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Abstract

In this article, active control of flexible marine riser angle and the reduction of forced vibration under a time-varying

distributed load are considered using boundary control approach. A torque actuator is introduced in the upper riser

package and a boundary control law is designed to generate the required signal for riser angle control and vibration

reduction with guaranteed closed-loop stability. Exponential stability can be achieved under the free vibration condition.

The proposed control is simple, implementable with actual instrumentation, and is independent of system parameters, thus

possessing stability robustness to variations in parameters. The design is based on the partial differential equations of the

system, thus avoiding some drawbacks associated with the traditional truncated-model-based design approaches.

Numerical simulations are provided to verify the effectiveness of the approach presented.

r 2008 Elsevier Ltd. All rights reserved.
1. Introduction

The riser plays a very important role in oil drilling and production offshore [1]. As shown in Fig. 1, a marine
riser is the connection between a platform on the water surface and the well head on the sea floor.
A production riser is a pipe used for oil transportation, while a drilling riser is used for drilling pipe protection
and transportation of the drilling mud. Tension is applied at the top of the riser which allows it to resist lateral
loads, and its effects on natural frequencies, mode shapes and forced vibration have been studied in Refs. [2,3].
Both types of riser can be modelled as an extremely long and flexible tensioned prismatic tube, suspended from
the ocean surface to the sea floor. With the trend towards oil and gas exploration in deeper waters and harsher
environments, the response of the risers under various environmental conditions and sea states becomes
increasingly complex. The dynamic response is nonlinear and governed by equations of motions dependent on
both space and time. Idealized beam models characterized by partial differential equations (PDE) with various
boundary conditions have been used to investigate and analyze the dynamic response of such structures
subjected to different environmental loads (see e.g. Refs. [4–6]).
ee front matter r 2008 Elsevier Ltd. All rights reserved.

v.2008.09.011

ing author at: Department of Electrical and Computer Engineering, National University of Singapore, Singapore 117576,

: +65 6516 6821; fax: +65 6779 1103.

ess: samge@nus.edu.sg (S.S. Ge).

s article as: B.V.E. How et al., Active control of flexible marine risers, Journal of Sound and Vibration (2008), doi:10.1016/

11

www.elsevier.com/locate/jsvi
dx.doi.org/10.1016/j.jsv.2008.09.011
mailto:samge@nus.edu.sg
dx.doi.org/10.1016/j.jsv.2008.09.011
dx.doi.org/10.1016/j.jsv.2008.09.011


ARTICLE IN PRESS

Fig. 1. (left) The marine riser. (right) Schematic and assigned frame of reference.

B.V.E. How et al. / Journal of Sound and Vibration ] (]]]]) ]]]–]]]2
The riser is subjected to a time-varying distributed load due to the ocean current, resulting in undesirable
transverse vibration. The vibration causes stresses in the slender body, which may result in fatigue problems
from cyclic loads, damages due to wear and tear, propagation of cracks which requires inspections and costly
repairs, and as a worst case, environmental pollution due to leakage from damaged areas. Another important
consideration is the angle limit for the upper and lower end joints. The American Petroleum Institute requires
that the mean lower and upper joint angles should be kept within 2� while drilling and the maximum non-
drilling angles should be limited to 4�. Due to the motion of the surface vessel or the transverse vibrations of
the riser, the upper or lower angle limit might be exceeded, resulting in damages to the riser end joints. For
drilling and work-over operations, one objective is to minimize the bending stresses along the riser and the
riser angle magnitudes at the platform and well head [7]. Hence, vibration reduction to reduce bending stresses
and the control of the riser angle magnitude is desirable for preventing damage and improving lifespan.

In this article, we consider active control of a marine riser which is modelled as a tensioned beam,
persistently perturbed by the environment. The control is being applied at the beam boundary through the
introduction of a torque actuator at the upper riser package shown in Fig. 2. The objective is to reduce the
riser angle deflection at the top joint and simultaneously reduce the vibrations of the riser. The control input to
the actuator is designed via Lyapunov’s synthesis and the required measurements for feedback are the
inclination and its rate of change at the upper riser boundary. Although tensioned risers are being considered
in this paper specifically, the analysis and control design can be extended and applied, without loss of
generality, for vibration control for a class of tensioned beams exposed to undesirable distributed transverse
loads. Other examples of practical application in the marine environment include free hanging underwater
pipelines, drill strings and umbilicals.

The dynamics of the flexible riser is modelled by a set of PDE which possesses infinite number of dimensions
which makes it difficult to control. In conventional approaches for control design, an approximate finite
dimensional model is used. The approximate model can be obtained via spatial discretization to obtain a finite
number of modes or by modal analysis and truncating the infinite number of modes to a finite number by
neglecting the higher frequency modes. Based on a truncated model obtained from either the finite element
method or assumed modes method (AMM), various control approaches have been applied to improve the
performance of flexible systems (see e.g. Refs. [8–10]). However, spillover effects from the control to the
residual modes, which results in instability has been observed in Refs. [11,12] when the control of the truncated
system is restricted to a few critical modes. The control order needs to be increased with the number of flexible
modes considered to achieve high accuracy of performance. The control may also be difficult to implement
from the engineering point of view since full states measurements or observers are often required. To avoid the
problems associated with the truncated-model-based design, control methodologies such as variable structure
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Fig. 2. Marine riser upper package and components.
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control [13,14] and boundary control [15] can be used. In this paper, we design the boundary control based on
the PDE directly to avoid the above mentioned problems.

