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In this paper, we present a computer vision system for human gesture recognition and tracking based on
a new nonlinear dimensionality reduction method. Due to the variation of posture appearance, the rec-
ognition and tracking of human hand gestures from one single camera remain a difficult problem. We
present an unsupervised learning algorithm, distributed locally linear embedding (DLLE), to discover
the intrinsic structure of the data, such as neighborhood relationships information. After the embedding
of input images are represented in a lower dimensional space, probabilistic neural network (PNN) is
employed and a database is set up for static gesture classification. For dynamic gesture tracking, the sim-
ilarity among the images sequence are utilized. Hand gesture motion can be tracked and dynamically
reconstructed according to the image’s relative position in the corresponding motion database. The
method is robust against the input sequence frames and bad image qualities. Experimental results show
that our approach is able to successfully separate different hand postures and track the dynamic gesture.

� 2008 Elsevier B.V. All rights reserved.
1. Introduction

Analysis and modeling of human hands posture have attracted
much attention of many researchers for developing intelligent hu-
man computer interaction systems in recent years. It is an impor-
tant research issue with many practical applications in the fields of
virtual reality, sign language recognition and computer animation.
Due to the variation of posture appearance, the recognition and
tracking of human hand gestures remains a difficult problem. It
is hard to extract information from gesture images for 3D hand
reconstruction. In most cases, it is required to model the hand ges-
tures and adjust the parameters of hand models until they match
the observations. These parameters should provide the desired
information from the captured images.

Recently, there are two main streams of hand gesture analysis.
Glove-based methods utilize the mechanical marked gloves to di-
rectly capture hand motion and measure hand joints parameters
by a set of sensors [1–3]. They can achieve real time speed and
can be used reliably for animation. However, these methods are
expensive and impractical because of the required equipment.
The other solution is to use vision-based approaches which depend
on image capture equipments [4–7]. It is the most natural way and
yet the most difficult way to implement a satisfactory human com-
puter interface.

Vision-based hand gesture analysis has greatly increased so far
and several different methods have been proposed for hand model
ll rights reserved.

65 67791103.
reconstruction [4,8]. These methods can be subdivided into two
main categories: model-based approach and appearance-based ap-
proach. Conventional model-based approach for image analysis at-
tempts to infer the pose of the palm and finger joints. This method
searches for the kinematic parameters which map the 2D projec-
tion images to the 3D hand model. 3D hand tracking and gesture
estimation are main issues of this subject. A visual tracking system
DigitEyes is introduced which can recover a high articulated 3D
hand model from grey scale images [6]. The system tracks the local
edges of each finger link and uses the bisector of these lines as the
link features for the hand model parameters. To improve the fea-
tures extracted from images, many researchers paste colored
markers on the hand [9,10]. Eight points are used to estimate the
hand posture from one single 2D image in [10]. They reduced the
hand model from 27 degree-of-freedom (DOF) to 12 DOF by ana-
lyzing the hand constraints. Color markers are used to detect the
main points of the hand and hand postures are estimated without
computing the inverse kinematics.

The appearance-based approach models the hand by a collec-
tion of 2D image templates. The gestures are modeled as a se-
quence of views by associating the images of hand gestures to
the appearance of predefined ones [5,11]. The majority of appear-
ance-based methods depend on the parameters extracted from
images. This class of parameters is derived from the hand image
properties including contours and edges, image moments and im-
age eigenvectors. Eigenspace is currently the most commonly used
method for vision-based approaches [12,13]. For vision-based hand
gesture recognition and reconstruction, one important issue is to
process the images to obtain the raw information that match the
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Fig. 1. Projection relations between the real world and the virtual world.
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output model. However, there is usually a huge amount of infor-
mation in the captured images. Dimension reduction is critical
for analyzing these images, which can compress image information
and discover compact representations of variability.

Typical nonlinear dimension reduction techniques include Iso-
map and locally linearly embeddings (LLE). In Isomap, the geodesic
relationships among the input data and the calculated low dimen-
sion embeddings remain constant [14]. In LLE, the local intrinsic
structures are maintained in dimensionality reduction [15]. A no-
vel methodology called neighborhood linear embedding (NLE)
has been developed to successfully discover the intrinsic property
of the input data which does not need the trial and error process
inherent in LLE [16]. The compact information provides intermedi-
ate results that can be used for various onwards applications such
as: machine vision, sensor fusion, documents processing and so on.

In this paper, we modify the LLE algorithm and present a new
distributed locally linear embedding (DLLE) to discover the inher-
ent properties of the input data, by noticing that some relevant
pieces of information may be distributed. By estimating the prob-
ability density function of the input data, an exponential neighbor
finding method is proposed. The input data are mapped to low-
dimensional space where not only the local neighborhood relation-
ship but also some global distributions are preserved. Because the
DLLE can preserve the neighborhood relationships among samples,
after embedded in low-dimensional space, a probabilistic neural
network (PNN) can be employed for classification. PNN is a feed-
forward network and supervised training algorithm [17]. It is based
on Bayes’ theorem and high recognition accuracy can be achieved
with a large number of sample patterns.

The main contributions of this paper are as follows:

� An unsupervised learning method DLLE is introduced to recover
the inherent properties of scattered data lying on a manifold
embedded in high-dimensional input data.

� A method is presented to use the similarity of the gesture
images for static hand gesture recognition. By applying DLLE–
PNN, similar static gesture will be grouped together and differ-
ent gestures can be easily classified.

� A method is introduced to utilize the neighborhood relationship
of the gesture images for hand gesture motion tracking. At the
run time, the system dynamically obtains the relative position
of the captured gesture sequence image in the corresponding
motion database and the hand model is then reconstructed in
a virtual world.

