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Abstract

Energy-based robust control strategy was proposed in [12] to improve the control perfor-
mance of the traditional joint PD control by introducing additional control efforts through the
evaluation of vibration related variables. Although the energy-based robust controller always
guarantees closed-loop stability, it is not easy to find suitable gains of the terms for a satis-
factory control performance. In this paper, adaptive energy-based robust control is presented
for both closed-loop stability and automatic tuning of the gains of the additional control terms
for desired performance. Simulation results are provided to show the effectiveness of the
presented approach. © 2001 Elsevier Science Ltd. All rights reserved.

1. Introduction

For high speed positioning applications, light-weight manipulators are of con-
siderable interest. With the promised advent of light-weight high strength composite
materials, much attention has been given to modeling and control of flexible-link
manipulators.

In order to improve industrial productivity, it is very desirable to build the robot
link with light-weight material and thus increase the payload-to-weight ratio. When
such a robot is carrying a large payload and moving at a high speed, the effect of link
flexibility will be non-neglectable, and the traditional collocated control, e.g., the
PD feedback is no longer sufficient for fast and accurate positioning. The system,
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described by partial differential equations (PDEs), is actually a distributed-parameter
system of infinite dimensions. Its non-minimum phase behavior from the base input
to the end-point output makes it very difficult to achieve high level performance and
robustness simultaneously.

Various kinds of control techniques such as linear control [1], optimal control [2],
adaptive nonlinear control [3], sliding mode control [4], feedback control [5], inverse
dynamics method [6] and singular perturbation approach [7] have been investigated
based on a truncated (finite dimensional) model obtained from either the Finite
Element Method (FEM) or Assumed Modes Method (AMM). Some problems as-
sociated with the truncated-model-based methods have been highlighted in the lit-
erature such as controller/observer spillover problems [8]. To avoid such problems,
some controllers are designed based on the partial differential equations directly,
including direct strain feedback controller [8], quasi-tracking approach [9] and
nonlinear vibration feedback controller [10].

Collocating the sensors and actuators at the joints of a flexible manipulator, for
example the joint PD controller, can guarantee a certain degree of robustness of the
closed-loop system. However, the performance of the flexible system with only a
collocated controller is often not very satisfactory because the elastic modes of the
flexible beam are seriously excited and not effectively suppressed. For this, non-
collocated controller design have been obtained much interest.

Because the flexible link robot is governed by a set of partial differential equa-
tions, which means that the system is of infinite dimensionality, many control
strategies that succeed in conventional rigid body robot control cannot be directly
applied to solve the flexible robot control problem. In [12], an effective control
strategy called energy-based robust control (EBRC) was proposed, which was
constructed by introducing a robust term into the traditional collocated base PD
controller. It was motivated by the fact that the link flexibility is not taken into
consideration in the traditional PD control. Explicit evaluation of deflection related
variables provides direct control efforts on vibration suppression. Although the
energy-based robust controller always guarantees closed-loop stability, the perfor-
mance may degrade significantly when the control gain of the robust term becomes
small. Though any fixed large gain can guarantee good performance and fast sta-
bilization, however, it is not recommended in practice. Large fixed gains would
imply, in general, high noise amplification, high cost of control, and may be not
necessarily needed. Therefore, one trade-off has to be made in performance im-
provement and feedback gain selection by trial and error.

Using adaptive techniques, the choice of the controller gain can be automatically
tuned on-line. In [13], an adaptive direct strain feedback controller was proposed for
a system driven by a direct drive DC motor of speed reference type only. In [14], an
adaptive variable structure controller was constructed on the basis of a truncated
model which, accordingly, may have the problems associated with truncated models
including control and observation spillovers. Some self-tuning type adaptive control
schemes were proposed in [15,16], where either ARMA or linear state space models
were used for controller design by ignoring the nonlinear coupling effects. EBRC
controller was derived from the basic energy-work relationship, thus, it is free from
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the drawbacks resulting from model uncertainties and model truncations. In order to
improve the performance of EBRC controller, an adaptive energy-based robust
controller is proposed by adaptively tuning the strain feedback gain rather than
keeping the nonlinear feedback gain constant. Unlike the well known model-based
adaptive control where it is required to estimate the physical parameters of the plant
and then tune parameters of the controller adaptively, a simple adaptive gain tuning
method is proposed for ease of implementation here.