Boundary control has been employed in a number of research fields such as vibration control of flexible
structures and fluid dynamics. Boundary control of a nonlinear string has been investigated in Refs. [16,17]
where feedback from the velocity at the boundary of a string has been shown to stabilize the vibrations.
An active boundary control system was introduced in Ref. [18] to damp undesirable vibrations in a cable.
In Ref. [19], the asymptotic and exponential stability of an axially moving string is proved by using a linear
and nonlinear state feedback. Boundary control has been applied to beams in Refs. [20,21] where boundary
feedback was used to stabilize the wave equations and design active constrained layer damping. Active
boundary control of an Euler–Bernoulli beam which enables the generation of a desired boundary condition
at any designators position of a beam structure has been investigated in Ref. [22]. In Ref. [15], the coupled
model for longitudinal and transverse beam was derived, and the exponential stabilization of a beam in free
transverse vibration, i.e. with external disturbance set to zero, via boundary control was shown with a riser
example.

This is the first application of boundary control to a marine riser, for riser angle and forced vibration
reduction, through a torque actuator at the upper riser end. The contributions of this paper are (i) the
modelling of a torque actuator at the upper riser package for the control of a transversely vibrating marine
riser subjected to an unknown time-varying distributed load due to the ocean current; (ii) design of a boundary
control law to minimize the upper riser angle and simultaneously reduce the vibration of the riser; (iii) rigorous
stability analysis of the designed control via Lyapunov synthesis which shows that uniform boundedness of
the riser deflection can be guaranteed when excited by the transverse load, and exponential stability can be
achieved under free vibration condition, and (iv) numerical simulations on a riser subjected to a mean current
with worst case oscillating components which excites the riser natural modes, to verify the applicability and
performance of the proposed approach.

The remainder of this article is organized as follows: In Section 2, the dynamic equation (PDE) of the
flexible structure and boundary conditions are obtained, where the input torque is modelled into the boundary
condition. Following that in Section 3, the boundary control design is presented via Lyapunov synthesis,
where it is shown that uniform boundedness of the closed-loop system can be guaranteed under the distributed
perturbations, and exponential stability can be achieved under free vibration condition. Section 4 presents the
numerical method, AMM, for solving for the governing PDE, required for simulations through mode shapes
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and generalized coordinates. Finally, the simulation study is presented in Section 5 to demonstrate the
effectiveness of the control and concluding remarks are made in Section 6.

2. Problem formulation

2.1. Derivation of the governing equation

The reference frame for the riser is shown in Fig. 1 with the origin set at the seabed. Due to the symmetry of
the cross section for the riser, we can derive the equations of motions for the flexible riser independently for
each principal vertical plane. As such, only the planar dynamics of the riser system is considered in the
following analysis. The dynamics of the riser system is idealized as a tensioned slender beam for small angles of
deflection (see Appendix). The lateral displacement of a point along its length is represented by yðx; tÞ, a
function of space x 2 ½0;L� and time t 2 ½0;1Þ.

In this paper, we assume that the platform is directly above the subsea well head with no horizontal offset.
The riser is filled with seawater and is neutrally buoyant. Horizontal offset and platform motions are not
considered as these effects can be included through displacement influence functions or shifting functions by
following the guidelines in Refs. [23,24].

The kinetic energy of the riser system Ek can be represented as

Ek ¼
1

2
mz

Z L

0

qyðx; tÞ

qt

� �2
dx, (1)

where mz40 is the uniform mass per unit length of the riser. The potential energy for the flexible riser due to
the bending strain [8,25], can be obtained from

Ep ¼
1

2
EI

Z L

0

q2yðx; tÞ
qx2

� �2
dx, (2)

where EI is the flexural rigidity of the riser. A torque actuator is introduced at the upper riser package to
produce a concentrated moment tðtÞ for vibration reduction. To determine the virtual work of the
concentrated moment [23], we observe that it does work through the rotation of y0ðx; tÞ, at x ¼ L, its point of
application. The work done by the applied torque can be written as

W m ¼ tðtÞ
qyðL; tÞ

qx
, (3)

and the total work done on the system, W , is given by

W ¼W t þW f þW d þW m

¼

Z L

0

�
1

2
T

qyðx; tÞ

qx

� �2
þ f ðx; tÞ � c

qyðx; tÞ

qt

� �
yðx; tÞ

( )
dxþ tðtÞ

qyðL; tÞ

qx
, (4)

where W t is the work done by the internal tension Tðx; tÞ in elongating the riser, W f is the work done by the
distributed transverse load due to the hydrodynamic effects of the current f ðx; tÞ and W d is the work done by
linear structural damping with the structural damping coefficient, c40.

2.2. Variation principle and Hamilton’s approach

The extended Hamilton’s principle [26] is represented byZ tf

t0

dðEk � Ep þW Þdt ¼ 0, (5)

where t0ototf is the operating interval and dð Þ denotes the variation operator, physically interpreted as
nature trying to equalize the kinetic and potential energies of a system. Substituting Eqs. (1), (2) and (4) into
Eq. (5), applying the variation operator with dyðx; tÞ ¼ 0 at t ¼ t1 and t ¼ t2 and integrating by parts, we
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obtain,

�

Z t2

t1

Z L

0

mz

q2y
qt2
þ

q2

qx2
EI

q2y
qx2

� �
�

q
qx

T
qy

qx

� �
� f þ c

qy

qt

� �
dydxdt

�

Z t2

t1

EI
q2y
qx2

d
qy

qx

� �����
L

0

� tðtÞd
qyðL; tÞ

qx

" #
dtþ

Z t2

t1

q
qx

EI
q2y

qx2

� �
� T

qy

qx

� �
dy

����
L

0

dt ¼ 0. (6)