The remainder of this paper is organized as follows. In Section 2,
we illustrate the geometry of relationship between a real world hu-
man hand and a virtual hand model through one single web-cam-
era. In Section 3, we briefly describe the neighborhood selection
methods of LLE and NLE. In Section 4, the unsupervised learning
algorithm, DLLE, is presented to discover the intrinsic structure
of the input data by preserving neighborhood relationship. In Sec-
tion 5, a PNN model is discussed for the classification of different
static gestures. In Section 6, we illustrate how to model the virtual
hand and how to add constraints to reduce the hand DOF. Section 7
describes the details of hand gesture recognition and tracking
implementation. In Section 8, we present the experiment results
of our hand gesture recognition and tracking system.
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Fig. 2. Projection relationship of a real gesture, a gesture image and the corre-
sponding reconstruction model.
2. Projection relations

Consider the points and coordinate frames as shown in Fig. 1.
The 3D point, Pw ¼ ½xw; yw; zw�T, in the world coordinate frame,
Frame w, can be mapped to a 3D point, Pi ¼ ½xi; yi; zi�T, in the image
frame, Frame i, by two frame transforms. By considering the pixel
size and the image center parameter and using perspective projec-
tion with pinhole camera geometry, the transformation from Pw to
point Ps ¼ ½xs; ys; 0�

T in the screen frame, Frame s, is given by [18].

xs ¼
f
sx

xw

zw
þ ox

ys ¼
f
sy

yw

zw
þ oy

ð1Þ

where sx; sy are the width and length of a pixel on the screen (ox; oy),
is the origin of Frame s, and f is the focal length.

The corresponding image point Pi can be expressed by a rigid
body transformation:

Pi ¼ Ri
sPs þ Pi

sorg ð2Þ

where Ri
s 2 R3�3 is the rotational matrix, Pi

sorg 2 R3 is the origin of
Frame s with respect to Frame i.

Fig. 2 illustrates the projection relationship of a real gesture, a
gesture image and the corresponding reconstruction model. Any
hand movements will result in different images. The similarity be-
tween two images can be extracted by comparing the pixel values.
These images can be thought of points in a high-dimensional space,
with each input dimension corresponding to the brightness of 1
pixel in the image. Although the input dimensionality may be quite
high (e.g., 19,200 pixels for a 160 � 120 image), the perceptually
meaningful structure of these images has fewer independent de-
grees of freedom. In the following sections, we will describe how
to discover compact representations of high-dimensional data.
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3. LLE and NLE

For ease of the forthcoming discussion, we first introduce the
main ideas of LLE and NLE methods. LLE is an unsupervised
learning algorithm that attempts to map high-dimensional data
to low-dimensional space while preserving the neighborhood rela-
tionship. Compared with principle component analysis (PCA) and
multidimensional scaling (MDS), LLE is a nonlinear dimensionality
reduction method. It is based on simple geometric intuitions: (i)
each high-dimensional data point and its neighbors lie on or close
to a locally linear patch of a manifold and (ii) the local geometric
characterization in original data space is unchanged in the output
data space. The neighbor finding process of each data point of LLE
is: for each data point in the given data set, using the group tech-
nique such as K nearest neighbors based on the Euclidean distance,
the neighborhood for any given point can be found. A weighted
graph is set up with K nodes, one for each neighbor point, and a
set of edges connecting neighbor points. These neighbors are then
used to reconstruct the given point by linear coefficients.

In order to provide a better basis for structure discovery, NLE
was proposed [16]. It is an adaptive scheme that selects neighbors
according to the inherent properties of the input data substruc-
tures. The details on NLE algorithm can be found in [16].

Both LLE and NLE methods can find the inherent embedding in
low dimension. According to the LLE algorithm, each point xi is
only reconstructed from its K-nearest neighbors by linear coeffi-
cients. However, due to the complexity, nonlinearity and variety
of high-dimensional input data, it is difficult to find an appropriate
value of K for all the input data to find the intrinsic structure [19].
The proper choice of K affects an acceptable level of redundancy
and overlapping. If K is too small or too large, the K-nearest neigh-
borhood method cannot properly approximate the embedding of
the manifold. The size of range is closely related to the intrinsic
property of the data, such as sample density. An improvement
can be done by adaptively selecting neighbors according to the
density of the sample points.

Another problem of using K-nearest neighbors in LLE is infor-
mation redundancy. As illustrated in Fig. 3, e.g., for a certain man-
ifold, we choose KðK ¼ 8Þ nearest neighbors to reconstruct xi.
However, the selected neighbors in the dashed circle are closely
gathered. Obviously, if we use all samples in the circle as the neigh-
bors of xi, the information captured in that direction will have
redundancy. A more straightforward way is to use one or several
samples to represent a group of closely related data points.

According to NLE’s neighborhood selection criterion, the num-
ber of neighbor selected to be used is small. For example, according
to our experiment on two peaks data sample, the average number
of neighbors for each point in 1000 samples are 3.74. The recon-
struction information may not be enough for an embedding.
Fig. 3. Select KðK ¼ 8Þ nearest neighbors using LLE. The samples in the dashed
circle along certain direction may cause the information redundancy problem.
By carefully considering the LLE and NLE’s neighbor selection
criterion, we propose a new algorithm by estimating the probabil-
ity density function from the input data and using an exponential
neighbor finding method to automatically obtain the embedding.
4. Distributed locally linear embedding (DLLE)

4.1. Estimation of probability density function

In most cases, a priori knowledge of the distribution of the sam-
ples in high dimension space is not available. However, we can
estimate its density function for a given data set. Consider a data
set with N elements in m dimensional space, for each sample xi,
the approximated distribution density function p̂xi

around point
xi can be calculated as

p̂xi
¼ kiPN

i¼1ki

ð3Þ

where ki is number of the points within a hypersphere kernel of
fixed radius around point xi.

