
IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 6, DECEMBER 2007 1541

Hierarchical Incremental Path Planning and
Situation-Dependent Optimized Dynamic

Motion Planning Considering Accelerations
Xue-Cheng Lai, Shuzhi Sam Ge, Fellow, IEEE, and Abdullah Al Mamun, Senior Member, IEEE

Abstract—This paper studies a hierarchical approach for incre-
mentally driving a nonholonomic mobile robot to its destination in
unknown environments. The A∗ algorithm is modified to handle
a map containing unknown information. Based on it, optimal
(discrete) paths are incrementally generated with a periodically
updated map. Next, accelerations in varying velocities are taken
into account in predicting the robot pose and the robot trajec-
tory resulting from a motion command. Obstacle constraints are
transformed to suitable velocity limits so that the robot can move
as fast as possible while avoiding collisions when needed. Then,
to trace the discrete path, the system searches for a waypoint-
directed optimized motion in a reduced 1-D translation or rotation
velocity space. Various situations of navigation are dealt with by
using different strategies rather than a single objective function.
Extensive simulations and experiments verified the efficacy of the
proposed approach.

Index Terms—Collision avoidance, forward kinematics, incre-
mental path planning, optimization, robot dynamics, velocity
space.

I. INTRODUCTION

I T IS ESSENTIAL for mobile robots to utilize partial knowl-
edge of the environment in order to accomplish tasks, such

as autonomous exploration and path planning, as a priori model
maps are not always available. To find a path between two
points in a known environment, graph search algorithms, such
as Dijkstra’s, the A∗ algorithm [1], Bellman–Ford’s algorithms
[2], the wavefront algorithm [3], or visibility graph approaches
[4], can be used. The A∗ search algorithm is an effective heuris-
tic improvement over Dijkstra’s algorithm and yields a better
average performance when one only needs the optimum path
between two grid cells in a directed graph with nonnegative
weights. As a dynamic version of the A∗ algorithm, the D∗ algo-
rithm [5], [6] plans optimal traverses by incrementally repairing
paths to the robot’s state as new information is discovered.
In the field of path planning, there are a number of search-
based methods [7]–[9] which exhaustively explore the system’s
configuration space (C-space) to capture the global connectivity
of a robot’s free space.

Manuscript received April 8, 2007. This paper was recommended by
Associate Editor W. Dixon.

The authors are with the Electrical and Computer Engineering De-
partment, National University of Singapore, Singapore 117576 (e-mail:
laixuecheng@alumni.nus.edu.sg; elegesz@nus.edu.sg; eleaam@nus.edu.sg).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSMCB.2007.906577

If a series of subgoals/waypoints connected with their
adjacent ones is provided (e.g., by a high-level path planner),
the remaining problem is to generate motion commands for
the robot to sequentially trace them (and perform collision
avoidance at the same time). To accomplish this task, a number
of approaches use local sensory information in a purely reactive
fashion for robustness to uncertainties and incorporate collision
avoidance in the meantime. One category of such approaches
is the directional approach, and the other is the velocity
space (translational–rotational velocity space) approach. The
directional approach computes a direction for the robot to head
in, either in Cartesian or configuration space. For instance,
potential field methods [10]–[12] use the vector summation
of an attractive force representing the goal and a number of
repulsive forces that are associated with obstacles to compute
a desired robot direction. By computing a 1-D polar histogram
from detected obstacles, the vector field histogram approach
[13] improves over traditional potential field methods, in the
sense that it can achieve a smoother navigation and has more
chances to successfully find paths through narrow openings.
The nearness diagram algorithm [14], [15] and instant goal
approach [16], [17] also belong to this category of approaches.
The path deformation method [18] iteratively deforms the
current path using potential fields over the C-space in order to
achieve collision-free smooth motions.

Although simple and efficient in producing a direction com-
mand for a collision-free motion, the direction approach is
inadequate to take the robot dynamics into account, which
may result in slow or jerky movements. The velocity space
approach, on the other hand, incorporates vehicle dynamics and
decides both rotation and translation velocities at the same time.
For example, dynamic window approaches [19]–[21] search
the velocity space for a heading close to the goal direction,
without hitting obstacles within several command intervals. The
curvature-velocity method [22] searches the velocity space for
a point that satisfies the velocity and acceleration constraints
and maximizes an objective function. Although it produces
reliable, smooth, and speedy navigation in office environments,
it has shortcomings such as passing some collision-free paths
with a high turning angle. In addition, to find the best motion
command, it is insufficient to simply define a single objective
function for the constrained optimization problem [23].

It is believed that gradual learning about the surroundings,
with the capability of simultaneously planning a path, often
results in better plans. On the other hand, each of delibera-
tive planning and reactive control compliments the other and

1083-4419/$25.00 © 2007 IEEE

1542 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 6, DECEMBER 2007

compensates for the other’s deficiencies. This paper studies a
hierarchical approach that is used to incrementally plan paths
while the robot acquires more knowledge about the surround-
ings. The A∗ algorithm is modified to suit the needs of this
research (i.e., to handle a map with unknown information),
based on which a high-level planner incrementally provides
a series of optimal paths robustly. Next, modeling of forward
kinematics is presented for differential steering mobile robots,
and dynamic constraints and accelerations are considered to
track a motion command. Then, a situation-dependent approach
is proposed for optimized dynamic motion planning which
searches for dynamic admissible and collision-free motions
in a reduced velocity space. Finally, experimental results are
included, with extensive discussions. Compared with traditional
path planning approaches, the main contributions of this paper
include the following:

1) Accelerations in both translation and rotation are consid-
ered in order to better predict the robot pose and the robot
trajectory resulting from a certain motion command. The
obstacle constraints are transformed to suitable velocity
limits for the robot to move as fast as possible while
avoiding collision when needed.

2) An optimized motion is obtained by searching in a re-
duced 1-D translation or rotation velocity space with
situation-dependent object functions rather than a sin-
gle objective function to cater to different situations of
navigation.

3) A hierarchical two-stage approach robustly plans op-
timal paths incrementally by using partial map infor-
mation. By ensuring connectivity and a decrease in its
distance/orientation angle to a waypoint, the robot is thus
able to converge to it and, eventually, to the goal.

II. INCREMENTAL DYNAMIC PATH PLANNING

WITH PARTIAL MAP

This section presents an incremental search algorithm for
replanning robot paths with a periodically updated map.

A. Modified A∗ Search for Partially Known Environments

1) A Star Search: The A∗ search employs a “heuristic esti-
mate” that ranks each node with an estimate of the best route
that goes through that node. It visits the nodes in order of this
heuristic estimate. In each step of a search, a weight function
f is used to order the queue. Two cost functions are defined as
follows first:

1) g(s)—the actual cost of going from the initial “state”
(a grid cell of the map) to the current state s;

2) h(s)—a heuristic estimate of the cost of going from the
current state s to the solution (goal) state.

The potential of reaching the goal via state s is then evaluated
by the estimated total cost given by

f(s) = g(s) + h(s) (1)

where g(s) can be taken as the length of the path linking the
geometric centers of the traversed regions (cells), and h(s) as
the straight-line distance from state s to the goal position.

Open and closed lists are maintained to keep track of the
progress of the A∗ search. The open list is initialized, with the
start state as the first node, and the closed list is initialized to
be empty. The following steps are repeated until the open list is
empty.

Step 1) The node with the lowest f -value in the open list
is removed and labeled as the current node. If the
removed node is the goal node, the A∗ search will
exit and return a complete chain of nodes for the path
to the goal.