As dyðx; tÞ is assumed to be a non-zero arbitrary variation in 0oxoL, the expression under the double
integral in Eq. (6) is set equal to zero. Hence, we obtain the equation of motion as

EI
q4yðx; tÞ

qx4
� T

q2yðx; tÞ
qx2

þmz

q2yðx; tÞ

qt2
þ c

qyðx; tÞ

qt
� f ðx; tÞ ¼ 0, (7)

8ðx; tÞ 2 ð0;LÞ � ½0;1Þ. Setting the terms with single integrals in Eq. (6) equal to zero, we obtain the boundary
conditions

yð0; tÞ ¼ 0, (8)

EI
q2yð0; tÞ

qx2
¼ 0, (9)

yðL; tÞ ¼ 0, (10)

EI
q2yðL; tÞ

qx2
� tðtÞ ¼ 0, (11)

where Eqs. (8) and (9) represent a simple support at x ¼ 0, Eqs. (10) and (11) represent that there is zero
deflection and a torque being applied at x ¼ L, respectively.

Remark 1. In the above derivations, we have shown that the input torque tðtÞ at the upper riser end can be
modelled as a boundary condition (11) in relation to the dynamics of the system. The flex joint at the wellhead
is commonly modelled as a ball joint during analysis [27]. The governing equation (7) for the flexible marine
riser, a fourth-order PDE with axial tension, structural damping and external disturbances terms, remains in
the same form as considered in Refs. [3,28].

2.3. Effects of time-varying current

The effects of a time-varying surface current UðtÞ on a riser can be modelled as a vortex excitation force
[29,30]. The distributed load on a 3D riser structure, f ðx; z; tÞ can be expressed as a combination of the in-line
drag force f Dðx; tÞ, comprising of a mean drag term and an oscillating drag about the mean modelled as

f Dðx; tÞ ¼
1
2
rsCDðx; tÞUðx; tÞ

2Dþ AD cosð4pf vtþ bÞ, (12)

and an oscillating lift f Lðz; tÞ, perpendicular to f Dðx; tÞ, about a mean deflected profile,

f Lðz; tÞ ¼
1
2
rsCLðz; tÞUðz; tÞ

2D cosð2pf vtþ aÞ, (13)

where z is an axis perpendicular to plane XOY show in Fig .1, CDðx; tÞ and CLðz; tÞ are the time and spatially
varying drag and lift coefficient respectively, f v is the shedding frequency, rs is the sea water density, a and b
are phase angles, and AD is the amplitude of the oscillatory part of the drag force, typically 20% of the first
term in f Dðx; tÞ [30]. The non-dimensional vortex shedding frequency can be expressed as

f v ¼
StU

D
, (14)

where St is the Strouhal number and D is the pipe outer diameter.
In this paper, we consider the deflection of the riser in only one direction. Hence, the distributed excitation

force is considered as the drag force Eq. (12), f ðx; tÞ ¼ f Dðx; tÞ. The current profile Uðx; tÞ, similar to that
shown in Fig. 1, is a function which relates the depth to the ocean surface current velocity UðtÞ. The transverse
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VIV from the lift component is not considered in this article but the proposed method can be similarly applied
without any loss of generality if only the lift component is considered.

Assumption 1. For the distributed disturbance f ðx; tÞ, we assume that there exists a constant f̄ 2 Rþ, such that
kf ðx; tÞkpf̄ , 8ðx; tÞ 2 ½0;L� � ½0;1Þ. This is a reasonable assumption as the effects of the time-varying current,
f ðx; tÞ, are exogenous, have finite energy and hence are bounded, i.e., f ðx; tÞ 2L1ð½0;L�Þ:

Remark 2. For control design in Section 3, only the assertion that there exist an upper bound on the
disturbance in Assumption 1, kf ðx; tÞkof̄ , is necessary. The knowledge of the exact value for f ðx; tÞ is not
required 8ðx; tÞ 2 ½0;L� � ½0;1Þ. As such, different VIV models up to various levels of fidelity, such as those
found in Refs. [29,31–34], can be applied without affecting the control design or analysis.

Remark 3. The VIV problem can beseparated into the drag and the lift components, perpendicular to each
other. The vector sum results in a force with oscillating magnitude and direction, thereby producing of figure
of ‘‘8’’ response in the riser. Under Assumption 1, it is possible that control applied to these two cases in
separate axis may be sufficient for vibration reduction of the VIV problem. The combination of drag and
oscillating lift will be treated in future analysis using a 3D riser model.

Remark 4. In the following sections, the notations y0ðx; tÞ ¼ qyðx; tÞ=qx, y00ðx; tÞ ¼ q2yðx; tÞ=qx2 and
_yðx; tÞ ¼ qyðx; tÞ=qt, etc. are used and dependencies of terms are omitted where obvious for conciseness.

3. Control design

The control objective is to minimize the upper riser angle y0ðL; tÞ, and simultaneously reduce the vibrations
of the riser yðx; tÞ, subjected to the time-varying distributed transverse load from the ocean current f ðx; tÞ. In
this section, we use Lyapunov’s synthesis to construct a boundary control law tðtÞ for the above objective, and
to rigourously show the closed-loop stability of the distributed system. Now, we present some lemmas and
properties that will be used in subsequent developments.

