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Neural-based direct adaptive control for a class of general
nonlinear systems

T. ZHANGT, S. 8. Gef and C. C. HANGT

A direct adaptive controller based on high-order neural networks (HONNSs) is pre-
sented to solve the tracking control problem for a general class of unknown nonlinear
systems. The plant is assumed to be a feedback linearizable and minimum-phase system.
Firstly, an ideal implicit feedback linearization control (IFLC) is established using
implicit function theory. Then a HONN is applied to construct this [FLC to realize
approximate linearization. The proposed controller ensures that the closed-loop system
is Lyapunov stable and that the tracking error converges to a small neighbourhood of
the origin. The requirements of an off-line training phase and the persistant excitation
condition are eliminated. Simulation results verify the effectiveness of the proposed

controller and the theoretical discussion.

1. Introduction

The control problem of nonlinear systems has become a
topic of considerable research importance. For affine
nonlinear system control, many remarkable results
have been obtained using feedback linearization
methods (Isidori 1989, Behtash 1990). To relax some
of the exact model-matching restrictions, several adap-
tive schemes have been introduced to solve the problem
of parametric uncertainties (Kanellakopoulos et al.
1991, Teel er al. 1991, Marino and Tomei, 1995).
However, for unknown gencral nonlinear systems
there is no effective method to design adaptive control-
lers that can guarantee good tracking performance and
the closed-loop stability.

Recently, active research has been carried out in
neural network (NN) control for nonlinear dynamic sys-
tems. The main properties of neural networks for con-
trol applications can be summarized as follows; they can
approximate any continuous mapping with any accu-
racy; the approximation capability is achieved through
learning and parallel processing; the fault tolerance is
easily accomplished. These good properties suggest
that they are good candidates for implementing real-
time adaptive controllers for nonlinear systems. Narendra
and Parthasarthy (1990), Jin ef af. (1993) and Chen and
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Liu (1994) have shown that to guarantee stable and
efficient on-line control using the backpropagation
(BP) learning algorithm, the identification must be suffi-
ciently accurate before the control action is initiated. To
cope with this problem, several stable adaptive NN con-
troller design approaches have been proposed based on
Lyapunov theory to guarantee the stabihty of closed-
loop system (Sanner and Slotine 1992, Lewis et al.
1996, Spooner and Passino 1996, Polycarpou 1996, Ge
and Hang 1996, Ge 1996), which can guarantee the sta-
bility of systems. These methods, however, can be only
applied to affine nonlinear systems.

For the control problem of general nonlinear systems,
several researchers (Psaltis et al. 1988, Goh 1994, Levin
and Narendra 1996) have suggested using neural net-
works as emulators of inverse systems. The main idea
is that if the controller is an inverse operator of a non-
linear plant, then the reference input to the controller
will produce a control input to the plant, which will in
turn produce an output identical to the reference input.
Based on the implicit function theory, the NN control-
lers have been studied to emulate the inverse controller
in these references. Generally speaking, they are not
adaptive controllers, because all these NN controllers
need off-line training. The direct adaptive NN control
problem for non-affine nonlinear systems has been
studied by Goh and Lee (1994). A strong assumption
is made there that the system states are required to be
uniformly persistently exciting, which is difficult to be
checked/guaranteed in a practical application.

0020-7721/97 $12.00 © 1997 Taylor & Francis Lid,
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High-order networks are expansions of the first-order
Hopficld (1984) and Cohen-Grossberg (1983) models
that allow higher-order interactions between neurons.
The strong storage capacity and approximation cap-
ability of high-order neural networks have been shown
by Parctto and Niez (1986) and Kosmatopoulos et al.
(1995). In this paper we develop a direct adaptive con-
troller based on HONNSs for a general class of unknown
nonlincar systems. The paper is organized as follows: § 2
describes the class of nonlinear systems under discussion
and input-output linearization of the system; §3 gives
the approximation of HONNSs and the control structure.
A robust adaptive law and the stability analysis of the
closed-loop system are discussed in §4. The effectiveness
of the proposcd controller is illustrated via the simula-
tion results in §5. The conclusion is given in §6.

2. Lincarizing feedback control

2.1. Problem starement

Consider a SISO nonlinear system described by a
general form

x =f(xa“)a} (1)

y=h(x),

where x € R”, 1 € R and y € R are the state variables,
control input and output, respectively. The mapping
S, ) R™ — R" is an unknown smooth vector field
and the function A(-) : R" — R is an unknown smooth
function.