Let P̂ ¼ fp̂x1 ; p̂x2 ; . . . ; p̂xNg denote the set of estimated distribu-
tion density function, p̂max ¼maxðP̂Þ and p̂min ¼minðP̂Þ. The higher
the value of distribution density function, the more samples are
gathered; the lower the distribution density function, the fewer
samples are gathered. These estimated distribution density func-
tions are then used as a criterion for choosing neighbors.

4.2. Compute the neighbors of each data point

Suppose that a data set X ¼ fx1; x2; . . . ; xng, xi 2 Rm is globally
mapped to a data set Y ¼ fy1; y2; . . . ; yng, yi 2 Rl, m� l. For the gi-
ven data set, each data point and its neighbors lie on or close to a
locally linear patch of the manifold.

Assumption 1. The input data set X contains sufficient data in Rm

sampled from a smooth parameter space U. Each data point xi and
its neighbors, e.g., xj, lie on or close to a linear patch on the
manifold. The range of this linear patch is subject to the estimated
sampling density p̂.

Based on above geometry conditions, the local geometry in
the neighborhood of each data point can be reconstructed
from its neighbors by linear coefficients. At the same time,
the reconstruction information of two points depends on the
mutual distance between them. The larger the distance be-
tween points, the less the mutual reconstruction information
between them.

Assumption 2. The parameter space U is a convex subset of Rm. If
xi and xj is a pair of points in Rm, /i and /j are the corresponding
points in U, then all the points defined by
fð1� tÞ/i þ t/j : t 2 ð0;1Þg lies in U.

In view of the above observations, the following procedure is
conducted by utilizing the neighborhood information to construct
the neighborhood set of xi, Siði ¼ 1; . . . ;NÞ. To better sample the
neighbor data points, we propose an algorithm that exponentially
extend the range to find the reconstruction sample as shown in
Fig. 4.

For a given point xi, we can compute the distances from all other
points around it. According to the distribution density function
around xi estimated before, we introduce ai to describe the normal-
ized density of the sample point xi. It is used to control the incre-
ment of the segment according to the sample points density for
neighbor selection. We first give the definition of ai by normalizing
p̂xi

using the estimated distribution density function computed by
Eq. (3):
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Fig. 4. The neighborhood selection process.
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ai ¼ b � p̂max � p̂xi

p̂max � p̂min
þ a0 ð4Þ

where b is the scaling constant, default value is set to 1.0; and a0 is
the constant to be set. The discussion of this definition is given later.

According to the distances values from all other points to xi,
these points are stored in Ri by ascending order. Based on the esti-
mated distribution density function, Ri is separated into several
segments, where Ri ¼ Ri1 [ Ri2 [ Ri3 � � � [ Rik � � � [ RiK . The range of
each segment is given following an exponential format:

minðRikÞ ¼ pak
i q

maxðRikÞ ¼ pakþ1
i q

(
ð5Þ

where k is the index of segment and pak
i q denotes the least upper

bound integer when ak
i is not an integer. We can see that the value

of ai must be greater than 1.0. It is obvious that when ai is less than
1.0, ak

i will decrease with respect to the increase of k. Therefore, the
data samples cannot be segmented. At the same time, if ai is too large,
ak

i will increase fast and there may not be enough samples captured,
and therefore, local information is hard to keep. A suitable range of ai

can be set from 1.0 to 2.0 by setting a0 ¼ 1:0. While ai is shifting from
small to large, the range of the neighbors selected is from small to
large. When ai is close to 1.0, the neighbor selected are just the
several nearest neighbors and the performance will be similar to
LLE. When ai is close to 2.0, more global information will be obtained.

Eq. (4) can be illustrated as follows: when some samples are
closely gathered, the probability density around these samples is
large; therefore, more information should be captured locally and
ai should be small. When the probability density is small, a larger
ai should be adopted.

Usually the samples in the manifold, N, is large. Thus, we can
modify Eq. (5) to accommodate LLE when ai is close to 1.0 as follows:

minðRikÞ ¼ pak
i qþ k� 1

maxðRikÞ ¼ pakþ1
i qþ k

(
ð6Þ

Let us define a sequence of integers to represent the segment
boundaries point index rik ¼maxðRikÞ ¼ pakþ1

i qþ k. For each seg-
ment Rik, the mean distance from all points in this segment to xi

can be calculated by

�dik ¼
1

riðkþ1Þ � rik

Xriðkþ1Þ�1

j¼rik

kxi � xuiðjÞk
2 ð7Þ

where uiðjÞ represents the jth point after sorting in ascending order.
To overcome the information redundancy problem, using the mean
distance computed by Eq. (7), we find a most suitable point in Rik to
represent the contribution of all points in Rik by minimizing the fol-
lowing cost equation:
eðdÞ ¼min k�dk � xjk2
; 8j 2 Rik ð8Þ

If point xj satisfies Eq. (8), then xj is selected to represent the data
points of this segment. Then, we can update the neighborhood set
of xi, Si

Si ¼ Si [ fxjg ð9Þ

For each segment, we update Si once. Finally, when the neighbor set
Si is computed out, the number of members in Si is recorded as ni.