Lemma 1 (Dawson et al. [35], Ge and Wang [36]). For bounded initial conditions, if there exists a C1

continuous and positive definite Lyapunov function V ðxÞ satisfying k1ðkxkÞpV ðxÞpk2ðktkÞ, such that
_V ðxÞp� lV ðxÞ þ c, where k1, k2 : Rn ! R are class K functions and c is a positive constant, then the solution

x ¼ 0 is uniformly bounded.

Lemma 2. Let y1ðx; tÞ, y2ðx; tÞ 2 R with x 2 ½0;L� and t 2 ½0;1Þ, the following inequalities hold:

y1y2pjy1y2jpy2
1 þ y2

2, (15)

2y1y2p2jy1y2jpy2
1 þ y2

2; 8y1; y2 2 R. (16)

From Lemma 2, we can obtain the inequality [37],

jy1y2j ¼
1ffiffiffi
d
p y1

� �
ð
ffiffiffi
d
p

y2Þ

����
����p 1

d
y2
1 þ dy2

2; 8y1; y2 2 R and d40. (17)

Lemma 3 (Hardy et al. [38], Queiroz et al. [39]). Let yðx; tÞ 2 R be a function defined on x 2 ½0;L� and

t 2 ½0;1Þ that satisfies the boundary condition

yð0; tÞ ¼ 0; 8t 2 ½0;1Þ, (18)

then the following inequalities hold: Z L

0

y2 dxpL2

Z L

0

½y0�2 dx, (19)
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y2pL

Z L

0

½y0�2 dx; 8x 2 ½0;L�. (20)

Property 1 (Queiroz et al. [39]). If the kinetic energy of system (7)–(11), given by Eq. (1) is bounded

8ðx; tÞ 2 ½0;L� � ½0;1Þ, then _y0ðx; tÞ and _y00ðx; tÞ are bounded 8ðx; tÞ 2 ½0;L� � ½0;1Þ.

Property 2 (Queiroz et al. [39]). If the potential energy of system (7)–(11), given by Eq. (2) is bounded

8ðx; tÞ 2 ½0;L� � ½0;1Þ, then y00ðx; tÞ, y000ðx; tÞ and y0000ðx; tÞ are bounded 8ðx; tÞ 2 ½0;L� � ½0;1Þ.

3.1. Boundary control

Consider the Lyapunov function candidate,

V ðtÞ ¼ EbðtÞ þ EcðtÞ þ
1
2
ðk2 þ bEIk1Þ½y

0ðL; tÞ�2, (21)

where k1, k240 are control parameters, EbðtÞ and a small crossing term EcðtÞ are defined as

Eb ¼
1

2
mz

Z L

0

_y2 dxþ
1

2
EI

Z L

0

½y00�2 dxþ
1

2
T

Z L

0

½y0�2 dx, (22)

Ec ¼ bmz

Z L

0

y _ydx, (23)

and b40 is a small positive weighting constant.

Lemma 4. Function (21), can be upper and lower bounded as

0pl1ðEb þ ½y
0ðL; tÞ�2ÞpV ðtÞpl2ðEb þ ½y

0ðL; tÞ�2Þ, (24)

where l1 and l2 are positive constants.

Proof. Using Eqs. (15) and (19) on Eq. (23), we obtain

jEcjpbmz

Z L

0

ð _y2 þ y2Þdx (25)

pbmz

Z L

0

_y2 dxþ bmzL2

Z L

0

½y0�2 dx (26)

p2bmz

maxð1;L2Þ

minðmz;T ;EIÞ
Eb (27)

pxEb, (28)

where

x ¼ 2bmz

maxð1;L2Þ

minðmz;T ;EIÞ
. (29)

Selecting b according to the following sufficient condition:

bp
minðmz;T ;EIÞ

maxð1;L2Þ
, (30)

we have

�xEbpEcpxEb, (31)

0px1EbpEb þ Ecpx2Eb, (32)

where for some positive constants x1 ¼ 1� x and x2 ¼ 1þ x,

x1 ¼ 1� 2bmz

maxð1;L2Þ

minðmz;T ;EIÞ
40, (33)
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x2 ¼ 1þ 2bmz

maxð1;L2Þ

minðmz;T ;EIÞ
41. (34)

Given the Lyapunov functional candidate in Eq. (21), we obtain

0pl1ðEb þ ½y
0ðL; tÞ�2ÞpV ðtÞpl2ðEb þ ½y

0ðL; tÞ�2Þ, (35)

where l1 ¼ min½x1; 0:5ðk2 þ bEIk1Þ� and l2 ¼ max½x2; 0:5ðk2 þ bEIk1Þ�. &

Lemma 5. The time derivative of the Lyapunov function in Eq. (21) can be upper bounded with

_V ðtÞp� l3ðEb þ ½y
0ðL; tÞ�2Þ þ �, (36)

where l340.