The control objective can be described as follows:
given a desired trajectory yy(f) find a control u such
that the system’s output tracks the desired trajectory
with an acceptable accuracy, while all states and control
remain bounded. In the case of affine nonlinear systems,

€.L.

x =fi(x) +g|(x)u,} 2)

y=h(x),

with £ () and g,(x) smooth vector fields, it is clear that
the problem can be solved if there exists a control of the
form

u = o (x) + (0w, (3)

that results in a linear map from w to y for the affine
system (2). The existence of such a linearizing feedback
is in turn guaranteed if (2) possesses a so-called ‘relative
degree’ from u to y (Isidori 1989). Nevertheless, if (1) is
not in affine form, it is not easy to find such an explicit
lincarizing feedback to achieve feedback linearization.
We next define the ‘relative degree’ introduced by
Tsinias and Kalouptsidis (1983) and establish an
implicit feedback linearization control u = ax,w) to

obtain a linear map from w to y for the general non-
linear system (1).

Let Lyh denote the Lie derivative of the function A(x)
with respect to the vector field f(x, u)

dh(x)]
e f(x,u).

Higher-order Lie derivatives can be defined recursively
as Lih=L(LF'h), k>1. Let U=, x%Q, with
xeQ, CR" and v € Q, C R being compact sets. The
system (1) is said to have strong relative degree p in U
if there exists a positive integer 1 < p < oo such that

OlLyh] B|LzA
o a 70 @

for all {x,u) € U (Tsinias and Kalouptsidis 1983).

th =

0, i=0,1,...,p—-1,

Assumption 1:  The system (1) possesses a strong relative
degree p < n for all (x,u) € U.

Define
¢i(x)=L'h, j=1,2,...,p.

Under Assumption 1, it was shown by Isidori (1989)

that there exists other n—p functions ¢,4(x), ..., da(x)
such that the mapping
(I)(X) = [¢l (X), ¢2(x)1 ey ¢n(x)]T: (5)

has a jacobian matrix which is non-singular in §2,.
Therefore ®(x) is a diffeomorphism on (1,. By setting

£=[1(x), ., 3,5,
n= [¢p+1(x)1 SRR} ¢n(x)]T:

(1) can be transformed into a normal form in the new
coordinate, [€7,77]T = ®(x), as follows:

éI':E,-H: i=l:"'7p_]s
gp = b(éa 7, u)7 (6)
= q(&n,u),
y=£&,
where
b(&,m,u) = Lih,
q(E: 77, u) = [q] (67 T u)r qZ(E: ™ U), Sy qn—p(&a T, u)]T!

qi(gun:u)sz¢p+i(x)s i= quﬁ'--un_pa

x=o7'(gn).
Define the domain of the normal form (6) as

U= {{&nu)l(&,n) € D(Q);u € Qu}.

Let b, = 8[b(€,n,u)]/Ou and b, = d(b,}/dt. According
to Assumption 1, we know that 3[b(€,n, u)]/Ou # 0 for
all (&,m,u) € U, this implies that the smooth function b,
is strictly either positive or negative for all (£, n,u) € U.
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From now on, without losing generality, we shall
assume that the sign of b, is positive.

Assumption 2: There exist positive constants by, b, and
by such that by <b,<by and |b)|<by for all
€ mnu) e U.

As b, is defined as 9[b(€, 5, u),/Ou, it can be viewed as
the control gain of the plant. The requirement for
b, > by means that the control gain of the system is
larger than a positive constant. Most feedback lineariza-
tion methods (Isidori 1989, Teel et al. 1991, Marino and
Tomei 1995) need this assumption. We also require b,
and |b,| to be bounded by positive constants. In prac-
tical applications, this does not pose a strong restriction
on the class of systems. The reason is that if the con-
troller is continuous, the situations in which a finite input
causes an infinitely large effect on the system rarely hap-
pen in physical systems because of the smoothness of b,.

If (1) is controlled by the feedback control u = 3(€, 1)),

such that .
gp = b(&i e /8(£1 "7)) = 0)

7= q(O) . ﬁ(O:W)L
is then called the zero dynamics of (1).

the subsystem

Definition: The system (1) is said to be a hyperbolically
minimum-phase system if its corresponding zero
dynamics are exponentially stable (Behtash 1990). O

Assumption 3: The system (1)} is hyperbolically
minimum-phase. In addition, if the control input u is
designed as a function of state x, the function (€, n,u)
is Lipschitz in & uniformly, i.e. there exists a Lipschitz
constant Lg for q(&,m,u) such that

| S LE”§”7 V(ﬁ:ﬂ: Ll) € 0: (7)

g€, m, u) — q(0, 7, uo)
where uy = 8(0, 7).