There are two variations for the choice of neighbor number for
different purposes:

� To determine the number of neighbors to be used for further
reconstruction and achieve adaptive neighbor selection, we
can compute the mean distance from all other samples to xi

�di ¼
1
N

XN

j¼1

kxi � xjk2
; i 6¼ j ð10Þ

Starting with the Si computed above at a given point xi, from the
largest element in Si, delete element one by one until all ele-
ments in Si is less than the mean distance �di computed by Eq.
(10). Then the neighbor set Si for point xi is fixed.

� For manual neighbor selection, by adjusting the index k, we can
choose the radius of the neighbor range. A small k means fewer
samples are adopted while a larger k will result in more samples
included. The number of neighbors k should always be greater
than the target dimensionality l.
4.3. Calculate the reconstruction weights

The reconstruction weight W is used to rebuild the given points.
To store the neighborhood relationship and reciprocal contribu-
tions to each other, the sets Si ði ¼ 1;2; . . . ;NÞ is converted to a
weight matrix W ¼ fwijgði; j ¼ 1;2; . . . ;NÞ. W is constructed by set-
ting its columns corresponding to each data vector in the original
space and its number of rows corresponding to the number of se-
lected neighbors. The construction weight W that best represents
the given point xi from its neighbor xj is computed by minimizing
the cost function given below:

eðWÞ ¼
XN

i

xi �
XSiðni Þ

j¼Sið1Þ

wijxj

������
������

2

; i 6¼ j ð11Þ

where the weight wij represents the contribution of the jth data
point to the ith point’s reconstruction. The reconstruction weight
wij is subjected to two constraints.

(1) First, each data point xi is reconstructed only from its neigh-
borhood set points, enforcing wij ¼ 0, if xj is not its neighbor.

(2) Second, the rows of the weight matrix sum to one:PSiðni Þ
j¼Sið1Þ

wij ¼ 1.

To compute W row by row, Eq. (11) can be further written as

eðWiÞ ¼ kxi �
XSiðni Þ

j¼Sið1Þ

wijxjk2
; i 6¼ j

¼
XSiðni Þ

j¼Sið1Þ

wijxi �
XSiðni Þ

j¼Sið1Þ

wijxj

������
������

2

¼
XSiðni Þ

j¼Sið1Þ

wijðxi � xjÞ

������
������

2

¼
XSiðni Þ

j¼Sið1Þ

wij

XSiðni Þ

k¼Sið1Þ

wikðxi � xjÞTðxi � xkÞ ð12Þ
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where Wi is the ith row of W. By defining a local covariance Ci

Ciðj; kÞ ¼ ðxi � xjÞTðxi � xkÞ

combined with the Constraint (2) of W, we can apply the Lagrange
multiplier and have

eðWiÞ ¼
XSiðni Þ

j¼Sið1Þ

wij

XSiðni Þ

k¼Sið1Þ

wikCiðj; kÞ þ ki

XSiðni Þ

j¼Sið1Þ

wij � 1

0
@

1
A ð13Þ

where ki is the Lagrange coefficient. To obtain the minimum of e, we
can find the partial differentiation with respect to each weight and
set it to zero

oeðWiÞ
owij

¼ 2
XSiðni Þ

k¼Sið1Þ

wikCiðSiðjÞ; kÞ þ ki ¼ 0; 8j 2 Si: ð14Þ

We can rewrite Eq. (14) as

C �WT
i ¼ �q ð15Þ

where

C ¼
0 1
1 2C

� �

C ¼

CiðSið1Þ; Sið1ÞÞ � � � CiðSið1Þ; SiðniÞÞ
..
. . .

. ..
.

CiðSið1Þ; SiðniÞÞ � � � CiðSiðniÞ; SiðniÞÞ

2
664

3
775

WT
i ¼ ½kiWi�T

WT
i ¼ ½wiSið1ÞwiSið2Þ � � �wiSiðniÞ�

T

�q ¼ ½1;0; . . . ;0�T

Therefore, since C is nonsingular [16], Wi can be obtained straight-
forwardly from the following equation:

WT
i ¼ C�1�q ð16Þ
The constrained weights of equation obey an important sym-

metry that they are invariant to rotations, rescalings and transla-
tions for any particular data point and its neighbors. Thus, W is a
sparse matrix that contains the information about the neighbor-
hood relationship represented spatially by the position of the non-
zero elements in the weight matrix and the contribution of one
node to another represented numerically by their values. The DLLE
neighbor selection process is summarized in Algorithm 1.

Algorithm 1. DLLE neighbor selection

1. Compute D from X . D ¼ fdijg is the distance matrix
2. Sort D along each column in ascending order to form R

3. for i 1;N do
4. for k 1;K do
5. if ak

i 6 N then
6. minðRikÞ ¼ pak

i qþ k� 1
7. maxðRikÞ ¼ pakþ1

i qþ k
8. else ak

i > N
9. break
10. end if
11. �dik  ai; k;Rik . by solving Eq. (7)
12. xj ¼ argxj2Rik

min k�dik � xjk2

13. Si ¼ Si [ fxjg
14. ni ¼ ni þ 1
15. end for
16. �di ¼ 1

N Ri

17. if xj >
�di then

18. Si ¼ Si � fxjg
19. ni ¼ ni � 1
20. end if
21. end for
4.4. Compute embedding coordinates
Finally, we find the embedding of the original data set in the
low-dimensional space, e.g., l dimension. Because of the invariance
property of reconstruction weights wij, the weights reconstructing
the ith data point in m dimensional space should also reconstruct
the ith data point in l dimensional space. Similarly, this is done
by trying to preserve the geometric properties of the original space
by selecting l dimensional coordinates yi to minimize the embed-
ding function given below:

UðYÞ ¼
XN

i

yi �
XSiðni Þ

j¼Sið1Þ

wijyj

������
������

2

¼
XN

i

kYðIi �WiÞk2

¼ trðYðIi �WiÞðYðIi �WiÞÞTÞ

¼ trðYMYTÞ

ð17Þ

where wij are the reconstruction weights computed in Section 4.3, yi

and yj are the coordinates of the point xi and its neighbor xj in the
embedded space.