Proof. Taking time derivative of V ðtÞ, we obtain

_V ðtÞ ¼ _Eb þ _Ec þ ðk2 þ bEIk1Þ _y
0ðL; tÞy0ðL; tÞ. (37)

The first term of Eq. (37) yields

_Eb ¼

Z L

0

mz _y €yþ EIy00 _y00 þ Ty0 _y0 dx

¼

Z L

0

ð�c _y� EIy0000 þ Ty00 þ f Þ _yþ EIy00 _y00 þ Ty0 _y0 dx

¼ ½EIy00 _y0 � EIy000 _yþ Ty0 _y�L0 þ

Z L

0

½ð�c _y� EIy0000 þ Ty00 þ f Þ _yþ EIy0000 _y� Ty00 _y�dx

¼ ½EIy00 _y0 � EIy000 _yþ Ty0 _y�L0 þ

Z L

0

½�c _y2 þ f _y�dx. (38)

From Eq. (7) and performing integration by parts, we obtain

mz €y ¼ �c _y� EIy0000 þ Ty00 þ f , (39)

EI

Z L

0

y00 _y00 dx ¼ EI ½y00 _y0�L0 � EI ½y000 _y�L0 þ EI

Z L

0

y0000 _ydx, (40)

T

Z L

0

y0 _y0 dx ¼ T ½y0 _y�L0 � T

Z L

0

y00 _ydx. (41)

Substituting Eqs. (39)–(41) and boundary conditions (8)–(11) into Eq. (38), we arrive at

_Eb ¼ ½EIy00ðL; tÞ _y0ðL; tÞ� þ

Z L

0

½�c _y2 þ f _y�dx

¼ t _y0ðL; tÞ þ
Z L

0

½�c _y2 þ f _y�dx

¼ t _y0ðL; tÞ � c

Z L

0

_y2 dxþ

Z L

0

f _ydx, (42)

where _yð0; tÞ ¼ _yðL; tÞ ¼ 0 due to the boundary conditions. Using inequality (17), we obtain

_Ebpt _y0ðL; tÞ � c

Z L

0

_y2 dxþ

Z L

0

1

d1
f 2 dxþ

Z L

0

d1 _y2 dx

pt _y0ðL; tÞ � ðc� d1Þ
Z L

0

_y2 dxþ
1

d1

Z L

0

f 2 dx, (43)
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where d140 is a positive constant. Taking the time derivative of the crossing term (23), we have

_Ec ¼ bmz

Z L

0

ð _y2 þ y €yÞdx

¼ b
Z L

0

½mz _y
2 þ yð�c _y� EIy0000 þ Ty00 þ f Þ�dx

¼ b
Z L

0

½�EIyy0000 � cy _yþ fyþ Tyy00 þmz _y
2�dx. (44)

The first term of Eq. (44) simplifies via integration by parts and boundary conditions to

�b
Z L

0

EIyy0000 dx ¼ � bEI ½yy000 � y0y00�L0 � bEI

Z L

0

½y00�2 dx

¼ bEIy0ðL; tÞt� bEI

Z L

0

½y00�2 dx. (45)

The second term using Eq. (17), gives

�bc

Z L

0

y _ydxpb
c

d2

Z L

0

_y2 dxþ bcd2L2

Z L

0

½y0�2 dx, (46)

where d240. The third term with Eq. (17) gives

b
Z L

0

yf dxp
b
d3

Z L

0

f 2 dxþ bd3L2

Z L

0

½y0�2 dx, (47)

where d340, and the fourth term yields through integration by parts,

bT

Z L

0

yy00 dx ¼ bT ½yy0�L0 � bT

Z L

0

y0y0 dx

¼ � bT

Z L

0

½y0�2 dx. (48)

From Eqs. (43) and (45)–(48), we arrive at the inequalities

_Ebpt _y0ðL; tÞ � ðc� d1Þ
Z L

0

_y2 dxþ
1

d1

Z L

0

f 2 dx, (49)

_EcpbEIy0ðL; tÞt� bEI

Z L

0

½y00�2 dxþ b
c

d2

Z L

0

_y2 dxþ bcd2L2

Z L

0

½y00�2 dx

þ
b
d3

Z L

0

f 2 dxþ bd3L2

Z L

0

½y00�2 dx� bT

Z L

0

½y0�2 dxþ b
Z L

0

mz _y
2 dx. (50)

Substituting Eqs. (49) and (50) into Eq. (37), we arrive at

_V ¼ _Eb þ _Ec þ ðk2 þ bEIk1Þ _y
0ðL; tÞy0ðL; tÞ

pð _y0ðL; tÞ þ bEIy0ðL; tÞÞt� c� bmz � d1 � b
c

d2

� �Z L

0

_y2 dxþ
1

d1
þ

b
d3

� �Z L

0

f 2 dx

� bEI

Z L

0

½y00�2 dx� bðT � cd2L2 � d3L2Þ

Z L

0

½y0�2 dxþ ðk2 þ bEIk1Þ _y
0ðL; tÞy0ðL; tÞ (51)

Consider the following boundary control law:

t ¼ �½k1 _y
0ðL; tÞ þ k2y

0ðL; tÞ�, (52)
Please cite this article as: B.V.E. How et al., Active control of flexible marine risers, Journal of Sound and Vibration (2008), doi:10.1016/

j.jsv.2008.09.011

dx.doi.org/10.1016/j.jsv.2008.09.011
dx.doi.org/10.1016/j.jsv.2008.09.011


ARTICLE IN PRESS
B.V.E. How et al. / Journal of Sound and Vibration ] (]]]]) ]]]–]]]10
and substituting the control law (52) into Eq. (51) under Assumption 1, we obtain