Under Assumption 3 by the converse theorem of
Lyapunov (Hahn 1967), there exists a Lyapunov func-
tion Vy(n)} that satisfies

02”77”2 < Vo(m) <o ”"]”2a (8)
% (0, m,10) < =Dl )
67] qiv,m,uy) & all?l
v,
— <
ool < Al (10)

where oy, o3, A, and A, are positive constants.
Define the vectors £ and £ as

& =[pavar 8N, G eR,
&= [537}’51”)]1-, £y e R, (11)
E=[6,6.. & =E-¢&,
and a filtered tracking error as
e, =[A" )¢, (12)

Where A = [Al,Az, e
polynomial

,/\p_,]T is chosen such that the

LR WIRT LSRN ¥

is Hurwitz. With this choice, we have £(1) — 0 exponen-
tially as e, — 0.

Assumption 4:  The desired trajectory vector & is con-
tinuous and available, and ||&y| < ¢, with ¢ a known
bound.

Lemma 1:  For the zero dynamics of (1), if Assumptions
3 and 4 are satisfied, then there exist positive constants
Ly, Ly and Ty, such that

l|77| < L,,|€j| +Lb|i§d”= Vi > TO- (13)

Proof: According to Assumption 3, there exists a
Lyapunov function Fy(7). Differentiating Vy(n) along
(6) yields

Vo(m) = 83—?4(6, 0, 1)

av, av
- 3_770‘1(0:7% uO) + 7)?79[‘/(&: yh u) - Q(O’ ™ uO)]' (14)

By using (7)—(10} in (14), we have

Vo) < =Aallnll® + Mo LelnlllI€]- (15)

By considering (11), (12) and Assumption 4, we can
derive

Nl < dyl&all + dalesl, (16)

with d; and 4, positive constants, Thus

Volm) < =Xallmll® + Ao Lellnll ( lall + alesl))-

Therefore, Vy(n) < 0, whenever

AL
[lll > ===

(d|&sll + dzles])- (17)

By letting L, = A\, Ledy /X, and Ly = Xy Led, [, it can
be seen that there exists a positive constant 7 such that
(13) holds for all ¢ > T. O

2.2. Ideal implicit feedback-linearization control

From (6), the time derivative of the filtered tracking
error can be written as

é = b(&,nu) — ¥y +[0 AT)E (18)

We have the following lemma to establish the existence
of an ideal IFLC input u", which can linearize (1) and
bring the output of the system to the desired trajectory
ya(1).-

Lemma 2: Consider (1) satisfying Assumptions 1-4. For
each positive constant k, there exist a subset ®, C ®(81,)
and a unique ideal IFLC input u* in the compact set §2,
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such that for all (£(0),n{0)} € By, the error equation (18)
can be written in a linear form

é, = —k,e;. (19)
Subsequently, (19) leads to lim,_,o, |¥(t) — yq()| = 0.

Proof: By adding and subtracting k,e; to the right-
hand side of the error equation (18), we have

é = b(&,mu) +v— ke, (20)

where v is defined as
v=hye, -0 +[0 ATIE (1)
By considering (11} and (21), we have 8v/0u = 0. From
Assumption |, 8[b(§,n,u)]/0u##0 holds for all

(&,n,u) € U. Thus

WD+ 46, vigmu) € 0.

Using the implicit function theorem (Lang 1983), for
each desired trajectory yy4(r) that satisfies Assumption 4
there exist a subset $y € ®(€2,) and a unique local solu-
tion u=g,(&nv) €, such that b(£, 7, 8.6 7, v))+
v=0 holds for all (£(0),n(0)} € ®y. As [¢",7"]" =
®(x), there exists a function g"(x,v) such that
g (x,v) = g, (& n,v). Therefore, if we choose the ideal
IFLC input as