4.5. LLE, NLE and DLLE comparison

For the comparison of the embedding property, we have
conducted several manifold learning algorithms tests on some
test examples. Here we mainly illustrate three algorithms LLE,
NLE and DLLE graphically using two classical data sets: two
peaks and punched sphere. For each data set, each method is
used to obtain a 2D embedding of the points. Figs. 5 and 6
summarize these embedding results. The data set is shown at
the top left, in a 3D representation. For the two peaks data
set, two corners of a rectangular plane are bent up. Its 2D
embedding should show a roughly rectangular shape with blue
and red in opposite corners. The punched sphere is the bottom
3/4 of a sphere which is sampled nonuniformly. The sampling is
densest along the top rim and sparsest on the bottom of the
sphere. Its intrinsic structure should be 2D concentric circles.
Both the sample data sets are constructed by sampling 2000
points.

In Fig. 5, as expected, all the three algorithms can correctly
embed the blue and red samples in opposite corners. However,
the outline shape of the embedding using NLE is distorted when
projected in 2D. DLLE can give a better preservation of the original
rectangle compared to LLE. At the same time, the green samples
performing as the inner and outer boundary are also well kept
using DLLE.

As can be seen in Fig. 6, both DLLE and LLE are successful in
flattening the punched sphere and recover all the original con-
centric circles. NLE seems to be confused about the heavy point
density around the rim. It can preserve the inner circles well but
fails on the outer circle because of its neighborhood selection
criteria.

5. Probabilistic neural network

According to the DLLE algorithm, the distances between the
projected data points in low-dimensional space depend on the
similarity of the input images. The images which are similar are
projected with a small distance while the images that differ greatly
are projected with a large distance. Based on the distances in low-
dimensional space, we use the neural network to classify different
gesture images. Neural networks are widely employed in pattern
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recognition based on learning from samples [20–22]. PNN is se-
lected in this study as the classifier because of its rapid training
speed, good accuracy, robustness to weight changes and negligible
retraining time.

Consider a general classification problem: the membership of a
multivariate random vector X ¼ ½X1;X2; . . . ;Xp� needs to be classi-
fied into one of the M possible categories. The basic idea of PNN
is to approximate the unknown discrete distribution PiðXÞ of each
class by a finite mixture of product components.

It is critical for the accuracy of decision boundaries to estimate
probability density function from the training samples. The Parzen
window method can be used for estimating probability density
function from a random sample [23]. Cacoulos extended Parzen’s
method to cover the multivariate case [24]. The most common
multivariate estimator can be expressed as

fiðXÞ ¼
1

ð2pÞp=2rp

1
n

Xn

i¼1

exp �kX � Xik2

2r2

" #
ð18Þ

where p is the dimensionality of the input vector, n is the number of
samples in each category, fiðXÞ is the sum of small multivariate
Gaussian distributions centered at each training sample, and r is a
smoothing factor defining the width of the area of influence, which
softens the surface defined by the multiple Gaussian functions.
A small value of r may cause a very spiky approximation which
cannot generalize well while a large value produces a greater degree
of interpolation between points. However, there is no general meth-
od to determine r and it is usually determined by minutely changing
its value and examining the corresponding recognition accuracy. We
will give a detailed discussion on r selection in Section 8.1.

The PNN architecture shown in Fig. 7 consists of four layers: an
input layer, a pattern layer, a summation layer and an output layer.
The input neurons merely distribute the same inputs values to all
of the pattern units. Each pattern neuron performs a dot product of
the input pattern vector with a weight vector in the interconnec-
tions, followed by a neuron activation function. The pattern layer
represents a neural implementation of a Bayes classifier. There is
one summation neuron for each class. The summation layer sums
the inputs from the pattern layer neurons corresponding to the cat-
egory from which the training pattern is selected. The output neu-
ron is a threshold discriminator. The maximum neuron of
summation layer is selected as the output.
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After the images are projected to low dimension, they are fed
into the PNN for training. The new input data is classified through
PNN. The output is the home gesture group which the input image
belongs to.
6. Model reconstruction and constraints

We model the skeleton of human hand with a hierarchical
structure which was first proposed in [25]. Each finger is consid-
ered as a kinematic chain consisting of rigid links and joints
with a common base frame at the palm. According to the natural
property of the finger, each joint has one or two rotational DOF.
Our hand model is shown in Fig. 8 with the name and DOF of
each joint. Each joint is described in a 3D coordinates to indicate
its rotational DOF. The superscript of each symbol represents the
rotational DOF along the associated axis, and the subscript is the
name of the joint.

Modeling motion constraints is crucial to the effective and
efficient reconstruction of the hand model [9,26,27]. The natural
anatomical properties of the human hand implicitly determine
some motion constraints. For example, human fingers are impos-
sible to bend backward which limits the range of figure motion.
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Here we analyze some most commonly used constraints and
present some constraints based on our observation to reduce
the DOF.

Hand motion constraints can be classified into three categories.
Type I constraints are the limits of finger motions as a result of
hand anatomy. These constraints are usually referred to static
constraints. Type II constraints are the limitations imposed on
hand joints during finger motions which are usually called
dynamic constraints. Type III constraints are usually imposed
while performing natural hand motion. A comprehensive study
of hand/finger motion constraints is given below.