_Vp� ð _y0ðL; tÞ þ bEIy0ðL; tÞÞ½k1 _y
0ðL; tÞ þ k2y

0ðL; tÞ� þ ðk2 þ bEIk1Þ _y
0ðL; tÞy0ðL; tÞ

� c� bmz � d1 � b
c

d2

� �Z L

0

_y2 dx� bEI

Z L

0

½y00�2 dxþ
1

d1
þ

b
d3

� �Z L

0

f 2 dx

� bðT � cd2L2 � d3L2Þ

Z L

0

½y0�2 dx

p� k1½ _y
0ðL; tÞ�2 � k2bEI ½y0ðL; tÞ�2 � c� bmz � d1 � b

c

d2

� �Z L

0

_y2 dx

� bEI

Z L

0

½y00�2 dx� bðT � cd2L2 � d3L2Þ

Z L

0

½y0�2 dxþ
1

d1
þ

b
d3

� �Z L

0

f 2 dx

p� l3ðEb þ ½y
0ðL; tÞ�2Þ þ �, (53)

where

l3 ¼ min
�1
mz

;b;
�2
T
; k2bEI

� �
40,

� ¼
1

d1
þ

b
d3

� �
max

t¼½0;1Þ

Z L

0

f 2 dxo1,

�1 ¼ c� bmz � d1 � b
c

d2
40,

�2 ¼ T � cd2L2 � d3L240.

From Eqs. (24) and (53) , we have

_V ðtÞp� lV ðtÞ þ �, (54)

where l ¼ l3=l2. After obtaining Eq. (54), we are ready to present the following theorem, which contain the
results for the boundary control of the flexible riser. &

Theorem 1. Consider the system described by Eq. (7) and boundary conditions (8)–(11), under Assumption 1, and

the control law (52). Given that the initial conditions are bounded, and that the required state information y0ðL; tÞ
and _y0ðL; tÞ are available, the closed-loop system is uniformly bounded.

Proof. From Eq. (54) and Lemma 1, it is straightforward to show the deflection yðx; tÞ is uniformly bounded.
For completeness, the details of the proof are provided here. Multiplying Eq. (54) by elt, we obtain

q
qt
ðVeltÞp�elt. (55)

Integration of the above and applying Lemma 1 yields

V ðtÞp V ð0Þ �
�

l

� 	
elt þ

�

l
pV ð0Þ þ

�

l
2L1. (56)

Utilizing Eqs. (20), (22) and (24), we have

1

2L
Ty2ðx; tÞp

1

2
T

Z L

0

½y0ðx; tÞ�2 dxpEbðtÞp
1

l1
V ðtÞ 2L1. (57)

Hence, we have yðx; tÞ 2L1. From Eqs. (24) and (53), we can state that EbðtÞ and y0ðL; tÞ are bounded
8t 2 ½0;1Þ. Since EbðtÞ is bounded, _yðx; tÞ, y0ðx; tÞ and y00ðx; tÞ are bounded 8ðx; tÞ 2 ½0;L� � ½0;1Þ. From
Eq. (1), the kinetic energy of the system is bounded and using Property 1, _y0ðx; tÞ is bounded
8ðx; tÞ 2 ½0;L� � ½0;1Þ. At this point, we have shown that all the signals in the control law (52) are bounded.
From the boundedness of the potential energy (2), we can use Property 2 to conclude that y0000ðx; tÞ is
bounded. Finally, using Assumption 1, Eqs. (7)–(11), and the above statements, we can conclude that €yðx; tÞ is
bounded 8ðx; tÞ 2 ½0;L� � ½0;1Þ. &
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Corollary 1. For the system described by governing equation (7), and boundary conditions (8)–(11), if the free

vibration case is considered, i.e. f ðx; tÞ ¼ 0, the boundary control (52) ensures that the riser displacement is

exponentially stabilized as follows:

jyðx; tÞjp

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2l2L
Tl1

exp �
l3
l2

t

� �s
; 8x 2 ½0;L�, (58)

where l, l1, l2 are positive constants.

Proof. From Eq. (53), under the free vibration condition, we obtain the time derivation of the Lyapunov
function candidate (21) as

_Vp� l3ðEb þ ½y
0ðL; tÞ�2Þ, (59)

where

l3 ¼ min
�1
mz

; b;
�2
T
; k2bEI

� �
40,

�1 ¼ c� bmz � d1 � b
c

d2
40,

�2 ¼ T � cd2L2 � d3L240.

From Eqs. (24) and (59) , we obtain the upper bound as

_V ðtÞp�
l3
l2

V ðtÞ, (60)

which has a solution of

V ðtÞpV ð0Þ exp �
l3
l2

t

� �

pl2½Ebð0Þ þ y0ðL; 0Þ2� exp �
l3
l2

t

� �
. (61)

Similarly, utilizing Eqs. (20), (22) and (24), we have

1

2L
Ty2ðx; tÞp

1

2
T

Z L

0

½y0ðx; tÞ�2 dxpEbðtÞp
1

l1
V ðtÞ, (62)

8ðx; tÞ 2 ½0;L� � ½0;1Þ and Eq. (58) follows from combining Eqs. (61) and (62). The bounds for y0ðx; tÞ,
y00ðx; tÞ, y0000ðx; tÞ, _yðx; tÞ, _y0ðx; tÞ and €yðx; tÞ can be similarly shown as in Theorem 1. This concludes the
proof. &

Remark 5. The proposed control is simple in structure and implementable as y0ðL; tÞ, the top riser angle, can
be measured directly using inclinometers and _y0ðL; tÞ can be obtained by time differentiating the measurement
of the top riser angle. The problem of the observer spillover effect is avoided as all the required states are
measurable or observed directly.

Remark 6. As the boundary control design is based on the governing PDE (7) without the use of a truncated
model, the problem of control spillover is also avoided.

Remark 7. The control is independent of system parameters and thus possesses stability robustness to
uncertainties in the system parameters.