W@ =g'(xv), z=[K""eqQ, cR", (22)

then .
b(E,mu") + v = 0. (23)
The compact set

Q: = {(.\', V) | Xe Qx;
v=lhoe, -y +[0 ATIE 1G] < e}

Note that the implicit function theorem is only a local
result. However, if the strong relative degree is well
defincd on U, all the local implicit functions can be
strung together to form a global (valid globally in U)
implicit function. Thus under the action of ¥*, (20) and
(23) imply that (19) holds. As k, > 0, (19) is asymptotic-
ally stable, ie. lim,_y|e] =0, which leads to
limy_eo [¥{1)— ya(1)] = 0. d
In the case of an affine nonlinear system, e.g.

b(é.a 1, ”) = bl(ga 77) + b2(§: T])u)

it is easy to find an explicit input

u=b3'(&n)-bi(&n) +wl,

for feedback linearization when b,(£,n) # 0. However,
for the general nonlinear function 6(£, 1, u), the above
lemma only suggests the existence of an ideal IFLC
input «", it does not provide the methods to construct
it. In the next section a high-order neural network is

applied to construct it for approximate feedback
linearization.

3. High-order neural netrworks and control structure
The structure of a HONN can be expressed as

g(W,z) = W'S(z), W and S(z) € R’,} 2

S(2) = [s1(2),2(2), -, (2],
5(z) = H[s(zj)]df(k), i=12,...,1 (25

Jei,
where z € £, ¢ R™, the integer / is the number of NN
nodes, {I},5,,...,I;} is a collection of / unordered sub-
sets of {1,2,...,n+ 1} and d;(k) are non-negative inte-
gers, W is the adjustable synaptic weight vector. The
activation function s(z;} is a monotone increasing and
differentiable sigmoidal function. It can be chosen as a
logistic function, a hyperbolic tangent function, or
others. In this research s(z;) is chosen as a hyperbolic
tangent function
el —e

S(Zj) =m (26)

It is shown in the literature (Paretto and Niez 1986,
Kosmatopoulos ef al. 1995) that the neural network
WTS(z) satisfies the conditions of the Stone-
Weierstrass Theorem and can therefore approximate
any continuous function over a compact set. Because
the ideal IFLC input u*(z) defined in (22} is a contin-
uous function, if the number of HONN nodes / is large
enough (i.e. the number of NN higher-order terms is
large enough), then there exists an ideal weight W* so
that the ideal input «*(z) can be approximated by the
high-order neural networks W*TS(z) to any degree of
accuracy on the compact set €2,:

u'(z) = WTS(2) + e,(z), W and S(z) e R, (27)

where €,(z) is called the NN approximation error. The
ideal weight W* is defined as

W*:=arg min{sup |[WTS(z) —u*(2)]§, Q. c R
weR' | zeq,

Assumption 5:  On the compact set §,, the ideal neural
network weight W" and the approximation error are
bounded by

I < W, le(2)] < & (28)
with w,, and g, positive constants.
Let the HONN controller take the form
u= WTS(z) — kile,|e,, (29)

where W is the estimate of the HONN weight W*. The
HONN emulator W7 S(z) in the control law (29) is used
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to approximate the ideal IFLC input «* for feedback
linearization, whereas kg|e|e,, with &k, a positive con-
stant in (29), is a bounding control term, which is used
to guarantee the boundedness of the system states. The
proposed NN control structure is shown in Fig. 1.
Define the weight estimation error as

W=Ww-w" (30)
Because the function &(€,7,u) in (18) is implicit with

respect to the input w, it is difficult to discuss it directly.
The following lemma is needed for further analysis.

Lemma 3—Mean value theorem: Assume that f(w):
R" — R is differentiable at each point of an open set
U, CR". Let w, and wy be two points of U, such that
wy = Mg + (1 — Nwy belongs to U, for all 0 < X< 1.
Then there exists A such that
of

f-(wa) _f_(wb) = B (wa — wp)- (31)

L=y

The proof of Lemma 3 can be found in Apostol
(1957).

By using Lemma 3 there exists A, 0 < A < 1, such that

b€, muy=b{§,nu") + b, (u—u"), (32)
where bu,\ = a[b(& ™ ﬁ)]/aalri:u) with uy = Au + (1 - A)u*‘
By considering (32) and (23), we can write the error
system (20) as
é; = —kye; + b, (u—u").

As (&,m,u)) € U, we have b,, > by > 0 (Assumption 2).
Divided by b,,, the above equation can be written as

ble, = —kbyle, +u—u (33)
By substituting (27) and (29) into (33), we obtain
brle, = —k,byl e, + WTS(2) — kilele,
- WTS(2) — (2)
= —k,byle,+ WTS(z) — kjlele, — e(2).  (34)

In the next section, a NN weight updating algorithm is
given to realize the direct adaptive control.