6.1. Type I constraints

Type I constraints are usually given by inequalities according to
the motion range of fingers. These constraints limit hand articula-
tion within a boundary and provide the virtual model with a more
natural appearance.

� Constraint 1. The interphalangeal joint of hand can only rotate
around the joint. Their rotational limits are given below:

0� 6 hx
ðI;M;R;LÞ2 6 90�

0� 6 hx
ðI;M;R;LÞ3 6 120�

0� 6 hx
ðI;M;R;LÞ4 6 90�

ð19Þ

The thumb’s second joint rotational limits can be given by

0� 6 hz
T3 6 90� ð20Þ

� Constraint 2. The constraints of waist joint can be approximated
as follows according to experimental observations:

0� 6 hx
1 6 90�

� 15� 6 hz
1 6 15�

ð21Þ

� Constraint 3. The metacarpophalangeal joints of the thumb and
middle finger rarely display abduction/adduction motion and
can be approximated to be zero [25]. These constraints are given
as follows:

hx
T2 ¼ 0�

hz
ðI;M;R;LÞ2 ¼ 0�:

ð22Þ
6.2. Type II constraints

These types of constrain usually have a closed form representa-
tion. These constraints are determined by the inter-finger or intra-
finger structure. The inter-finger constraints are used to describe
the dependency between joints of different fingers. The intra-fin-
ger constraints refer to the relations between different joints of
the same finger.

� Constraint 4. This constraint is used to describe the dependency
between different joints of the same finger caused by the tendon
[28]. For the index, middle, ring and little finger, the Distal Inter-
phalangeal cannot bend independently for a natural gesture. We
must bend the Proxiamal Interphalangeal joint at the same time.
Based on experimental observation, their relationship can be
reasonably approximated as below:

hx
ðI;M;R;LÞ4 ¼

3
4

hx
ðI;M;R;LÞ3 ð23Þ

� Constraint 5. The thumb’s movement is more complicated
because a large part of the thumb is part of the palm. From
experimental observation, the inter-finger constraint of the
thumb can be given by

hx
T1 ¼ 2 hz

T2 �
1
6

p

� �
ð24Þ

� Constraint 6. This constraint is used to describe dependency
between the Interphalangeal joint and Metacarpophalangeal
joint of thumb. In our model, it can be approximated by the form
below based on experimental observation

hx
ðI;M;R;LÞ4 ¼

3
4

hx
ðI;M;R;LÞ3 ð25Þ

� Constraint 7. This constraint is used to describe dependency
between the Proxiamal joint and Metacarpophalangeal joints
of index, middle, ring and little finger. In our model, it is approx-
imated as shown below to match the experimental observation

hx
ðI;M;R;LÞ3 ¼ khx

ðI;M;R;LÞ2 ð26Þ

This constraint is called ‘‘weak constraint” where the coefficient
may vary from time to time. In our experiment, we adjust the
coefficient according to the value of the Metacarpophalangeal
joints with an initial value set to 0.5.

6.3. Type III constraints

� Constraint 8. This constraint defines the four joints of the thumb
(Thumb tip, Trapeziometacarpal joint, Metacarpalangeal joint
and Interphalangeal joint) to be coplanar [10]. This plane can
be defined as the ‘‘Thumb Plane”.
6.4. Finger control

It is very tedious and difficult to attain a desired posture by
extracting all the joints’ parameters from images. Higher level con-
trol of the fingers is used in our system to ease the burden to com-
pute high DOF of the hand model and to prevent the unnatural
gestures from occurring.

In human motion, there are many correlations between joint ac-
tions. According to our observation, for most of the nature gestures
of our hand, fingers are closely related. For a set of such fingers,
their moving or bending directions are quite similar to each other.
Usually, these correlations are especially clear for motions like
splaying and grasping. For example when the hand is splaying,
all of the finger joints angles increase at nearly the same rate. Thus
these joints can be approximated by a series of related parameters.
Fingers that are closely related with each other are grouped to-
gether. The groups can be composed of one finger, two fingers to
five fingers. The user’s gestures formed by several fingers corre-
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sponding to a certain group can be recorded and then recon-
structed. However, due to the anatomy of the human hand, not
all finger combinations are meaningful, only certain finger groups
are natural. We predefine 14 home gestures which are the most
commonly used ones. The dynamic gesture motions are derived
from these home gestures. In one gesture motion, the user can
move the fingers of this group and the system can detect and
change the virtual hand postures accordingly.
7. Hand recognition and tracking

7.1. Image preprocessing

In vision-based gesture recognition, the format of the captured
images may vary greatly. In our system, the resolution of the ac-
quired images is 160 � 120 pixels. It is captured with a roughly
uniformly distributed background. The following processes are ta-
ken to eliminate noises and make it easier to find the compact rep-
resentations from these images. First, the color images are
converted from RGB to grayscale. Then the background is sub-
tracted from each image to eliminate noises and to enhance hand’s
outline. Finally, the images are adjusted by mapping the values in
intensity image Imgi to new values in image Imgj such that values
between low-limit and high-limit of Imgi map to values between
low-limit and high-limit of Imgj. This process can be described
by the following equation. This adjustment process can increase
the contrast of the output image Imgj:

valueJ ¼ ðvalueI � lowIÞ
highJ � lowJ

highI � lowI
ð27Þ
7.2. Framework of recognition and tracking

The framework of the system is shown in Fig. 9. Two modules
are considered in the system:

Static home gesture recognition. The home gesture recognition is
carried out when initialization or re-initialization takes place.
The home gesture database containing 14 home gestures has
been first set up as fgiji ¼ 1;2; . . . ;14g, where gi denotes home
gesture i. Then the input image is classified to a certain group i
using DLLE–PNN according to the database. This indicates
which motion will be followed.
Pre Processing
Image

