD . (58)

—_W'S+BD - (59)
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controller

-/ daehed-lirae: piezoelectric actuator -
| dotted line: piezoelectric sensor
Qr solid line; pure beam
Fig. 6. Smart materials robot system.
R
¥ P/
< X,
w(x, )
r |
X
0(t) A

'Fig. 7. Detailed diagram of a single-link smart materials robot.

2. Magnetic propertles neglecting the piezomagnetic
effects: '

B=pH - - (60)
3. Mechanical properties of the pure beem:
F¥ =c¥s _ _ , (61)

Without loss of generality, we assume that there are
m pairs of smart material bonded on the beam from /; to L,
0<l,,,,<L. The system geometry is shown in Fig. 7 The
system geometry is shown in Fig. 7.

First, the kinetic energy of the system is denved The
kinetic energy includes mechanical kinetic energy and
electrical kinetic energy. '

The mechanical kinetic energy is glven by .

| | .
EkM =%Ih 6’ +J; %ml(x)ﬁr(x, O, tdx

i ﬁ | -2~m 2(JA:)J"T().:., DAx, t)dx
-1 |

- . 2 L | . | .
11,8+ L[ m (- 0,06 + (6
+2x00Xx, 1) + & (x, ) dx

By . .
L3 [ mol- 0,0 +@0"

+2x80Xx, 1) + @ (x, 1) dx (62)

where

myx) = (c, + 2)bp, (63)

The first term on the right hand side of equation (62) is the
kinetic energy of the hub, the second one is that of the pure
beam, and the last one is that of the smart materials.
The electrical kinetic energy, i.e. magnetic energy,
is derived as follows.
According to Maxwell equation

oD -
V = UL/
xXH 5 (64)

and recalling that D, =D, =0, H, = H 0, the equatlon of
H, can be written as

H@n=| DEnE 69

" where we assumed that H,(0, #) = 0 because of the continu-

ity of magnetic field intensity. We can see that H(x, ) 1s
a function of the time derivative.of D (x, ). Thus, the
electrical kinetic energy can be derived as

EkE b(c, +02)H33i f

Ilr

[j D(ét)dé‘]dx

| m rly; x | | , | |
L M pgnagrar 0

The total kinetic energy of the system is the sum of
mechanical kmene energy and electncal kinetic energy,

- 1.€.

"E;=E+E .--(67)

Potentlal energy includes three parts: the mechamcal
one, the electrical one and the coupled one. --
The strain is 1n order
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“w(x, 1)
22

S2 = S3 S4 S5 — Sﬁ 0

Hence, the total potential energy 1s given by

1bff

Il:

L a | |
+lbf fz S F" dydx
2 Jo -2 _

—-bZ 2 f_ﬂ 2

a
11. -

f 2 SRS 4E D]dydx
P

*+E D]dydx

eyt 32(0()5 )2, Cp, aza)(x £).2
f[ ]dxzlefzh[axz Pdx

+hLZ Lo D (x,t)a (;(rx, t)dx (68)

From equation (68), it can be found that the potential
energy includes.three parts: the mechanical potential
energy, the electrical potential energy and the coupled
potential energy.

| Similarly, virtual work also includes the mechanical
one and the electrical one. The mechanical virtual Work
done by the applied force 1s in the form

W™ = 58"’(32’0#559 - (69)

The electrical virtual work done by the applied voltage is

m I

. 5WE=E bV(x t)§D X, t)cbc - (70)

I
The total virtual work is then given by

SW = SWH + SWE - (71)

As the main purpose of smart materials is to make a

highly integrated smart materials robot with minor changes

in the physical properties, according to the AMM model-

ing in [22], the elastic vibration of the smart materials
robot can be expressed as

o)=L yme© (12

where y;(x) are the flexible mode functions and g{(?) are the
generalized coordinates.
And the electrical displacement is of the form

D, (x,1)= Z—Fw;(x)q © (T3

It is well known that the first several modes are donunant
in describing the system dynamics, the 1nﬁn1te series can
be truncated mto a finite one, 1.e.,

o, r)=f_2%wf(x)qi(t) 0<x<L

D (x, r)=f—%wz’(x)qf<r) 0<xSL  (74)
i=1 L | ‘ |

Define the generalized coordinates vector as

q=10 9 92 --- qnfT ' (75)

From Equatlons (62), (66), (67), (72) and (73), the
k1net1c energy of the system is then given by