Step 2) A neighboring node s (in the eight directions) of
the current node is added to the open list at a place
according to its f -value if it is not in the open list or
it is matched to a node inside the open list which has
a higher f -value.

Step 3) If node s is matched to a node inside the closed list
(which consists of nodes that have been checked)
which has an equal or lower f -value, no further
processing will be done on node s. Otherwise (i.e.,
if node s has a lower cost than the stored node), the
stored node is replaced by node s.

A discrete search (made by the A∗ algorithm or other
planners) may result in jagged across grids. Straight paths
typically look more plausible than jagged paths, particularly
through open spaces. Therefore, after the discrete path sequence
is obtained, redundant points are removed, and only a set
of waypoints that are connected by straight line segments
are left.

2) Dynamic Searching in Partially Known Environments:
The robot may have only partial information about the en-
vironment before it begins its A∗ search, as a priori model
maps are rarely available. D∗ algorithms are capable of plan-
ning paths in partially known and changing environments.
However, D∗ search is much harder to implement because of
the added dimension characteristic to the problem of attempt-
ing to navigate with real-time replanning in partially known
environments.

Being similar to the work in [24], this paper uses the A∗

algorithm for search, considering its robustness in finding an
optimal path. To handle a map containing unknown informa-
tion, the condition of finding a path is accordingly defined
as follows [25]: if the removed node is the goal node, the
successful path is reconstructed, and the algorithm ends; if
the removed node is unknown, a possible path is found, and
the algorithm ends. In the latter case, no sufficient knowledge
is available to ensure that there exists a feasible path planned
between the second last node and the goal node.

B. Obstacle Enlarging and Addition of Obstacle Cost

In this paper, occupancy grid map is used since it provides
more detailed information about the environment (compared
with geometric or topological map) and can easily be updated
when there is a sensor input due to the probabilistic nature of
grids. The planner first creates a configuration space from the
grid map, considering the robot dimensions: The grid map is
processed by enlarging each occupied grid to its neighboring

LAI et al.: HIERARCHICAL INCREMENTAL PATH PLANNING 1543

free grids with a value bigger than the size of the robot (or rrob,
which is the radius of a circular robot):

renlarge = cenlarge · rrob (2)

where cenlarge (larger than one and typically in the range [1.2,
1.5]) is a coefficient about how conservative the safety margin
should be to ensure the safety of the robot.

If the A∗ algorithm is applied onto such a configuration
space, it can be found that some parts of the obtained optimal
path may be located very close to the obstacles. “Obstacle
cost” is thus assigned to each free cell based on dnearest,
which is its distance from its nearest obstacle cell(s) in the
C-space constructed. Obstacle cost is defined as follows, such
that it will be infinitely big if the distance is within renlarge,
zero if the distance reaches the obstacle-influencing distance,
rmax(> renlarge), and, otherwise, proportional to the inverse of
the distance:

cobs =

{∞, dnearest < renlarge

αobs/dnearest, renlarge ≤ dnearest ≤ rmax

0, dnearest > rmax

(3)

where αobs is a predefined coefficient to determine the signifi-
cance of obstacle cost.

When the search was subsequently carried out, both occupied
and unknown cells are treated as occupied ones, and each free
grid node in the constructed C-space is assigned with two
values: a g-value and an h-value, with an addition of obstacle
cost to g(s), i.e.,

g(s) = ga(s) + cobs(s) (4)

where ga(s) is the cost of traveling a cell length or
√

2-fold
of a cell length, depending on whether node s is directly or
diagonally neighboring to the current node that is just removed
from the open list as the root node.

C. Incremental Planning Algorithm

Fig. 1 shows the flowchart of the proposed incremental
planning algorithm. Initially, it sets up basic settings such as
the robot’s initial pose, the goal, and the information (size and
resolution) of the grid map. After a partial map is created with
laser and odometry sensory data, the planner is able to plan/
replan a path with the following procedure.

Step 1) Search and Planning: Based on the C-space and
the obstacle cost information, an optimal path, in
the form of a series of nodes, is planned from the
current state to the goal using the modified A∗ search
algorithm. As only a partial map is available, such a
path can be either a path to the goal node, which is
denoted as “Path_To_Goal,” or a possible path to it
(i.e., the path from the second last node to the goal
node contains unknown areas), which is denoted as
“Possible_Path.”

Step 2) Moving and Sensing: The robot moves toward its
target node while collecting information about its

Fig. 1. Flowchart of an incremental search and planning algorithm.

surroundings. When the target node is reached (i.e.,
within a certain distance from the robot), the robot
will decide its next action as follows.
a) If the target node is the goal, the path planning

task is accomplished.
b) If the target node is the second last node in the

series of nodes and the search result is “Possi-
ble_Path,” the procedure will go to Step 3).

c) Otherwise, the robot will continue this step to
approach the remaining nodes in the plan.

Step 3) Relocalization for Next Round of Planning: Before
the robot is able to go to Step 1) to replan a new path,
the robot sends requests for the best estimate of the
relative position between it and the goal, as well as
the updated map information of the world.

Remark 1: Because it takes a while to update/receive the
map supplied for search and to carry out such a graph search,
we do not want to update this map while the robot is moving,
or else, it may run into an obstacle or deviate from the planned
path. The robot is therefore commanded to stop, and the system
subsequently replans a new path (a series of waypoints) to the
goal. To the best of our knowledge, grid-map-based deliberate
planning approaches seldom choose to continue driving the
robot during that period unless there is a global path to guide
the robot to continue moving forward. Nevertheless, the sys-
tem’s performance (mainly the average robot speed) could be
enhanced if this restriction can be relaxed.

III. FORWARD KINEMATICS AND PREDICTED ROBOT

TRAJECTORY UNDER ROBOT DYNAMIC CONSTRAINTS

This section presents modeling of forward kinematics of
differential steering mobile robots, admissible robot motion
subject to various dynamic/actuator constraints, and resulting

1544 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 6, DECEMBER 2007

TABLE I
NOMENCLATURE

robot trajectories that conform to forward kinematics of a robot.
Table I lists some notations to be used.

A. Forward Kinematics of Differential Steering Robots

The body frame of a differential steering robot obxbyb is
established such that the origin is located at the midpoint of
rear-axle W and that the xb axis coincides with the main axis
of the robot. The configuration of the robot is defined by q =
[x y θ]T. The reference point (RP) that is used to trace a
path is chosen at the midpoint of the rear-axle, and the robot’s
translation velocity v is thus defined at this point. We have

ẋ = v cos θ ẏ = v sin θ θ̇ = ω. (5)

Forward kinematics is to predict the behavior of a mechanical
system based on the inputs to that system, i.e., in this paper,
how to find out the robot trajectory if the speeds are known.
The robot velocities at any time are related to the velocities of
the left and right wheels (vL and vR) as follows:

v(t) =
vR(t) + vL(t)

2
ω(t) =

vR(t)− vL(t)
b

(6)

where b denotes the wheelbase, i.e., the distance between the
two rear wheels.

Let (x0, y0, θ0) denote the initial pose of the robot. When the
wheels turn at fixed velocities, the differential equations in (5)
are solvable as follows:x(t) = x0 + v0

ω0
(sin(ω0t+ θ0)− sin θ0)

y(t) = y0 − v0
ω0

(cos(ω0t+ θ0)− cos θ0)
θ(t) = θ0 + ω0t

(7)

which implies that the trajectory that the robot follows is a
circular path with its radius r = v/ω.