Finding relative
position by DLLE

Joints parameters
generation and
reconstruction

Image at time t

The reconstructed gesture

Motion
database i

Fig. 9. System ove
Dynamic motion tracking. In this part, the hand posture’s move-
ments are captured by the camera. The captured image is
dynamically mapped to the low-dimensional space using DLLE
in the corresponding motion database. For each gesture process,
a database containing 30 sample images is set up as
fmijji ¼ 1;2; . . . ;14; j ¼ 1;2; . . . ;30g, where mij denotes the
image with its home gesture in group i and its sequence in this
motion database at j, to further compute the gesture parame-
ters. These samples are dynamically captured as one gesture
motion process in sequence. According to the neighborhood
relationships among the gesture sequence and the predefined
model joints parameters in the database, the reconstruction
joint parameters can be computed.
7.3. Static home gesture recognition

Hand gesture recognition consists of deciding whether the test
images (different from the training set) containing the hand ges-
ture is of interest or not. However, due to the complexity of human
hand-self occlusion, high DOF and gestures variety, it is difficult to
distinguish each hand gesture. To simplify this process, we define a
finite number of gestures as the home gestures. These gestures
contain the commonly used and natural hand gestures. Fig. 10
shows these home gestures used in the system.

According to the DLLE algorithm, neighborhood relationship can
be preserved in the low dimension data set. The distances between
the projected data points in low-dimensional space depend on the
similarity of the input images. The images that are similar are pro-
jected with a small distance while the images that differ greatly
with each other are projected with a large distance. Therefore,
images of the same gesture are closer than images of different ges-
tures in low-dimensional space. At this time, the training samples
of the same gesture are ‘‘half clustered” and only a few of them
may be apart from their corresponding cluster which can be seen
from Figs. 13 and 14. This makes it easier for the neural network
to classify different gestures. Training sample images are prepro-
cessed and reconstructed in the low-dimensional space, then they
are fed into PNN. After training, images of the same gesture are
grouped and the neural network is set up for further classification.

7.4. Dynamic motion tracking

Because of the neighborhood preserving property of DLLE algo-
rithm, the adjacent relationship of the motion sequence images are
Accessing home
gesture database

Dimension
Reduction by DLLE 

Classification by
PNN

Accessing
motion database i

Need initial or
reinitial?

Yes

No

Gesture group i

Home gesture
database

rview.



Fig. 10. Base gesture models.

Fig. 11. The sequence images in one motion database and input images with their mapped relative positions. The stars represent the database sequence images and the
circles are the test images sampled from the gesture motion. We can see that the motion sequence is well kept after projected by DLLE and the input images’ relative positions
are appropriately approximated.

Fig. 12. Variation of full extended hand images. The above are three hand scales under three lighting conditions. The below are the variations about different axes.
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well kept in low dimension (Fig. 11). The reconstruction model
joint parameters can be assigned according to the input gesture’s
relative position and its adjacent neighbors joints parameter set.
When the motion tracking is started, the user’s gesture image is
dynamically put into the motion database. It is mapped to low
dimension and it’s relative position in the database can be found
as illustrated in Fig. 11. According to its relative position, the
new 3D model is constructed by finding the linear interpretation
of the joint parameters of its adjunct neighbors. The hand joint
constraints described in Section 6 are applied on finger joint
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accordingly during reconstructing to prevent the unnatural gener-
ation of hand gestures.

According to the Assumption 2, an input gesture image Imgk be-
tween the gesture image Imgi and Imgj has its embedding /k lying
between /i and /j in low dimension. To approximate the relative
position of the input image in the database, we adopt the following
equation:

/0i ¼ k
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
ð/i � /minÞ=/max

p
; /max 6¼ 0; i ¼ 1;2; . . . ;n ð28Þ

where the /min and /max are the minimal and maximal value of
the given value in low dimension, /i is the input image embed-
ding in low dimension, /0i is the computed relative position,
and k is scaling constant, default value is set to 1.0. Usually, for
a gesture motion sequence, hand at a rest position may be
over-sampled while the fast transforming process may be un-
der-sampled. Compared to the first order linear equation to
approximate the given points, the approximation above can fol-
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Fig. 13. Two-dimensional embeddings of three hand gestures. (a) Results from
DLLE and (b) results from PCA.
low the finger movement more naturally and make the tracking
animation more realistic.

8. Experiments

In this section we present the results of experiments using the
proposed static home gesture recognition and dynamic motion
methods. The system is executed on a PC with Pentium IV 2.8G
CPU and 512M RAM. Our experiments are carried out under the
following assumptions:

� The hand gesture in the image should be centered with a
variation of no more than 15% along both directions of image
space.

� The user’s hand should be kept stationary during the time when
the initialization or re-initialization takes place.

� While tracking, the user should avoid much global movement.
Sudden, jerky hand movements should also be avoided.

We first perform a series of off-line captures to create a large
home gesture database. The database contains 1120 images of 14
different type of home gestures. These samples are used for train-
ing the PNN. Apart from the training samples, another 20 samples
of each gesture are employed to be tested. The hand gesture can
have a variation of 15% along the horizontal (X) axis and the verti-
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Fig. 14. Three-dimensional embeddings of three hand gestures. (a) Results from
DLLE and (b) results from PCA.
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cal (Y) axis of the world coordinate about the center of the image.
While the orientation of the gesture can have a variety about
�10�—10� around the X, Y, Z axis of the world coordinate. The
images are captured under three lighting conditions, three hand
scales and various orientations within the above range which are
shown in Fig. 12.