& HONN P Nonlinear

F Ws@ + Plant y
X

Figure 1. Direct adaptive control using high-order neural
networks.

4, Adaptive law and stability analysis
We present the NN weight tuning algorithm as follows:

W = —T[S(2)e, + 8le,|OF — WO, (39)

where'=T" >0,6>0,and Wisa designed constant
vector to be specified later. The first term on the
right-hand side of (35) is the modified backpropagation
algorithm, and the second term corresponds to the
e-modification term in the adaptive control (Narendra
and Annaswamy 1987), which can improve the robust-
ness of the controller in the presence of the HONN
approximation error. The following theorem shows the
main results of this paper.

Theorem: For (1), with Assumptions 1-5 satisfied, let
the controller be given by (29}, and the neural network
weights are updated by (35). Then, there exist compact
sets By and Qy, and positive constants ¢*, §, ki and I’
such that if: all initial states (£(0), n(0)) € By and
WO0)e @ andc<c,§>68, k, >ki, 1>, then the
trajectories of the system remain in the compact set U and
the tracking error converges to a small neighbourhood of
the origin. In addition, the tracking error can be made
arbitrarily small by increasing the gains k, andfor k,
and the NN nodes 1.

Proof: The proof has two steps. We first assume that
the system trajectories remain in the compact set I so
that the transformation from (1) to the normal form (6)
and the NN approximation in Assumption 5 are valid.
With this assumption, we show that the tracking error
converges to a small neighbourhood of the origin. Then
we show that for a proper choice of the reference signal
ya{1) and control parameters, the trajectories do remain
in the compact set U.

Step 1: Consider the Lyapunov function candidate
as

v =1bylet + wTT' W (36)
By differentiating (36) along (34) and (35), we have
V= el-kby'e, — kilesle, + WTS(z) ~ e,(2)]

1d(b,)

+2 a ef + wTr-tw

k, b,
b_u,\e‘% - 2b§A e% - eu(z)es

— Ble,|WT (W — w). (37)

= "ks|es|e§ -

By completing the square it can be shown that

QT = W) = | WP+ || — WO = W — WO

(38)
Therefore
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k, b,
—le — =3
b, 262,

7 <lel| = ek - el ~ WY
5 » 02
+ 20w = WO (2

ﬁ : kv [
S \(_’_\.| - k.\' |(:‘_,»| -2 - _|es| - _“ W“2 -+ IBI )
k) b, 2

(39)
where _
|l)ll,\|
180 4’)% 1
wo? bi
=-|Ww* - Uy .
fr=31 1P+ 1@ + ey

According to Assumptions 2 and 5, we know that
by < b,, by, |I),,A| < by and e, (2)| < &, As k,, k, and

& are chosen as posilive constants, it can be seen that §
and B, arc bounded:

ﬁoSf—gza
S0 e ore . B (40)
A <5Iwt = wi +€u+m
Now define

0. {e |e|<mm{fj° ﬁ,ﬂ,ﬁ'}}, (41)
- {W’u W) < max {\/3? ||W(o>||}}, “2)
k_f(|e., ﬁ") +led

F3IPI <6 } @)

9(!\!‘ = {(G.\" W)

It is obvious that ©,, ©, and ©,, are compact sets.
Expressions (39) and (43) imply that ¥ < 0 so long as
V is outside the compact set 6,,. According to a stan-
dard Lyapunov theorem (Narendra and Annaswamy
1989), we conclude that e, and W are bounded.
Furthermore, from (39) and (41), it can be seen that ¥
is strictly ncgative so long as e, is outside the set ©,.
Therefore there exists a constant T such that, for
1> 7T, e, will converge to ©,. Using Lemma 1, we
know that the internal dynamic n will converge to

e,,:={ 1)l < L, m'"{ﬁf \/Eﬁ;cv }“‘b }

Yi> T+ Ty
Let the vector ¢ =€), 6, ... ,g',,_l]T; then a state repre-

sentation for the mapping (12) is
{ = AC + bey, (44)

where
0 0
A= - . e Rle-Dx(-1),
0 0 1
—)\; —/\2 _Ap—l
[0
b= | | emrt. (45)
0
1

As s 4 /\P_,s”_2 + ---+ A is Hurwitz, the matrix 4
is stable. Therefore, there exist constants ky > 0 and
Ao >0 such that | exp(A8)| < kgexp(—Xgt). The
solution for ¢ in (44) can be written as

¢(1) = exp (A1) ¢(0) + L: exp [A(t — 7)]be, d,

and it follows that

IC(HI] < ko exp (—AoD)[IC(O)] +‘-_CX§_O(—_A0’_)

ko€max
< ko exp (=on)[[C(0}]] + —522x ° mas

R B B Bib
Cmax = mMiN {E+ \/k—t, k, s

and kqexp (—Xgf)||€(0)|| decays exponentially. Noting
that e,,, can be reduced by increasing k, and k,, there-
fore the tracking error y — yq = £, will converge to a
small neighbourhood of the origin.