Many research works (e.g., [15] and [19]) thus assume that
the robot velocities remain constant in each control period, such
that the robot path will be a straight line or a circular path.
However, the velocities are normally time-varying in a con-
trol period as robots are frequently accelerated or decelerated
during navigation. Thus, the differential equations in (5) must
be evaluated using numerical methods. At a relatively short

interval of ∆t, we may take that the wheels undergo a fixed
rate of acceleration or deceleration, i.e.,

vL(t) = vL0 + aLt vR(t) = vR0 + aRt (8)

where vL0 and vR0 and aL and aR are the initial velocities and
accelerations of the left and right rear wheels, respectively.

Given (8), (6) can be converted to the following:{
v(t) = aR+aL

2 t+ vR0+vL0
2 = at+ v0

ω(t) = aR−aL

b t + vR0−vL0
b = εt + ω0

(9)

where v0, ω0, a, and ε are the initial values of the translation
and rotation velocities, the longitudinal acceleration, and the
angular acceleration of the robot, respectively.

With (5) and (9) and the initial condition of integral as
(x0, y0, θ0), the solution for the robot pose is

x(t) =
t∫

0

(at+ v0) cos
(

1
2εt

2 + ω0t+ θ0

)
dt+ x0

y(t) =
t∫

0

(at+ v0) sin
(

1
2εt

2 + ω0t+ θ0

)
dt+ y0

θ(t) = 1
2εt

2 + ω0t+ θ0

(10)

where the position can be obtained only through a numerical
integration method such as Simpson’s rule.

B. Admissible Motions Satisfying Dynamic Constraints

Due to the actuators’ limits, there exist maximum limits on
the robot velocities and robot accelerations. Let as,max denote
the maximum acceleration at which the robot can comfortably
and smoothly be accelerated, and let amax denote the maximum
permissible deceleration at which the robot can be slowed down
and stopped without causing skidding to occur. Let vmax, ωmax,
and εmax denote the maximum translation velocity, maximum
rotational velocity, and maximum rotational acceleration of
the robot, respectively. The desired translational and rotational
velocities (v1, ω1) will be confined by the following rectangular
region (also shown in Fig. 2) in order for the robot to achieve
a smooth and (actuator) feasible motion, or simply called
“admissible” motion:

Va = {(v1, ω1)|v ≤ v1 ≤ v, ω ≤ ω1 ≤ ω} (11)

where v = max(0, v0 − amax∆t) (if no reverse movement
is allowed for the robot), ω = max(−ωmax, ω0 − εmax∆t),
v = min(vmax, v0 + as,max∆t), and ω = min(ω0 + εmax∆t,
ωmax).

C. Trajectories Generated by Admissible Motion Commands

What would be the robot trajectory like within the duration of
∆t if it is commanded to a certain motion, under the constraints
(11)? Let us first consider the initial and final turning radii (the
distance from the rotation center to the RP).

If the desired target velocities are known as v1 ∈ [v, v] and
ω1 ∈ [ω, ω], the turning radius at a given time instant t ∈ [0,∆t]

LAI et al.: HIERARCHICAL INCREMENTAL PATH PLANNING 1545

Fig. 2. Region of admissible translation and rotation velocities.

can be evaluated using the following formula:

r(t) =
v0 + (v1 − v0)t/∆t

ω0 + (ω1 − ω0)t/∆t
. (12)

Apparently, the turning radius at the initial and final robot
configurations can be given by r0 = v0/ω0 and r1 = v1/ω1.
Unfortunately, r1 is often unknown beforehand as, normally,
the target velocities are to be decided.

Without losing generality, suppose that ω0 > 0 and ω > 0
(like the one that is shown in Fig. 2). Table II lists the special
cases of possible final turning radii if (fixed) acceleration/
deceleration is imposed on v and ω. Next, let us explore some
useful properties about robot trajectories.

Property 1: The value of r(t) belongs to a certain range that
is determined by 1r(t), 3r(t), and 4r(t).1 Specifically{

r(t) ∈ [1r(t),3 r(t)], if ω > 0
r(t) ∈ [1r(t),∞]

⋃
[−∞,4 r(t)], if ω ≤ 0.

(13)

Proof: The aforementioned equation can be proved by
evaluating (12). �

Property 2: Arc length s(t) at any time from the robot’s
initial position is between 1s(t) and 3s(t), which are arc lengths
of trajectories 1r(t) and 3r(t), respectively.

Proof: Arc length s(t) can be expressed as

s(t) =

θt∫
θ0

rdθ =

t∫
0

r
dθ

dt
dt =

t∫
0

rω(t)dt =

t∫
0

v(t)dt

=
v1 − v0

2∆t
t2 + v0t (14)

from which we know that the arc length is proportional to
the final translation velocity (when other variables in the
equation are fixed), and thus, it can be proved that s(t) ∈
[1s(t),3 s(t)]. �

To more clearly illustrate this property, Fig. 3 shows the
trajectories of a robot2 with v0 = 0.3 and ∆t = 0.5. The left
and right diagrams show the robot trajectories generated during
the last 1/60 s for ω0 = 1.4 (and thus ω ≥ 0) and for ω0 = 0.2

1Prefix superscript of r(t) or s(t) denotes the numbering of turning radius
or arc length.

2The robot’s dynamic constraints are vmax = 0.8 m/s, ωmax = 2.0 rad/s,
amax = 0.8 m/s2, as,max = 0.5 m/s2, and εmax = 1.6 rad/s2.

TABLE II
SPECIAL CASES OF POSSIBLE ROBOT TRAJECTORIES

Fig. 3. Trajectories that are generated during the last 1/60 s and are dis-
tinguished by different colors according to the value of ending translation
velocities. The entire trajectories for v1 = 0 are plotted in black color.

(and thus ω < 0), respectively. It is shown that the arc length
of an admissible trajectory is directly related to the value of v1:
the larger v1 is, the longer is the trajectory. It can be known in a
similar way that ω1 determines the angular displacement of the
robot (for the same v1).

IV. SITUATION-DEPENDENT MOTION OPTIMIZATION

IN REDUCED VELOCITY SPACE

A. Admissible Collision Avoidance Considering Accelerations

Robot position at the end of a certain control period can
be computed through numerical integration as (10). As shown
in Fig. 3, in most cases, trajectories can be much different
(especially when the duration is big) from the circular one and,
thus, may not be able to be approximated by a circle. This paper
takes into account the existence of accelerations.

To obtain a satisfactory trajectory, first the commanded
velocities should be admissible, as discussed in the previous
section. In addition, the selected motion command should result
in a trajectory without intersecting with obstacles, and, in the
meantime, allow the robot to stop before it touches an obstacle,

1546 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 6, DECEMBER 2007

Fig. 4. Extended robot trajectories and allowed travel distance. (a) Admissible trajectories (in black color) for ∆t = 0.2 s and trajectories (in blue color) for
robot to be subsequently stopped. (b) and (c) Allowed travel distance sstop(O) for the robot to safely stop without touching obstacles.

given the current robot position and the actuator’s deceleration
capability of the robot. If the robot is commanded to (v1, ω1),
the minimum time to stop the robot is obtained by decelerating
the robot with maximum acceleration without causing it to
skid, i.e.,

tstop =
v1

amax
. (15)

Similar to the Proof of Property 2, the total arc length that is
traveled by the robot, which moves for ∆t and is subsequently
commanded to stop, can be derived as follows:

s =

θt∫
θ0

rdθ =

∆t∫
0

v(t)dt+

∆t+tstop∫
∆t

v(t)dt

=
v0 + v1

2
∆t+

v2
1

2amax
(16)

which implies that the arc length of the extended trajectory for
stopping the robot is proportional to the square of v1.