The rest of the paper is organized as follows. The multi-link flexible robot is
briefly introduced in Section 2. The adaptive energy-based robust controller design
approach is presented in Section 3. Numerical simulation studies are carried out on a
two-link flexible robot to verify the effectiveness of the controller in Section 4, fol-
lowed by the conclusion in Section 5.

2. Multi-link flexible robot

We shall consider the flexible robots (i) deployed in space, or (ii) moving in the
horizontal plane. In both cases, the effect of gravity is ignored for simplicity.

The N links are connected using N motors. Motor 1 is fixed in position, which is at
the origin of the fixed base frame X0, Y;. The remaining motors, each being sup-
ported by a roller, are movable on the platform. The free tip of the last link has a
payload attached.

For clarity, the geometry of the robot is shown in Fig. 1. There are totally 2N
frames being used to describe the system, i.e., X;0;Y; and x;0;y;, i=1,2,... N.
Frame X;0,7), as stated above, is the fixed base frame. Other frames are all local
reference frames attached to the corresponding motors, specifically axis O.X;

Yi

Payload

X

Motor 1

Fig. 1. Geometry of the multi-link flexible robot.
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(i=2,3,...,N) is defined as the tangent to the end tip of link /i — 1, and axis Ox;
(i=1,2,...,N) is tangent to link 7 at its base. The angular position of the ith link is
denoted by 9 measured in frame X;0,Y;. 0; is actually the angular difference between
frames x;0;y; and X;0;Y;.

F or the system described above, the total work done by external inputs 7 = 3~ |
fo t) d¢t. From the energy-work relationship, i.e., the increment of the system
energy is equal to the work done by external inputs, we have the following equation
[17]

[E(t) + E, ()] — [E(0) Z / 2.1)

where E;(¢) and E,(¢) are the total kinetic energy and total potential energy of system
at time ¢, E,(0) and E,(0) are constants representing the kinetic and potential en-
ergies at time 0. Therefore, by taking time derivatives of both sides of Eq. (2.1), we
arrive at

N

E(t) + E(1) = 0:(t)t(2) (2.2)

i=1

which will be used for the controller design in the following section.

3. Adaptive energy-based robust controller design

In this section, an adaptive energy-based robust controller is presented by further
extending the results in [12]. The control objective here is to rotate each link of the
robot to the desired angular position and simultaneously suppress the residual vi-
brations effectively.

Although the simple joint PD controller was shown to be able to stabilize the
flexible robots [18], the system performance is not good because there is no explicit
efforts introduced to suppress the residual vibrations. In [12], EBRC strategy for
multi-link flexible robots was proposed by introducing one robust term where the
vibration is evaluated explicitly and provides direct control effort on vibration
suppression. As it has been shown that the gain of the nonlinear control term plays
an important role in obtaining satisfactory performance. It was found that when the
gain is too small, the control performance is very oscillatory. If the gain is too large,
the control action may become not admissible. In addition, the existence of mea-
surement noise also prohibit the use of high gain control. Unfortunately, it is very
hard to find optimal gain of this robust term.

As we have mentioned at the beginning, our primary concern is to design a simple
adaptive robust controller, while retaining the structure of energy-based robust
controller for easy implementation. Therefore, instead of directly employing the
conventional model-reference adaptive control, self-tuning adaptive control etc., we
only propose to adaptively tune the control gain of the robust term in EBRC instead
of keeping it constant as in [12].
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First, let us consider the following strain feedback control law

t
T, = _kpi(gi - Qdi) — kgi0; — ksiyl{,(n O)Sgn<0i)/ |9i|y§’(s 0) ds
0
i=1,2,...,N, (3.3)
where 37(¢,0) is the base strain of each link, k; = Y2 and Y,; is adaptively tuned by

t
Y(t) = Yl 01y (1, 0)/ |0:]y/ (s,0) ds — 7, Y (2) (3.4)

with k,, ky and o; >0, i =1,...,N. The o-term in (3.4) is introduced to avoid di-
vergence of the integral gains in the presence of disturbances. With the o-term, Y,;(¢)
is obtained as a first-order filtering of o;Y|0]y"(1,0) fé 10" (s, 0) ds.