In summary, in the case that (¢,n,u) € U, if k,, k, and
6 are chosen as positive constants, there exists a constant
T such that: the tracking error converges to a small
neighbourhood of the origin for all r > T; the internal
dynamics 7 converge to ©, for all 1 > T + Ty; and the
parameter estimate error W is bounded by 6, for all
time. In addition, by increasing the gains &, and/or &,
and the number of neural nodes /, the origin &, can be
made as small as desired; therefore an arbitrarily small
tracking error can be achieved.

kl) €max

Yi>T, (46)

where

Step 2: In this part we show that for a proper choice
of the tracking signal y4(¢) and control parameters the
trajectories do remain in the compact set . From (12)
and éz [CT ép]T, it is shown that Ep =e —ATC. By
considering (41) and (46), there exist positive
constants ky and & such that

DN < SN + 16, < ko exp (=Aon}S(0)]
+kyCmax, VIS T. {(47)
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From the previous analysis, it can be seen that ¥ <0
and Vy(n) <0 so long as (e,, W) and 7 are outside the
compact sets ©,, and ©,, respectively. Let

‘QD = {(esa Wﬂ?)“/ <Dinpe en}r
0 :={(e,, W,n)l(e, W) € Bpin € ©,}, (48)
D:=inf {D|0p D O},

Then clearly all the trajectories that start in 25 will
remain in Q5 for all time. From (48) we can see that
D is a function of ¢, §,k,, k, and &,. Noting that: £, can
be made arbitrarily small by increasing the NN nodes /;
and (47) implies that

€]l < ko exp (=200)IG(0) | + kiemax -+ IIEall,

then there exist positive constants ¢, 8", k; and /" such
that for all c < ¢", 6 > 6"k, > 0,k, > k; and [ = I" we
have

(e, Womye Qp = i&nu)e U

In summary, there exist compact sets @, and {3y, such
that for all ||&]l <c",6> 6", ko> ksl > [* and all
initial conditions (£(0),7(0)) € @, and W(0) € 2, we

obtain (&,7,u) € U, for all time. This completes the
proof. O

Remark 1: There is a design trade-off between the NN
complexity and the magnitude of the tracking error. The
greater the number of NN nodes, the smaller €, will be,
which leads to smaller output tracking error. From (41)
it can be seen that increasing k, and k, will reduce the
tracking error. It should be noticed that if k; and/or k,
are chosen to be too large, the controller may become a
high-gain controller, which is not only expensive but
may also excite the unmodelled dynamics of the
practical systems.

Remark 2: The parameter W° in the weight update
law (35) is designed as the prior estimate of the ideal
weight W*. From the definition of 3, in (39), it can be
seen that the smaller W° — W*, the smaller ©, will be. If
no such estimate is available, the parameter W can
simply be set to zero. The parameter é in adaptive law
(35) needs to be designed carefully. From (40) and (41} it
is shown that smaller tracking error will be achieved by
choosing smaller §. Nevertheless, (42) implies that a
smaller § may cause larger NN weight errors. In this
case, the control signal u may be very large and out of
the region U in which Assumptions 1-3 and 5 hold. On
the other hand, if 6 is designed as a very large constant, a
large tracking error will occur. Therefore, the parameter
6 should be chosen to be neither too small nor too
large. O

Remark 3: Compared with the traditional exact linear-
ization techniques and the neural network methods, the

proposed adaptive NN controller clearly has some
intrinsic advantages. There is no need to search for an
explicit controller to cancel the nonlinearities of the
system exactly. In fact, even though the implicit function
f(x,u) in (1) is known exactly, there does not always
exist an explicit controller for feedback linearization.
Instead of solving the implicit function for the explicit
controller, a high-order neural networks is applied to
approximate the ideal IFLC input «* to achieve feed-
back linearization. Secondly, the requirements of an
off-line training phase and the persistent excitation con-
dition are not needed for the convergence of the tracking
error. d