Fig. 4(a) shows the entire trajectories that are generated if
the robot moves at any admissible velocities for a duration of
∆t = 0.2 s and is subsequently commanded to stop. Let A,
B, C, and D denote the endpoints of the extended special
trajectories (which include the extended part for the robot to
stop) traj 1, traj 4, traj 5, and traj 3, respectively. For collision
test purposes, the set of the robot trajectories obtained in a
control period (0.2 s or less) could be approximated by a
circular path, starting from the robot’s current position and
ending at a point denoted by E.

As shown in Fig. 4, the total area that is covered by the
trajectories can be approximated by a region γ that is formed
by points O, A, B, C, D, and E: the circular arc passing O and
E, the sectorEÂB, and the sector ÂBĈD. Of course, if ω ≥ 0,
ÂBĈD is not so accurate to represent the corresponding part
of the trajectories, but still sufficient for the prediction of any
potential collision.

The allowed travel distance sstop(O) is defined as the maxi-
mum possible arc distance for the robot to travel from its current
position O at any admissible velocity (under the current transla-
tion and rotation velocities, and the robot dynamic constraints)
for a duration of ∆t, and subsequently, to be commanded to
stop without touching the obstacles (denoted as obs). It can be
approximated as follows, without being overestimated:

sstop(O)≈

∞, if obs
⋂
γ=∅

|Ôobs|, else if obs
⋂
ÔE �=∅

sstop(O)ÂB
E + |ÔE|, else if obs

⋂
EÂB �=∅

sstop(O)ĈD

ÂB

+|ÔE|+ |E, ÂB|, otherwise
(17)

where sstop(O)ÂB
E is part of the allowed travel distance

sstop(O) that is counted from E to arc ÂB, sstop(O)ĈD

ÂB
is part

of sstop(O) that is counted from arc ÂB to arc ĈD, and |Ôobs|
is the arc (whose radius is approximated as v0/ω0) distance
from O to the obstacle(s), respectively.

Then, we are able to compare the value of the allowed travel
distance sstop(O) with that of the furthest arc length s(tstop) [as
in (16)]. Collision-free motion can be ensured if the following
constraint is satisfied: s(tstop) ≤ sstop(O), i.e.,

v0 + v1

2
∆t+

v2
1

2amax
≤ sstop(O). (18)

Given that v1, ∆t, and amax are all nonnegative values, we
may derive vstop, the limit of the maximum translation velocity
due to the obstacle constraints, as follows:

Vs =

{
(v1, ω1)|v1 ≤ vstop = −amax∆t

2

+

√
amax (2sstop(O)− v0∆t) +

a2
max∆t2

4

}
. (19)

LAI et al.: HIERARCHICAL INCREMENTAL PATH PLANNING 1547

In comparison, dynamic window approaches consider veloc-
ities that do not hit an environment obstacle based on only the
chosen velocity command and the assumption of circular robot
motion: {

(v1, ω1)|v1 ≤
√

2dist(v1, ω1)amax,

ω1 ≤
√

2dist(v1, ω1)εmax

}
(20)

where the function dist(v1, ω1) represents the distance to the
closest obstacle on the curvature that is defined by the velocity
pair (v1, ω1), which is measured by the product of the radius
of the circular trajectory r = v/ω and the angle of the circular
path that touches the nearest obstacle.

By combining (11) and (19), the search space of admissible
and collision-free velocities in this paper will be

V1
�
= [v1, v1]× [ω1, ω1] = Va

⋂
Vs. (21)

B. Motion Optimization in Event of Potential Collision

Provided that the robot has physical dimensions, the admissi-
ble region which covers all admissible trajectories is expanded
by a radius defined as (2) before sstop(O) is computed. To
reduce computational load, we consider only a subset of laser
scans, which are of range within the maximum possible traveled
distance that is determined by the current robot speed and the
dynamics of the robot.

Situations of potential collision with obstacles and no poten-
tial collision are dealt with different strategies when searching
for an optimized motion. In this paper, potential collision is said
to exist if and only if any laser scan of the subset falls within
the expanded admissible region. The main task under this
situation is to avoid collision with obstacles while approaching,
if possible, the intermediate waypoint (or the target, denoted as
g). The following are the optimization targets when searching
for a desired motion command.

1) Move to space with a bigger opening. The movement of
the robot is now expected to drive it to a place that is safe
from collision with obstacles. In addition, alignment with
the target or convergence to it is now of low priority.

2) Direct connectivity with the target. To avoid being
trapped in local minima, it is important to ensure a direct
(straight-line) connectivity between the resulting robot
position q1(x1, y1) (corresponding to velocity (v1, ω1))
and the position of the target qg .

The requirement of item 1) results in a robot favoring a
rotation that drives it to a space within a subset of admis-
sible angular velocities. Before searching for an optimized
motion, the rotational velocity is randomly assigned a value
within the favorable set of angular velocities that drive the
robot to the space with a bigger opening. This favorable
set, denoted as [ωα, ωβ], is determined when sstop(O) is
computed.

Item 2) is used to ensure that the robot is able to reach each
target, while it is noted that generally reactive planning methods

(including direction and velocity space approaches) may get
trapped in local minima. A collision test is carried out between
the obstacle points and the rectangular ray expanded from the
line segment q1qg . A cost function about connection is defined
as follows:

linkcost(q1,qg) =

 1, if C(q1, renlarge)
⋂

obs �= ∅
1
2 , if Υqg

q1 (renlarge)
⋂

obs �= ∅
0, otherwise.

(22)

The objective function to be evaluated in this situation is
defined as follows:

fc,1 = cv
|min(v0, v1)/2− v1|

vmax
+ cllinkcost(q1,qg) (23)

where cv and cl are weights that are used to adjust the impor-
tance of each item, and the first term in the right-hand side
of the equation indicates a preference for the robot to travel
at around half of the minimum value between the maximum
allowed speed and the current speed, i.e., min(v0, v1).

C. Motion Optimization in Absence of Potential Collision

The robot under this situation is expected to be commanded
to approach the intermediate waypoint as fast as possible.
Specifically, the following are the optimization targets when
searching for a suitable robot motion.

1) Better alignment with the target. The alignment of the
robot heading at q1 with the target should be relatively
favorable compared with other motion candidates.

2) Decreasing distance to the target. The distance of q1 from
the target should decrease with respect to that of the
initial robot position q0. This is to ensure that the robot
converges to each waypoint given by the planner.

3) Direct connectivity with the target. It will be favorable if
there exists a direct (straight-line) connectivity between
q1 and the target.

First, the robot’s new pose q1 is obtained through integration,
as in (10). Item 1) can be measured by the difference between
θb

g and θb1
g , the target direction in the current robot body frame

{b}, and the target direction in the final robot body frame {b1}.
In addition, the rotation should not be too large, as it accounts
for localization errors (but this is of lower priority compared
to the alignment to the target). A certain angular acceleration
may occur when the angular velocity is adjusted, and thus, the
orientation change θb

1 should be computed as follows, rather
than being evaluated by ω1∆t as is commonly done:

θb
1 = θ1 − θ0 =

1
2
(ω0 + ω1)∆t. (24)

Item 2) is directly evaluated based on the difference between
the distances of the target from q1 and from q0. As before,
item 3) can be evaluated via (22).