Now, we are ready to present the following theorem on the stability of the multi-
link flexible robot system.

Theorem 3.1. Consider the multi-link flexible robot described in Section 2. Let the
control objective be to rotate each link of the robot to the desired angular position, while
simultaneously suppress the residual vibrations. Then, the proposed control law (3.3)
and the adaptation law (3.4) can guarantee the stability of the closed-loop multi-link
flexible robotic system.

Proof. Consider the following Lyapunov function candidate

N

1 & , 1 s
V:Ek+E,,+§;k,,,-(0[—0di) +§foi 72, (3.5)

i=1

By virtue of Eq. (2.2), the time derivative of V' is given by

V:iv:fiéi+z]v:kpi 9d19+20€ si sz
i=1 i=1

Substituting the control law (3.3) and the adaptation law (3.4) into the above
equation, we have

N

V= Z { — ki(0; — 04r) — kai0; — k! (¢,0)sgn (0 )/ 16,15/ (5, 0) ds}(;,-

i=1

N N
+ ka,-(()i — ()di)(),- —|—Zoc,.1Ys,~{oc,-Ys,~|0| (¢,0) / |0|y” (5,0) ds — J,K,(t)}
=1

i=1
N . N
= = kal] =) o7'e,¥; <0, (3.6)
i=l1 i=1

It follows that 0 < V(¢£) < V(0) V¢ = 0, hence V(¢) € L. Since V(¢) is a continuous
function of ¥;, V' (¢) is non-increasing in ¢, which implies the boundedness of ¥;; and,
hence, the boundedness of ;. In addition, it also implies that the closed-loop system
is energy dissipative and, hence, stable. [J
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Remarks.

1. The joint PD controller for the ith link is a special case of the 7; in (3.3) by setting
kyi’s to be fixed at zeros. The introduction of the £ items allows us to explicitly
consider the bending of the flexible beam, and subsequently have direct control
effect on elastic vibrations.

2. From (3.3), one can easily see that only the measurements of the joint angle 0,
joint velocity 6;, and base strain signal of each link are needed. The joint position
0; and the joint velocity 6, can be obtained by rotary encoder and tachometer at-
tached to the rotor of motor i, base strain signal can be obtained through the
strain gauge [12]. Therefore, the controller is very easy to implement from the en-
gineering point of view.

3. The stability proof is independent of the system dynamics and thus the draw-
backs/problems, such as control and observation spillovers, associated with mod-
el-based controllers mentioned in Section 1 are avoided.

4. Because the bending strain signals y/(0,¢) are chosen in the local reference frame
x;0;y;, such as those aforementioned, the controller presented in (3.3) are of de-
centralized type, which has the advantages of requiring few computer resources,
and giving ease of implementation and tolerance to failure, since the N controllers
in (3.3) can be implemented in parallel [12].

5. In control law (3.3) and adaptation law (3.4), only base strain was used to con-
struct the nonlinear term. However, it can be easily extended to the general con-
trol where a general function f;(x, ¢) is used instead of y/'(0, f). Some examples of
function f;(x,#) of link i described in frame x;0;y; are y;(x;,¢) (deflection at x;),
Vi(x;,t) (rotation at x;), y/(x;, ) (strain at x;), and y/(x;, t) (shearing force at x;)
Vx; € [0, L;] where L; is the length of the ith link [12].