Remark 4: The adaptive law (35) is derived from the
Lyapunov method and the e-modification term is intro-
duced to achieve some robustness in the presence of the
HONN approximation error. The bounding control
term kg|egle; in the controller (29) is used to limit the
upper bounds of the system states; it therefore guaran-
tees the validity of the strong relative degree and the NN
approximation in Assumptions | and 5, respectively. [

5. Simulation

In this section the proposed adaptive control method is
illustrated using a third-order SISO nonlinear plant

X1 = 2% 4 x4 x5,
[1 + sin (x) + w}]u
| +x3+x3

Xy =xpexpx; + (1 +x§)u+u3 +

.X..'3 = —ZX3 -3 O‘ZX%XZ,
y=ux.
(49)
The nonlinearity is an implicit function with respect to

u. Obviously, it is impossible to obtain an explicit
controlier for exact feedback linearization. As

. oy
=Lh=2 2 ==
y fh Xy + X7 + X3, O 0,
¥ = Lfh = 2% + 2x)(2x; + x} + x3)
—2x3 +0-2x:,)'x2,
pe
s +2x3 + 6u?
Ou
+ 24 2sin (x) +u) + 2[cos (x| + w)]u
1+ x5+ x3 )

As 05/0u> 2, Y{(x,u) € R*, the plant is of relative
degree 2. Now choose the transformation

O(x) = €, &) = [x1, Lok, xs] " (50)
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Equations (49) can be transformed into the normal form
& =6,
& = Lih,
0= —(2+01€)n+ 016 & ~ &)
Clearly, the internal dynamic 7 is exponentially stable if

0-1€}l¢, — &1
24018

|| >

therefore Assumption 3 is satisfied. In the following
simulation study, we suppose that no exact model of

(49) is available. The adaptive control method in this
paper is used for tracking control.
The reference signal is chosen as

ya(8) = 2sin (1) + cos {0-57).
A neural network controller

u(t) = W'S(z) — kylesle,, with k, = 0-1,

has been chosen. The input vector is z = [x|, X, X3, v]T
with A = 2-0. The parameters in the weight update
law (35) are chosen as I' = diag {0-02}, § = 3-0 and
W = 0-0. The initial conditions are x(0) = [0-0,00,0-0]"
and W(0) = 0-0.
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Figure 2 shows the simulation results for two cases
with different parameters &, and /. Because of the large
initial weight errors (W(0) = 0-0), large tracking error
y—y4 is shown in Fig. 2(a) during the first 20s.
Through the NN learning process, the tracking error
converges to a small set after 20s. The boundedness of
thc NN weight estimates and internal dynamic are
shown in Fig. 2(c) and Fig. 2(d). By comparing the
tracking performance of case A (k, =3-0 and /= 12)
with that of case B (k, = 12-0 and / = 24), we can see
that the tracking error decreases and better transient
performance are obtained in case B by increasing the
gain &, and NN nodes /. This verifies the results of
Theorem 1.

To study the contribution of the neural networks, we
let 1= —k;le e, with k; = 0-1; that is, with no neural
nctworks. The simulation results in Fig. 3 show that
the output cannot track the reference signal effectively.
However, it can be seen that the states of the system are
bounded using this controller. Therefore, by adding this
bounding control term, the states and control input are
guaranteed to be in the compact set U.

6. Conclusion

This paper has addressed the adaptive control problem
for nonlincar systems using high-order neural networks.
The newly proposed adaptive controller applies to a
general class of unknown nonlinear systems and guar-
antees the stability of the system. Robustness results are
achicved by employing a meodified back-propagation
updating law with the e-modification term. No require-
ments of an off-line training phase and the persistent
cxcitation condition are needed. The theoretical analysis
and the simulation results show that the proposed
method is very eflective in controlling nonlinear
dynamic systems.

References

Avoston, T. M., 1957, Mathematical Analysis (Reading, Massachu-
setts, U.S.A.: Addison-Wesley).

Birrast, S., 1990, Robust output tracking for nonlinear system. Inter-
national Journal of Conrrol, 51, 1381-1407.

Cuen, F. C., and Ly, C. C,, 1994, Adaptively controlling nonlinear
continuous-time systems using multilayer neural networks. /EEE
Transactions on Automatic Contrel, 39, 1306-1310.