1548 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 6, DECEMBER 2007

A minimization objective function is then designed as
follows:

fc,2 = cg

∣∣θb1
g

∣∣− ∣∣θb
g

∣∣
π

+ cd (|q1qg| − |q0qg|)

+ cllinkcost(q1,qg) + cθ

∣∣θb
1

∣∣
ωmax

�
= fg

c,2 + fd
c,2 + f l

c,2 + fθ
c,2 (25)

where cg , cθ, cd, and cl are weights that are used to adjust the
importance of each term.

The “stage” of the robot’s current motion is determined
according to the distances from the robot to the target way-
point and to the start waypoint (qs), and is categorized as
follows:

stage=

STarget(VeryClose), if |q0qg|< dreached

STarget(Close), else if |q0qg|≤ max(dclose,v0)
SStart, else if |qsq0|≤ dclosetostart

SMiddle otherwise

where dreached < dclosetostart < dclose holds for the constants.
The parameter cd is defined as follows, such that a decreasing

distance to the target is preferred in the stage of SMiddle

cd =
{
c∗d, if in SMiddle and |q1qg| > |q0qg|
0, otherwise

(26)

where c∗d [and c∗θ in (27)] is a predefined constant. In addition,
only motions satisfying fg

c,2 + fd
c,2 < 1 can be accepted in

order to facilitate convergence to the goal.
The parameter cθ is defined as follows, in view that bigger

rotations are allowed when the robot is close to the start/target:

cθ =
{
c∗θ, if stage = SMiddle

c∗θ/2, otherwise. (27)

D. Optimization Algorithm in Reduced Velocity Space

Algorithm 1 presents the procedure that is used to obtain
a series of optimized motions for the robot to reach the
specified waypoint. Uni_rand(min, max) is a uniform random
function.

Algorithm 1 MotionOptimization(waypoint qg)
1: while qg is not reached do
2: Update (v0, ω0) with odometry sensory data.
3: if A new laser scan is not ready then
4: continue.
5: Va ← (v0, ω0) and robot dynamics. � (11)
6: sstop(O), [ωα, ωβ]← v0, ω0, Va, laser scan. � (18)
7: vstop ← sstop(O); V1 ← Va

⋂
Vs. � (19), (21)

8: if potential collision detected then
9: fold

c,1 ← 2; OptVelFound← FALSE.
10: while OptVelFound = FALSE do
11: ω1 ← (ωα + ωβ)/2 + uni_rand(ωα, ωβ).
12: for each v1 ∈ “discretized set of” [v1, v1] do
13: if fc,1 < fold

c,1 then

14: fold
c,1 ← fc,1; OptVelFound← TRUE.

15: break.
16: else
17: fold

c,2 ←4; OptVelFound←FALSE; searches←1.
18: while OptVelFound = FALSE do
19: v1 ← choose_speed(v0, v1, v1, searches).
20: searches + +.
21: for each ω1 ∈ “discretized set of” [ω1, ω1] do
22: if fc,2 < fold

c,2 and fg
c,2 + fd

c,2 < 1 then
23: fold

c,2 ← fc,2; OptVelFound← TRUE.
24: break.
25: send velocity command (v1, ω1) to robot.

Unlike traditional velocity space approaches, translation or
rotation velocity is chosen before optimization is carried out.
As shown in the procedure choose_speed (Algorithm 2), if
no potential collision is detected, typically, the robot favors a
relatively low but accelerated speed when it moves from the
start, a relatively low and decelerated speed when it is close to
the target, and a relatively high speed in the middle of moving
to the target. In the event of potential collision, as shown in
Algorithm 1, rotation velocity is set as the median value of the
favorable set [ωα, ωβ].

Algorithm 2 choose_speed (v0, v1, v1, searches)

1: Step 1: Adjust v1 if necessary according to Stage:
2: SStart: v1 ← v0 + 0.5 · as,max ·∆t, if v0 < vmax/4.
3: SMiddle: k ← 1 if v0 < vmax/2, k ← 0.5 otherwise.
4: v1 ← v0 + k · as,max ·∆t.
5: STarget(VeryClose)/STarget(Close):
6: if target is the goal or the 2n last waypoint then
7: if STarget(VeryClose) then
8: v1 ← vmin.
9: else
10: v1 ← v0 − amax ·∆t, if v0 > vmax/2.
11: v1 ← v0 − 0.5 · amax ·∆t · v0/(vmax/4), if v0 ∈

[vmax/4, vmax/2].
12: else
13: k ← 0.5 if v0 > vmax/2, 0.25 if v0 ∈

[vmax/4, vmax/2], 0 otherwise.
14: k ← k · 1.5 if STarget(VeryClose).
15: v1 ← v0 − k · as,max ·∆t.
16: Step 2: Obtain v1 by adding some variation:
17: If searches > 1 then
18: v1 ← v1 + uni_rand(−vmin, vmin) · (v1 <

2vmin?0.5 : 1).
19: v1 ← v1 if v1 < v1; v1 ← v1 if v1 > v1.

Search in the 2-D velocity space is thus reduced to 1-D.
Of course, if, under the chosen translation/rotation velocity,
no satisfactory rotation/translation velocity can be found, an-
other translation/rotation velocity would be chosen for a new
search.

In the process of generating a motion command, alignment
to the target and convergence to it are considered with high
priority, which are typically not taken into account by velocity
space approaches. Waypoints in this paper are designed in
such a way that each pair of adjacent waypoints is visible to
each other without being blocked by obstacles in the obstacle-
expanded grid map. By ensuring connectivity and a decrease

LAI et al.: HIERARCHICAL INCREMENTAL PATH PLANNING 1549

in the distance/angle to the target waypoint when possible
and applying the above velocity choice strategy with target-
distance lookahead, the robot is able to reach a neighborhood
area (radius < dreached) of the goal or a second last waypoint
(for the case of “Possible_Path”). For other kinds of waypoints,
the robot needs to reach a neighborhood area of bigger size
in order to perform less deceleration in the robot speed. No
investigation has been made on landing the robot at a target
accurately, considering it is beyond this paper’s main topics.

V. SIMULATION AND EXPERIMENTAL RESULTS

The proposed approach was implemented in the Linux/C
programming language. In simulations and experiments, the
same set of parameter values, as shown below, were used.

1) A circular (radius 0.406 m) differential steering robot
is used.

2) The robot’s dynamic constraints are vmax = 1 m/s,
ωmax = 2.0 rad/s, amax = 1.2 m/s2, as,max = 0.5 m/s2,
and εmax = 2.0 rad/s2. In addition, vmin is set to 0.06 m/s.

3) A laser rangefinder (SICK LMS 291, in experiments) is
mounted in the front of the robot. Its detectable range is
50 m, its angular resolution is 1◦, and its sampling rate
is 5 Hz.

4) The resolution of the global grid maps is 0.05 m× 0.05 m
per cell.

5) The safety margin coefficient cenlarge is set to 1.3.
6) The optimization parameters are set as cg = 1, c∗θ = 0.2,

c∗d = 10, cv = 1, and cl = 1.
7) dreached = 0.1 m, dclose = 0.3 m, dclosetostart = 0.15 m.
8) Computation and graphics display were performed on a

Pentium IV PC (the CPU is 2.4 GHz, and the memory is
1 GB).

A. Simulation Results

In simulations, both range and azimuth errors were intro-
duced to sensor perceptions of the environment to emulate the
actual laser data acquisition process. Fig. 5(a)–(c) shows some
of the sequence of incremental search (12 times of searches)
in the first simulation test. Each diagram plots a grid map
(supplied to the search algorithm), path nodes (i.e., waypoints,
denoted by small squares in red and wired to their adjacent
nodes), and robot trajectories. Green color depicts the expanded
part of the grid map that is supplied to search. Fig. 5(d) shows
the laser measurements and the final robot trajectories, where
each robot pose is plotted as a circle of the robot size in red.
Laser scans were continuously added to the plot without erasing
the previous ones along with the progress of navigation. To
reach the goal (11.28, −16.14), the robot took 83.44 s and
traveled for a distance of 37.76 m.