4. Method of numerical solution

To verify the effectiveness of the proposed approach, the developed boundary control (52) is applied to the
closed-loop system (7) with boundary conditions (8)–(11). As the governing equation for the flexible system
derived in this study does not have an easily obtainable solution, numerical methods are required for solving
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the PDE for simulation purposes. Different approximate methods such as FEM, AMM, finite difference, and
Galerkin methods can be used to discretize the system for simulations. AMM is selected in this article for its
ability to produce accurate, low order simulations that are easy and fast to compute numerically.

4.1. Natural vibration modes and orthogonality conditions

The natural modes of vibration can be obtained by setting external forces in Eq. (7) to zero and solving the
homogenous equation

EI
q4y
qx4
� T

q2y
qx2
þmz

q2y

qt2
þ c

qy

qt
¼ 0. (63)

From the method of separating variables [40], and using the AMMwith constrained modes, the solution yðx; tÞ
is assumed to take the form

yðx; tÞ ¼
X1
i¼1

fiðxÞqiðtÞ, (64)

where fiðxÞ are the mode shape functions or eigenfunctions and qiðtÞ are the generalized coordinates. The
natural frequencies of the riser can be expressed as

o2
i ¼

1

mz

ip
L

� �2

EI
ip
L

� �2

þ T

" #
, (65)

where oi is the natural frequency of the i-mode. Rearranging Eq. (63) into two systems of differential equation
with one dependant on x and the other purely time varying, and noting that each mode shape function fiðxÞ is
the solution of the boundary value problem for the differential equation dependant on x, multiplying fj and
integrating from x ¼ 0 to L, we have

EI

Z L

0

f0000i fj dx� T

Z L

0

f00i fj dx�

Z L

0

mzo2
i fifj dx ¼ 0, (66)

As fiðxÞ and fjðxÞ should satisfy the boundary conditions with associated natural frequencies oi and oj, and
integrating Eq. (66) by parts, we obtain the orthogonality condition,Z L

0

fifj dx ¼
0; iaj;

1; i ¼ j:

(
(67)

The mode shape functions are expressed as

fiðxÞ ¼

ffiffiffiffiffiffi
2L
p

L
sin s2ix�

sin s2iL

sinh s1iL
sinh s1ix

� �
, (68)

where

s1i ¼
1

2EI
½T þ ðT2 þ 4EImzo2

i Þ
1=2
�


 �1=2

, (69)

s2i ¼
1

2EI
½�T þ ðT2 þ 4EImzo2

i Þ
1=2
�


 �1=2

. (70)

4.2. Forced vibration response

As the moment does not correspond to a generic translation, it must be handled indirectly using the method
of virtual work. We can model the system as a simply supported structure with a moment at the boundary [23].
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From Eq. (6), using pinned boundary conditions with a torque generated at x ¼ L leads toZ L

0

mz €ydydxþ

Z L

0

ðEIy0000 � Ty00Þdydxþ

Z L

0

c _ydydx ¼

Z L

0

f dydx� tdy0ðL; tÞ. (71)

Substituting Eq. (64) into Eq. (71), and using Eq. (66), we obtain

mz

X1
i¼1

X1
j¼1

€qi

Z L

0

fifj dxþmzo2
i

X1
i¼1

X1
j¼1

qi

Z L

0

fifj dx

þ c
X1
i¼1

X1
j¼1

_qi

Z L

0

fifj dx ¼
X1
j¼1

Z L

0

ffj dx�
X1
j¼1

tf0jðLÞ. (72)

In view of orthogonality condition (67), every term in the summation vanishes except when i ¼ j. Hence Eq.
(72) reduces to

X1
i¼1

½mz €qiðtÞ þ c _qiðtÞ þmzo2
i qiðtÞ� ¼

X1
i¼1

Z L

0

f ðx; tÞfiðxÞdx�
X1
i¼1

tðtÞf0iðLÞ. (73)

From Eq. (64), we know that each qiðtÞ corresponds to a DOF of the system. It is also well known that the first
several modes corresponds to lower frequencies are dominant in describing the system dynamics. The infinite
series in Eq. (64) can be truncated into a finite one as follows:

yðx; tÞ ¼
XN

i¼1

fiðxÞqiðtÞ, (74)

where N is the number of modes taken into consideration. Hence, we arrive at ordinary differential equation
(ODE) of the AMM model,

XN

i¼1

½mz €qiðtÞ þ c _qiðtÞ þmzo2
i qiðtÞ� ¼

XN

i¼1

Z L

0

f ðx; tÞfiðxÞdx�
XN

i¼1

tðtÞf0iðLÞ. (75)

The solution yðx; tÞ can then be obtained by solving for the generalized coordinates, qiðtÞ in Eq. (75) and
substituting mode shapes, fiðxÞ from Eq. (68) into Eq. (74).

5. Simulation

The closed-loop system (7) is simulated to investigate the performance of control law (52) with system
parameters given in Table 1. The system is simulated using the AMM model (75) developed in the previous
section where the first four modes, N ¼ 4 are considered. A fourth-order Runge–Kutta–Merson program with
adaptive step size [41] is used to numerically solve the ODE for the generalized coordinates.