Conen, M. A., and GROSSBERG, S., 1983, Absolute stability of global
pattern formation and parallel memory storage by competitive
ncural networks. JEEE Transactions on Systems, Man and Cyber-
netics, 13, 815-826.

Ge, 8. S, and Hang, C. C., 1996, Direct adaptive neural network
control of robots. International Journal of Systems Science, 27,
533-542,

GE, S. 8., 1996, Robust adaptive NN feedback linearization control of
nonlinear systems. [nternational Journal of Systems Science, 27,
1327-1338.

GoH, C. 1., 1994, Model reference control of non-linear systems via
implicit function emulation. International Journal of Control, 60, 91—
115.

GoH, C. J., and Leg, T. H., 1994, Direct adaptive control of nonlinear
systems via implicit function emulation. Control Theory and
Advanced Technology, 10, 539-552,

HopriELD, J. J., 1984, Neurons with graded response have collective
computational properties like those of two-state neurons. Proceed-
ings of the National Academy of Science, 81, 3088-3092.

Hann, H., 1967, Stability of Motion (Berlin: Springer-Verlag).

ISIDORI, A., 1989, Nonlinear Control System (Berlin: Springer-Verlag).

Jin, L., NikIForuk, P. N., and GurTa, M. M., 1993, Fast neural
learning and control of discrete-time nonlinear systems. Proceedings
of the Institution of Electrical Engineers, Pt D, 140, 393-398.

KaNsLLAKOPOULOS, 1., KokoTovic, P. V., and Morsg, A. S, 1991,
Systematic design of adaptive controller for feedback linearizable
systems. JEEE Transactions on Automatic Control, 36, 1241-1253.

KosmaTorouros, E. B., PoLycarrou, M. M., CHRISTODOULOU,
M. A., and loannou, P. A, 1995, High-order neural network struc-
tures for identification of dynamical systems. JEEE Transactions on
Neural Networks, 6, 422-431.

LANG, S., 1983, Real Analysis (Reading, Massachusetts, U.S.A.: Addi-
son-Wesley).

Levin, A. U, and NareNpra, K. S., 1996, Control of nonlinear
dynamical systems using neural networks, Part II: observability,
identification and control. /EEE Transactions on Neural Networks,
7, 30-42.

Lewis, F. L., YesILDIREK, A., and Liu, K., 1996, Multilayer neural-
net robot controller with guaranteed tracking performance. JEEE
Transactions on Neural Networks, 7, 388-398.

MariNo, R., and TomEel, P., 1995, Nonlinear Adapiive Design: Geo-
metric, Adaptive, and Robust (London, U.K.: Prentice Hall).

NARENDRA, K. S, and PARTHASARATHY, K., 1990, Identification and
control of dynamic systems using neural networks JEEE Trans-
actions on Neural Networks, 1, 4-27.

NARENDRA, K. S., and ANNaswaMY, A. M., 1987, A new adaptive law
for robust adaptation without persistent excitation. JEEE Transac-
tion on Automatic Control, 32, 134-145; 1989, Stable Adaptive Sys-
tem (Englewood Cliffs, New Jersey, U.S.A.: Prentice Hall).

PoLycarPou, M. M., 1996, Stable adaptive neural control scheme for
nonlinear systems. IEEE Transaciions on Automatic Control, 41,
447-451,

PsaLtis, D., SIDERIS, A., and YAMAMURA, A., 1988, A multilayered
neural network controller. IEEE Control Systems Magazine, 8,
17-21.

PareTTO, P., and Nigz, J. 1., 1986, Long term memory slorage
capactity of multiconnected neural networks. Biological Cyber-
netics, 54, 53-63.

SANNER, R. M, and SLoTInE, J. E., 1992, Gaussian networks for direct
adaptive control. J/EEE Transactions on Neural Networks, 3, 837-
863.

SPOONER, J. T., and Passino, K. M., 1996, Stable adaptive control
using fuzzy systems and neural networks. IEEE Transactions on
Fuzzy Systems, 4, 339-359.

TEEL, A., KaDIYaLA, R., KokoTovic, P, V., and SasTry, S. 8., 1991,
Indirect techniques for adaptive input output linearization of
nonlinear systems. Internaiional Journal of Control, 53, 193-222.

TsiNiAs, J., and KaLouptsipis, N., 1983, Invertability of nonlinear
analytic single-input systems. [EEE Transactions on Automatic
Control, 28, 931-933.