The velocity profiles obtained in this simulation are shown in
Fig. 6. It can be seen that the translation and rotation velocities
were frequently adjusted, which was to speed up the robot
when it was clear of obstacles or to avoid (potential) collision
with obstacles. The average speed (which has accounted for
the periods when the robot was stopped during a search) is
0.487 m/s. It is noted that, sometimes, the actual velocities be-

Fig. 5. Path nodes that are obtained by each search, laser scans, and final robot
trajectories (from top left to bottom right of each diagram) in first simulation.
(a) Result of the second search. (b) Result of the sixth search. (c) Result of the
tenth search. (d) Laser scans and robot trajectories.

Fig. 6. Profiles of translation and rotation velocities of first simulation test.

came zero, during which the robot was stopped for replanning
a new path. Another simulation test was conducted in the same
environment, and the average speed is 0.469 m/s.

B. Experimental Results

In the experiments, we used a Magellan Pro robot with a
payload of 9.1 kg. The robot can communicate with other
computers via wireless Ethernet. The deceleration limit amax

was set to 1.0 m/s2, instead of 1.2 m/s2, because it was observed

1550 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 6, DECEMBER 2007

Fig. 7. Path nodes that are obtained in each search and robot trajectories
in the first experiment. (a) First search. (b) Second search. (c) Third search.
(d) Fourth search. (e) Fifth search. (f) Final trajectories.

that, when moving at its maximum speed limit, the robot may
easily become unstable if it is exerted a very big deceleration
(close to or around 1.2 m/s2). Experiments were carried out in
an unknown, unstructured laboratory environment. The size of
the grid maps is 30 m × 30 m.

In the first experiment, the goal relative to the initial robot
pose was set to (3.5, −5.2). Fig. 7 shows the robot trajectories
(denoted by solid lines) right before each search and the path
nodes (denoted by red squares) that are subsequently obtained
by that search. It is shown that the hierarchical path planner
is able to lead a robot to get closer to the goal incrementally.
In addition, appropriate, optimized motions can be produced to
drive the robot to its intermediate target, which might be located
close to obstacles.

At the same time of online map building and displaying of the
current laser scan and the traveled robot trajectories, a video3

was taken during the experimental test. Fig. 8 shows the video
captures when the robot was to search a path or when the robot
was stopped.

The velocity profiles of this test are shown in Fig. 13. The
average speed is about 0.289 m/s. The result of another test in
the same environment is shown in Fig. 9. The average speed
is about 0.337 m/s, which is a bit higher than that of the
previous experiment. The translation and rotation velocities
in the experiments are smoother than those obtained in the
simulations. This is attributed to the fact that a robot, in reality,
is not always able to rapidly track the motion commands, i.e.,
the actual robot velocities will change more smoothly than the
commanded ones as long as the change in the commanded
ones is not too big. No trajectory controller other than a PID
controller has been used in this paper for the robot to track
velocity commands. On the other hand, the average speeds are
slightly less than those indicated in the simulations.

3Videos and screen captures of the first experiment test and screen captures
of the first simulation test can be downloaded at http://robotics.ece.nus.edu.sg/
planning/demo.htm.

Fig. 8. Snapshots of the first experiment when the robot was to search a path
or when the robot was stopped. (a) Searching for the first path. (b) Searching
for the second path. (c) Searching for the third path. (d) Searching for the fourth
path. (e) Searching for the fifth path. (f) Robot was stopped.

Fig. 9. Profiles of translation and rotation velocities of the second experiment.

VI. DISCUSSIONS AND COMPARISONS

A. Performance of Incremental Search

Table III shows the time that is used by each search in the
four tests, where the start nodes are excluded when counting
the number of path nodes (waypoints). Tens of other simulation

LAI et al.: HIERARCHICAL INCREMENTAL PATH PLANNING 1551

TABLE III
USED TIME AND NUMBER OF PATH NODES IN EACH SEARCH

Fig. 10. Statistics of the time used versus different map scales. The “600 ×
600” group includes the two experimental results, which use grid maps of the
same size.

and experimental tests suggested that the time spent to find a
solution is of the same level if the same map size is used.

Fig. 10 shows the statistics of the time used versus different
map scales. Generally, the average and maximum values of
the search time increase with map size. However, it is not a
proportional relationship because search is performed on free
space only (the size of which increases with each search)
instead of the entire map. It is shown that a search of a map that
is scaled at 800 × 800 or 1200 × 1200 (60 m × 60 m) takes
an average time of about 0.32 s (or less) and a maximum time
of about 0.96 s (or less). This is acceptable for most of indoor
applications, considering that simultaneous mapping and path
planning is involved. When the map scale is 30 m × 30 m,
the search time drops to 0.032 s (average value) or 0.09 s
(maximum value).

Note that display of three maps (grid map to represent the
environment, map for incremental search, and accumulated
laser scans) at the same time costs much computation power
and time, considering that drawing/displaying is done every
0.2 s for as many as 1200 × 1200 pixels (for instance). If not
for illustration purposes, the display of the three maps can be
disabled in order to enhance the system’s performance (such
as reducing the time used by the planner). In addition, for
indoor applications, the detectable range of the laser scanner
can be set at a smaller value (e.g., 20 m), instead of 50 m, to
further reduce the time/computation that is used by the map
updating process upon receiving a new laser scan. It would be

Fig. 11. Average speeds that are achieved under different dynamic settings.
“Simulation (slow stop)” group shows results of using as,max instead of
amax in (15) and (19) for a smoother stop. “Simulation (normal stop)” and
“experiment” groups present test results in Sections V-A and B, respectively.

beneficial to apply these two measures, although no obvious
timing or computational issues have been observed on the
system throughout the simulation and experimental tests.

B. Robot’s Average Speed

Factors such as the robot’s actuator capabilities could signif-
icantly influence the average speed that the robot may achieve.
Fig. 11 shows the average robot speeds that are grouped by
different dynamic settings. In the “simulation (slow stop)”
group, the average speed dropped to 0.355 or 0.370 m/s, com-
pared to 0.469 or 0.487 m/s in the “simulation (normal stop)”
group. This is more obvious in the experiments: the average
speed could drop to a third of the values in the “experiment”
group. This observation can be explained by the fact that robot
dynamics and forward kinematics have been taken into account
to compute the value of sstop(O), which, in turn, determines the
value of the maximum translation velocity due to the obstacle
constraints, as in (19). A decrease in amax (and thus tstop)
may cause a significant reduction in the allowed travel distance
sstop(O), and the robot thus needs to accelerate or decelerate
much more frequently even when the obstacles are faraway.

The surroundings of the robot also have much influence on
the average robot speed. It, together with the maximum decel-
eration limit amax, determines the value of sstop(O). Since the
experimental environment is relatively obstacle-cluttered, the
velocities were more frequently adjusted as more often there
is a need to avoid (potential) collisions with obstacles. This
explains why the robot’s average speed in the “experiment”
group (where amax is set to 1.0 m/s2) is about 0.289 or
0.337 m/s and is a bit lower than that of the simulated robot.
This also explains why only a small reduction is found in the
average speed obtained by the simulation tests (less obstacle-
cluttered environments), in which as,max is used instead
of amax.