The riser, initially at rest, is excited by a distributed transverse load. Large vibrational stresses are normally
associated with a resonance that exists when the frequency of the imposed force is tuned to one of the natural
frequencies [2]. Hence, the ocean surface current velocity UðtÞ is modelled as a mean flow with worst case
Table 1

Numerical values of the system parameters

Parameters of the physical system Value

Flexural rigidity (EI) 4:0� 109 N=m2

Length of riser (L) 1000m

Mass per unit length (mz) 15 kg/m

Outer diameter (D) 152:4� 10�3 m

Sea water density (rs) 1024kg=m3

Structural damping (c) 5.0 (–)

Tension (T) 1:11� 106 N
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Fig. 3. Ocean current velocity modelled as a mean current with worst case sinusoids.
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Fig. 4. Riser top angle y0ð1000; tÞ with control (solid) and without control (dashed).
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Fig. 5. Riser bottom angle y0ð0; tÞ with control (solid) and without control (dashed).
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sinusoidal components to simulate the riser with a mean deflected profile. The sinusoids have frequencies of
oi ¼ f0:867; 1:827; 2:946; 4:282g, for i ¼ 1 to 4, corresponding to the four natural modes of vibration of the
riser. The current UðtÞ can be expressed as

UðtÞ ¼ Ū þUm

XN

i¼1

sinðoitÞ; i ¼ 1; 2; . . . ;N, (76)

where Ū ¼ 2m s�1 is the mean flow current and Um ¼ 0:2 is the amplitude of the oscillating flow. The surface
current generated by Eq. (76) is shown in Fig. 3. The full current load is applied from x ¼ 1000 to 700m and
thereafter linearly decline to zero at the ocean floor, x ¼ 0, to obtain a depth dependent ocean current profile
Uðx; tÞ.

The vortex excitation f ðx; tÞ is simulated using Eq. (12) with CD ¼ 1:361 [32] and b ¼ 0. From (14), a
reasonable vale of St ¼ 0:2 is adopted for subcritical flow [30], resulting in a vortex shedding frequency of
f v ¼ 2:625. The control parameters are set as k1 ¼ k2 ¼ 1� 109.
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Fig. 6. Riser displacement at x ¼ 400m, with control (solid) and without control (dashed).
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Fig. 7. Riser displacement at x ¼ 750m, with control (solid) and without control (dashed).
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The controlled and uncontrolled upper and lower riser angles are shown in Figs. 4 and 5, respectively. It is
observed that there are significant improvements in the top riser angle bringing the magnitude near zero when
the control is applied. There are also some peak angle reduction in the bottom angle though the actuator is not
located at that position.

Transverse vibration magnitude of the riser is examined at x ¼ 400 and 750m. The results for controlled
and uncontrolled responses are shown in Figs. 6 and 7. It can be observed that the peak vibration magnitudes
are reduced at both locations. The riser profiles for controlled and uncontrolled responses under excitation
0

100

200

300

400

500

600

700

800

900

1000

0 20 40

x 
[m

]

displacement y (x,t)
without control 

0

100

200

300

400

500

600

700

800

900

1000

0 20 40

x 
[m

]

displacement y (x,t)
with control 

0

100

200

300

400

500

600

700

800

900

1000

0 20 40

x 
[m

]

displacement y (x,t)
range 

Fig. 8. Overlay of riser profiles with control, without control and displacement range.
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Fig. 9. Control input at the boundary.
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Fig. 10. Displacement at x ¼ 750 without disturbance, with control (solid) and without control (dashed).
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were overlaid for different time instances and the displacement range are shown in Fig. 8. The riser angle and
deflection magnitudes are reduced when the control is active with control input shown in Fig. 9.

The ocean current disturbance was set to zero at t ¼ 100 s to simulate a free vibrating case similar to that
carried out in Ref. [15]. In Fig. 10, it is shown that the riser deflection at x ¼ 750m approaches the equilibrium
exponentially with the control law activated.

6. Conclusion

In this paper, the model of a flexible marine riser with a torque actuator at the upper riser package has been
derived. Boundary control has been introduced to reduce the upper riser angle magnitude and the transverse
vibration of a riser subjected to a distributed load. Closed-loop stability has been proven directly from the
PDE of the system and the problems of traditional truncated-model-based design have been avoided. The
control is implementable as the required signals for the control law are generated using measurements which
can be obtained from the upper riser boundary. When the disturbance is persistent as in the case of the marine
environment, the magnitude of deflection has been shown to be reduced under the control action. The riser has
also been shown to be exponentially stabilized in the absence of external disturbance. From the numerical
simulations, we observe that there is significant improvement in the upper riser angle magnitude and the
vibration reduction of the riser has been achieved.

Appendix

Nomenclature
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Symbol
 Description
 Units
yðx; tÞ
 Displacement in the transverse direction of the riser
 m

y0ðx; tÞ
 Slope of the riser
 m

L
 Length of riser
 m

T
 Tension of riser
 N

t
 Time
 s

mz
 Uniform mass per unit length of the flexible riser
 kg/m

rs
 Density of seawater
 kg=m3
o
 Frequency
 rad/s
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Ek
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Kinetic energy
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J

Ep
 Potential energy
 J
W
 Work done
 J

EI
 Uniform flexural rigidity of beam
 Nm2
f ðx; tÞ
 Time dependent distributed load
 N

UðtÞ
 Velocity of ocean current
 m=s2
Uðx; tÞ
 Current profile
 m=s2
D
 Riser external diameter
 m

CD
 Drag coefficient
 Dimensionless

CM
 Inertia coefficient
 Dimensionless

ð_�Þ
 Derivative with respect to time
 Dimensionless

ð�0Þ
 Derivative with respect to x
 Dimensionless

d
 Variation operator
 Dimensionless

c
 Linear structural damping coefficient
 Dimensionless
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