8.1. Static recognition

We first compare the properties of the DLLE and PCA after the
sample images are mapped to low dimension. After the projection,
the projected low dimension data should keep the neighborhood
relations of the original images. Images of the same gesture should
cluster together while different gesture images should be apart.
Fig. 13 compares the two-dimensional embeddings obtained by
DLLE and PCA for N ¼ 100 samples from three hand gestures,
respectively. For clarity, we only adopt three home gestures for
comparison. The circle, cross and star points represent three differ-
ent kinds of gesture samples. We can see from Fig. 13(a) that for
l ¼ 2, the embedding of DLLE separates the three gestures quite
well. Samples of the same gesture clustered together while only
a few different gesture samples are overlapped. Fig. 13(b) shows
that the three gesture samples overlapped seriously. PCA cannot
separate the three gestures in any meaningful way in 2D.

Fig. 14 compares the three-dimensional embeddings obtained
by DLLE and PCA for N ¼ 100 samples of each gestures. From
Fig. 14(a) we can see that for l ¼ 3, the embedding of DLLE can keep
Fig. 15. The recognition rate with respect to r of the PNN. The solid line represents recog
l ¼ 5, (b) recognition rate for l ¼ 10, (c) recognition rate for l ¼ 30 and (d) recognition r
the similarity of each gesture samples and separate the three ges-
tures quite well in three-dimensional space. As seen in Fig. 14(b),
the projected sample points by PCA are still in a chaos. The circle
samples and the cross samples are mixed together. PCA fails again
to cluster the three gestures in 3D.

We test how the projected dimensionality l affects the recogni-
tion rate when using PNN. Generally speaking, the higher the pro-
jected dimension, the more feature information is kept in the
projected data set. Fig. 15 demonstrates the relationship of the pro-
jected dimension l of DLLE and recognition rate. For the flat portion
of each diagram, the average recognition rate for l ¼ 5 is above 70%,
for l ¼ 10 is above 80%, for l ¼ 30 is above 90% and for l ¼ 50 is
around 90%. We can see that with the increase of the l, the recog-
nition rate can be improved dramatically until l is over 30, the
improvement becomes unconspicuous. It means that the projected
dimension is sufficiently large. The recognition accuracy has little
improvement when l is over 30. Thus, we take l ¼ 30 as the
trade-off between efficiency in computing and satisfactory perfor-
mance (Table 1).

Fig. 15 also illustrates the recognition rate versus the value of
the smoothing factor r of PNN. For each specific l, the parameter
r is adjusted from small to large to obtain the ‘‘best” results. It is
clear that with the increase of r, the recognition rate will rise until
the peak is reached and then it descends slowly. We can see from
Fig. 15(b) to 15(d), the diagnostic accuracy can remain sufficiently
high with a board range of r. So by comparing the highest recogni-
tion accuracy, it is not difficult to obtain the optimal r. For l ¼ 30,
nition rate using DLLE while the dashed line represents LLE. (a) Recognition rate for
ate for l ¼ 50.



Table 1
Hand gestures recognition results using DLLE

No. of training samples No. of test samples Recognition rate (%) Gesture classes Dimension

800 200 85.5 10 19
1120 280 71.8 14 5
1120 280 82.1 14 10
1120 280 88.6 14 18
1120 280 93.2 14 30

Fig. 16. Dynamic tracking of two hand motions from left to right: (a) from a fist to a palm and (b) from two fingers to a fist.
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when r equals to 0.27, the recognition rate can reach up to 93.2%.
Compared to other methods in the literature, in [29], the minimal
recognition rate of the distinct hand gestures is about 60–85%
using contour discriminant-based static shape recognition method.
The recognition rate achieves 91.9% with 14 predefined gestures in
[30] using hidden Markov models (HMM) and recurrent neural
networks (RNN).

In addition, we examine the recognition rate using our DLLE and
LLE algorithm by comparing the highest part of both curves. For
l ¼ 5, DLLE has a better peak recognition rate of 71.8% while LLE’s
is nearly 70%. For l ¼ 10 and l ¼ 30, DLLE has a better recognition
rate than LLE both on average and peak value. For l ¼ 50, DLLE
and LLE’s performance are more or less the same. Our proposed
algorithm DLLE does not need the trial-and-error process and does
not need to specify how many neighbors must be found for recon-
struction. Therefore, the accuracy of the recognition rate is
increased.

8.2. Dynamic tracking

The tracking system can reach a rate up to two frames per sec-
ond. Our system can track the hand motion and follow the move-
ment naturally. The experimental results are given in Fig. 16. The
image captured by the camera is on the left, while the correspond-
ing model reconstructed using our method is shown on the right.
From the reconstruction model, we can see that our model can fol-
low the gesture motion quite well. The reconstructed model may
not follow the gesture image exactly and there may be some differ-
ence between the captured image and reconstruction model. How-
ever, it is similar enough for modeling and tracking.

9. Conclusions

This paper is concerned with the problem of static hand gesture
recognition and dynamic gesture tracking. An unsupervised learn-
ing algorithm, DLLE, has been developed to discover the intrinsic
structure of the data. These discovered properties were used to
compute their corresponding low-dimensional embedding. Associ-
ated with PNN, a high recognition accuracy algorithm has been
developed for static hand gesture recognition. The neighborhood
preserving property of DLLE preserved the adjacent relationship
of the motion sequence images in low-dimensional space. For dy-
namic gesture tracking, we made use of the similarity measures
among the images, so that hand gesture motion from a sequence
of images can be tracked and dynamically reconstructed according
to the image’s relative position in the corresponding motion data-
base. Experimental results showed that our approach was able to
successfully separate different hand postures and track the dy-
namic gesture.
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