Moreover, the maximum speed setting has some impact on
the possible average speed. Nevertheless, a decrease of the
maximum speed from 1 to 0.8 m/s alone may not result in a
20% decrease in the average speed. This can easily be seen from

1552 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 6, DECEMBER 2007

Fig. 12. Snapshots of the first experiment before the third search. (a)–(e) Snapshots of the robot in the experiment. (f)–(g) Snapshots of the current laser scan
and the robot’s motion direction. (h) Robot trajectories when the robot was stopped.

the robot’s translation velocity profile: only for a portion of the
whole time is the robot able to reach the maximum speed.

It is noted that the maximum speed setting (1 m/s, which is
determined based on the actuator capability of the Magellan
Pro robot) and the average speed in our tests could be subpar
to that of state-of-the-art, although they are already high for a
commonly used indoor mobile robot. The performance of the
robot is, however, not necessarily subpar, considering that the
evaluation should instead be judged based on the average robot
speed, smoothness of motion, robustness in collision avoidance,
convergence to the goal, optimality of the path, among others,
under the same conditions such as the test environment, and the
availability of a priori map or a global path. Even when the
robot speed alone is evaluated, the nature of our methodology
should allow the robot to perform collision-free navigation at a
higher average speed, under a higher maximum speed setting,
or if a global path to the goal is provided (i.e., the robot is not
required to stop in order to find a path to the goal).

C. Collision Avoidance When Very Close to Obstacles

The waypoints provided by the high-level planner are not
always far from obstacles, although they are obtained in a way
not too close to obstacles. As a consequence, in some instances,
the robot needs to maneuver in obstacle-cluttered surroundings
when approaching some waypoints. Fig. 12(a)–(d) shows some
snapshots (with relative time stamp) of the first experiment be-
fore the robot was stopped for the third search [Fig. 12(e)]. The
robot was approaching a waypoint very close to the cabinets.
Fig. 12(f) and (g) shows the laser measurements, the robot’s
current location, and its motion direction, where both the robot
dimensions and the obstacles are plotted in the same scale. The
robot trajectories when the robot was stopped are shown in
Fig. 12(h).

The corresponding translation velocity profile (Fig. 13) in-
dicates that the robot started to decelerate from a speed of
around 0.75 m/s at the time of about 3 s [see Fig. 12(a)]
before the third search, which is located around 17.5 s in
the velocity profile. From then on, the speed was observed to
decrease rapidly (probably at the robot’s maximum deceleration
capability). Finally, the robot was able to successfully stop itself
with a small distance from the cabinets, as can be seen from the
robot trajectories that are shown in Fig. 12(h).

As shown in Fig. 8(d) and (e), the robot passed the door,
which is a narrow passage, between the fourth and fifth searches
(more accurately, during the period of approaching the first
waypoint obtained by the fourth search). The translation ve-
locity profile indicates that the robot accelerated itself when
passing the door.

Fig. 13. Profiles of translation and rotation velocities of the first experiment.

Since the incremental search algorithm relies heavily on the
accuracy of grid maps, the robot may be unable to accurately
reach the waypoints or the goal due to localization errors.
Fortunately, the robot is able to efficiently avoid collision with
obstacles reactively based on sensory data with the proposed
approach. Fig. 12(h) shows that the cabinets are not properly
plotted on the map of C-space, as some misalignment hap-
pened, but the robot was able to approach the waypoint without
touching the obstacles. Nevertheless, it will be beneficial to
implement a localization method other than scan matching that
is used in this paper in order to correct the localization error
before it evolutes to be large.

D. Comparison With Other Approaches

The nearness diagram algorithm [14] navigates a robot re-
actively based on situations of the surroundings and the goal’s
relative position to simplify the difficulty of navigation in trou-
blesome scenarios. The work in [15] further considers shape
and kinematics together in an exact manner in its obstacle
avoidance process. However, being directional approaches, they
may be inadequate to take the robot dynamics into account,
which may result in slow or jerky movements.

Dynamic window approaches and the nearness diagram as-
sume circular robot motion in a control period and in the period
for the robot to stop. Our collision avoidance methodology has
taken into account the existence of accelerations in varying the
current translation and rotation velocities to the commanded
ones. In this way, the predicted extended trajectories could

LAI et al.: HIERARCHICAL INCREMENTAL PATH PLANNING 1553

be more accurate, and so is the value of the allowed travel
distance sstop(O) that is computed. By computing the limit of
the translation velocity with (19), the obstacle constraints are
transformed to suitable velocity limits for the robot to move
as fast as possible while avoiding collision when needed. In
comparison, dynamic window approaches consider the stop
distance based on the chosen velocity command and the as-
sumption of circular robot motion as in (20).

Velocity space approaches typically search in the veloc-
ity space for a velocity pair minimizing a single objective
function. The optimized motion command found in this way
may not be suitable for a real scenario. Our method attempts
to use various strategies and objective functions to cater to
different situations that the robot is currently in (e.g., the
surroundings, and whether the robot is leaving or approaching
a waypoint), rather than trying to design a universally applica-
ble single objective function. Each of the weights mentioned
in Section IV was roughly assigned a value (same for all
the simulations and experiments) to indicate its significance
relative to others. It is found out that such a parameter set,
without being fine-tuned, suffices for our program to success-
fully run in different scenarios and for both simulations and
experiments.

In [26], the effects of dynamic constraints on the torque
inputs to the robot motors are considered directly using a
dynamic model, instead of the kinematic model. This might
result in a smoother control and a smoother robot trajectory.
However, the obstacle constraints have yet to be transformed
to suitable torques for the robot to accelerate/decelerate at the
right time and in the right magnitude in order for high-speed
navigation and effective collision avoidance. In addition, dif-
ferential steering mobile robots typically accept translation and
velocity control (only), and thus, the torque-based control may
have to be converted back to velocity control via integration, as
in the experiments in [26].

VII. CONCLUSION

This paper has presented a hierarchical approach for in-
crementally planning optimal paths and subsequently tracing
them in unknown environments. The high-level planner is able
to handle maps containing unknown information and robustly
plan optimal paths incrementally. Situation-dependent object
functions and strategies are employed to search for an op-
timized waypoint-directed motion in a reduced 1-D velocity
space. Accelerations in varying translation and rotation ve-
locities are taken into account, and obstacle constraints are
transformed to suitable velocity limits for the robot to achieve
collision-free, relatively high-speed navigation. Extensive sim-
ulation and experimental results verified the efficacy and ro-
bustness of the proposed algorithm, and thorough discussions
of the test results and comparisons with other approaches are
provided.

ACKNOWLEDGMENT

The authors would like to thank the three anonymous review-
ers for providing constructive comments for this paper.

REFERENCES

[1] N. J. Nilsson, Principles of Artificial Intelligence. Wellsboro, PA: Tioga,
Jan. 1980.

[2] D. Kortenkamp, R. Bonasso, and R. Murphy, Artificial Intelligence and
Mobile Robots. Cambridge, MA: MIT Press, 1998.

[3] L. Dorst and K. I. Trovato, “Optimal path planning by cost wave propaga-
tion in metric configuration space,” in Proc. SPIE—Mobile Robotics III,
1989, vol. 1007, pp. 186–197.

[4] J. C. Latombe, Robot Motion Planning. London, U.K.: Kluwer, 1991.
[5] A. Stentz, “The focussed D∗ algorithm for real-time replanning,” in Proc.