Ek=Ef+Ef=%q'-TMq' I (76)

where M € R+ Y*r+D jq 4 symmetric and positive definite
inertial matrix.
From (68), (72) and (73), the potential energy of the

system can be rewritten as

- Er=ya'Kg - D

where K = diag[0, Kyl € R"*V*"*!is the stiffness matrix.
Considering the boundary condition &—Sw(O t) 0,

we obtam the mechanical virtual work as

' 5WM=FT5q_ D (78)
where
F,=[1,0,...,0 eR""

Assuming voltage Vi(x, t) does not depend on x;, we have

where
Fz___: 0 EER(il'.'.f+1) | | o (81)
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bh, ('2v bh,

on,
ﬁL s W odx ﬂL - Wl(x)dx
bh, la1 bom
22 [ vieods - ﬁ L | v
o= L Ji L Jily, ER”fxm
=
W s~ PR yieodx |
X
ﬂL e ﬁL ”’N__
(82)
w=[V, V, ... V,]T€ R"is the vector of control voltages

(83)

and Fis full row rank which 1s assured by the conﬁgura-
tion of the smart materials robot.
Applying the Euler-Lagrange equation

doL O _p

dt a‘?i dg;

the dyneﬁﬁc equation of the whole system can be obtained

as

M@)j+Cq.¢)g+Kq=F ,+F, (84)

According to Equations (79) and (81), we have

F, +F, = Fu o (85)

where
|10
0 F,
u=[t w] | (86)

It can be seen that the generalized force u includes
two parts, one part is the joint control torque 7 which enters
the system through only rigid subsystem, another part is
the control voltage w which enters the system through only
the fast subsystem. This property will greatly facilitate the
Singular Perturbation analysis in the paper. '

Subsequently, the dynamic model of smart matenals |

robot can be expressed as
M@i+Ca.94 +Kg=F, (87)

where M(q) 1s the symmetric positive definite inertia
matrix; C(q, §)q represents the Coriolis and Centrifugal
forces, and K is the stiffness matrix of the smart materials
robot. |

NOMENCLATURE

a thickness of the beam

b width of the beam and that of the smart
materials
Be R magnetic flux density vector

cM e RS  symmetric matrix of elastic stiffness coeffi-
cients of the pure beam

cSe R®*®  symmetric matrix of elastic stiffness coeffi-
cients of the smart materials

C thickness of upper surface smart materials
patch

c stiffness of the pure beam

C1 - stiffness of the piezoelectric materials

Cs ~ thickness of lower surface smart materials
patch

cha’h .
Crq = - stiffness per unit length of the pure beam
s >
o= 2@ be)’ +(E 4’ L]
- stlffness per unit length of the smart materi-
- als

D(x,t) € R® electrical displacement at location x and
time ¢ |

E, system kinetic energy

E, system potential energy

Ee R’ electrical field intensity vector

F" e R simplified stress vector of the pure beam

FPe R simplified stress vector of the smart materi-
als

he R°*? . coupling coefficients matrix

hy, coupling parameter per unit volume of the

piezoelectric material

h; = 1y pb(c—c)lc, +c, +a)

| coupling parameter per unit length of the
smart materials robot

H(x,?) € R° magnetic field intensity at location x and

time ¢ |

I, inertia of the hub

L length of the beam

ms tip payload -

r position vector of pomt P expressed in the
fixed-base frame |

Se R simplified strain vector _

V(x, 1) voltage applied to the piezoelectric actuator

%4 virtual work done by non-conservative

- forces

0X,Y, local reference frame with axis OX, tangen-
tial to the beam at the base |

0X,Y, fixed base frame |

Be R***  symmetric matrix of impermittivity coeffi-

| cients |
B,  impermittivity per unit volume of the piezo-

electric material

B = b(c, + Cz)ﬁzz

impermittivity per unit length of the smart
materials robot '
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aXx, t) deflection at location x and time ¢

6(t) joint angle at the hub

0,(1) desired joint angular trajectory

e 52 permeability coefficients matrix

Uss permeability of the piezoelectric material

Hy = Bley + )l
permeability per unit length of the smart
materials robot

P mass per unit volume of the pure beam
[} mass per unit volume of the smart materials
P =abp,  mass per unit length of the pure beam

P> = () + )b,
mass per unit length of the smart materials

(1) torque applied to the base of the manipula-
tor
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