Int. Joint Conf. Artif. Intell., 1995, pp. 1652–1659.
[6] A. Yahja, S. Singh, and A. Stentz, “An efficient on-line path planner for

outdoor mobile robots operating in vast environments,” Robot. Auton.
Syst., vol. 32, no. 2/3, pp. 129–143, Aug. 2000.

[7] J. Barraquand and J. C. Latombe, “Nonholonomic multibody mobile ro-
bots: Controllability and motion planning in the presence of obstacles,” in
Proc. IEEE Int. Conf. Robot. Autom., 1991, pp. 2328–2335.

[8] Y. Hwang, P. Xavier, P. Chen, and P. Watterberg, “Motion planning with
SANDROS and the configuration space toolkit,” in Practical Motion
Planning in Robotics, K. K. Gupta and A. P. del Pobil, Eds. Hoboken,
NJ: Wiley, 1998.

[9] G. Oriolo, G. Ulivi, and M. Vendittelli, “Real-time map building and
navigation for autonomous robots in unknown environments,” IEEE
Trans. Syst., Man, Cybern. B, Cybern., vol. 28, no. 3, pp. 318–333,
Jun. 1998.

[10] O. Khatib, “Real-time obstacle avoidance for manipulators and mobile
robots,” Int. J. Robot. Res., vol. 5, no. 1, pp. 90–98, 1986.

[11] J. Borenstein and Y. Koren, “Real-time obstacle avoidance for fast mobile
robots,” IEEE Trans. Syst., Man, Cybern., vol. 19, no. 5, pp. 1179–1187,
Sep./Oct. 1989.

[12] S. S. Ge and Y. J. Cui, “Dynamic motion planning for mobile robots
using potential field method,” Auton. Robots, vol. 13, no. 3, pp. 207–222,
Nov. 2002.

[13] J. Borenstein and Y. Koren, “The vector field histogram-fast obstacle
avoidance for mobile robots,” IEEE Trans. Robot. Autom., vol. 7, no. 3,
pp. 278–288, Jun. 1991.

[14] J. Minguez and L. Montano, “Nearness diagram (ND) navigation: Col-
lision avoidance in troublesome scenarios,” IEEE Trans. Robot. Autom.,
vol. 20, no. 1, pp. 45–59, Feb. 2004.

[15] J. Minguez and L. Montano, “Abstracting vehicle shape and kinematic
constraints from obstacle avoidance methods,” Auton. Robots, vol. 20,
no. 1, pp. 43–59, Jan. 2006.

[16] S. S. Ge, X. C. Lai, and A. A. Mamun, “Boundary following and globally
convergent path planning using instant goals,” IEEE Trans. Syst., Man,
Cybern. B, Cybern., vol. 35, no. 2, pp. 240–254, Apr. 2005.

[17] S. S. Ge, X. C. Lai, and A. A. Mamun, “Sensor-based path planning
for nonholonomic mobile robots subject to dynamic constraints,” Robot.
Auton. Syst., vol. 55, no. 7, pp. 513–526, Jul. 2007.

[18] F. Lamiraux, D. Bonnafous, and O. Lefebvre, “Reactive path deformation
for nonholonomic mobile robots,” IEEE Trans. Robot., vol. 20, no. 6,
pp. 967–977, Dec. 2004.

[19] D. Fox, W. Burgard, and S. Thrun, “The dynamic window approach to
collision avoidance,” IEEE Robot. Autom. Mag., vol. 4, no. 1, pp. 23–33,
Mar. 1997.

[20] O. Brock and O. Khatib, “High-speed navigation using the global dynamic
window approach,” in Proc. IEEE Int. Conf. Robot. Autom., May 1999,
vol. 1, pp. 341–346.

[21] P. Ogren and N. Leonard, “A tractable convergent dynamic window ap-
proach to obstacle avoidance,” in Proc. IEEE/RSJ Int. Conf. Intell. Robots
Syst., 2002, vol. 1, pp. 595–600.

[22] R. Simmons, “The curvature-velocity method for local obstacle
avoidance,” in Proc. IEEE Int. Conf. Robot. Autom., Apr. 1996, vol. 4,
pp. 22–28.

[23] Y. Wang and D. M. Lane, “Solving a generalized constrained optimization
problem with both logic AND and OR relationships by a mathemati-
cal transformation and its application to robot motion planning,” IEEE
Trans. Syst., Man, Cybern. C, Appl. Rev., vol. 30, no. 4, pp. 525–536,
Nov. 2000.

[24] Y. Hao and S. K. Agrawal, “Formation planning and control of UGVs with
trailers,” Auton. Robots, vol. 19, no. 3, pp. 257–270, Dec. 2005.

[25] X. C. Lai, S. S. Ge, P. T. Ong, and A. A. Mamun, “Incremental path
planning using partial map information for mobile robots,” in Proc. 9th
ICARCV, Dec. 5–8, 2006, pp. 133–138.

[26] K. Pathak and S. K. Agrawal, “An integrated path-planning and control
approach for nonholonomic unicycles using switched local potentials,”
IEEE Trans. Robot., vol. 21, no. 6, pp. 1201–1208, Dec. 2005.

1554 IEEE TRANSACTIONS ON SYSTEMS, MAN, AND CYBERNETICS—PART B: CYBERNETICS, VOL. 37, NO. 6, DECEMBER 2007

Xue-Cheng Lai received the B.Eng. and M.Eng.
degrees from Zhejiang University, Hangzhou, China,
in 1998 and 2002, respectively. He is currently work-
ing toward the Ph.D. degree at the Department of
Electrical and Computer Engineering, National Uni-
versity of Singapore, Singapore.

His research interests include sensor-based robot
navigation and motion planning, guidance/control
for autonomous systems, multirobot exploration and
learning, distributed data acquisition systems, signal
processing, mechatronics and automation, semicon-

ductor machine automation, and embedded systems.

Shuzhi Sam Ge (S’90–M’92–SM’00–F’06)
received the B.Sc. degree from the Beijing
University of Aeronautics and Astronautics, Beijing,
China, and the Ph.D. degree and the Diploma of
Imperial College from the Imperial College of
Science, Technology and Medicine, London, U.K.

He is currently a Professor with the Depart-
ment of Electrical and Computer Engineering, Na-
tional University of Singapore, Singapore. He has
(co)-authored three books Adaptive Neural Network
Control of Robotic Manipulators (World Scientific,

1998), Stable Adaptive Neural Network Control (Kluwer, 2001), and Switched
Linear Systems: Control and Design (Springer-Verlag, 2005), and over
300 international journal and conference papers. He is as an Editor of the
Taylor & Francis Automation and Control Engineering Series and an Associate
Editor of Automatica. His current research interests include social robotics,
multimedia fusion, adaptive control, and intelligent systems.

Dr. Ge has served/been serving as an Associate Editor for a number of flag-
ship journals, including the IEEE TRANSACTIONS ON AUTOMATIC CONTROL,
IEEE TRANSACTIONS ON CONTROL SYSTEMS TECHNOLOGY, and IEEE
TRANSACTIONS ON NEURAL NETWORKS.

Abdullah Al Mamun (S’91–M’94–SM’04)
received the B.Tech. (Hons.) degree from the Indian
Institute of Technology, Kharagpur, India, in 1985,
and the Ph.D. degree from the National University
of Singapore, Singapore, in 1997.

He was a Research Engineer with the Data Storage
Institute, Singapore, and a Staff Engineer with the
Maxtor Peripherals prior to joining the Faculty of
the Department of Electrical and Computer Engi-
neering, National University of Singapore, where he
is currently affiliated. His research interest includes

precision servomechanism, mechatronics, intelligent control, and autonomous
mobile robots.