6. As a matter of fact, the controller can be further generalized to cases of multiple
feedbacks as follows:

T = _kpi(ei - Hdl) kdtg - stuf thlJ Sgn / |9 ‘f S x"/
j=1

i=12,....N, (3.7)
where k; = Y2, and Y, is adaptively tuned by

Sij
B 0) = 3 Yol 0L05s) [ 10053 0 = 020 (38)
with j=1,2,...,m;, and x; € [0,L,] being the location of the jth sensor on the ith
link. The stability of the closed-loop system can be shown easily by choosing the
following Lyapunov function candidate

N
V=E,+E, +% > hi0; — 0a)’ +3 Z Zoc_l Y2, (3.9)
i=1

7. Tt should be noted that the bending Varlables assomated with other links can also
be introduced into the feedback of link i without destabilizing the system. For ex-
ample, assuming that only base strain of each link can be obtained, then the con-
troller can be given by
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. N . t .
T = —k(0; — O) — kaili =Y ke (£,0) sgn(0) / 101y (s,0) ds,
J=1 0

i=1,2,....N, (3.10)
where k;; = Y7, and Yy; is adaptively tuned by

t
Fo0) = Yo 0070 [ 10,07(5.0) ds =, 1)

The stability of the closed-loop system can be shown by choosing the following
Lyapunov function candidate

-

“1y2
o Yo

1 & 1 &

V :Ek +Ep+§ ;kp[(ei - 0d,')2 +§ IZI: 4
Note that controllers (3.7) and (3.10) are centralized rather than decentralized. Based
on the same idea, controllers of similar forms can be easily formed and investigated.

Although the stability of the closed-loop system has been given, it is difficult to
achieve asymptotic stability. This is mainly due to the infinite dimensionality of the
system. If the system is of finite dimensions, then LaSalle’s theorem can be used to
prove the asymptotic stability.

Theorem 3.2. The proposed control law (3.3) and the adaptation law (3.4) can guar-
antee the asymptotic stability of the closed-loop truncated system, which is obtained
through representing the deflection of each link by an arbitrary finite number of flexible
modes.

Proof. See Appendix A. O

Remarks.

1. Although model-truncation has also been invoked in proving the asymptotic sta-
bility in Theorem 3.2, controller (3.3) with adaptive law (3.4) has some significant
differences from the traditional truncated-model-based ones: (a) since controller
(3.3) is not of states-feedback type, reconstruction of flexible modes is not neces-
sary and thus the problem of control/observation spillovers, which is caused by
ignoring high frequency modes in controller and observer design, does not exist;
(b) asymptotic stability can be guaranteed for a truncated system with an arbi-
trary finite number of flexible modes (Theorem 3.2) without the need to increase
the order of the controller, and thus the computing burden can be always kept
light; and (c) the controller allows great freedom in feedback design and is very
easy to implement, since the vibration feedback signals can be chosen accord-
ing to available sensor facilities, and no high order signal measurements are
needed.

2. Though the asymptotical stability is proved for controller (3.3) with adaptive law
(3.4), the same conclusions can be drawn for other general controllers (3.7) and
(3.10).
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4. Simulation studies

In this section, some numerical simulations are carried out on a two-link flexible
robot. The plant is simulated by a FEM model in which each link is divided into four
elements with the same length. A fourth-order Runge-Kutta program with adaptive
step-size is used to numerically solve the differential equations. The sampling interval
1s set to be 0.01 s. To take into account of the limited bandwidth of the actuators,
control signal is filtered by a low pass filter, i.c., only those low frequency compo-
nents below 100 Hz in the control signals will be applied to the system.

The system parameters are given in Table 1, in which M, actually denotes the 2nd
motor, and M, is the payload attached to the end tip of link 2.

The initial joint positions of the both links are all zeros, and the set point values of
the two links are 6,; = 20° and 6,, = 10°. The robot is assumed to be initially at rest
without any deformation.

Following the discussion in [12], let the traditional PD control be

TpDi = _kpi(oi - Odi) - kvioia i= 152'

It is already known that for any k,;, ks > 0 will not destabilize the closed-loop sys-
tem. However, different selection of k,; and k,; will lead to very different performance.
By taking smart materials links as rigid, k, and &, are selected to make the closed-
loop critically damped. The corresponding rigid motion error equation of the smart
materials links is

Ieiéi(t) + kdiéi(t) + kpiei =0, i= 17 27

where I; represents the equivalent inertia of the ith joint, ¢; = 0, — 04, and &; = 0,
and ¢, = 0, since 0 is constant. It should be noted that because of the rotational
movement of the 2nd link, Z;; is not constant even when the two links are all assumed
to be rigid. For simplicity, in our simulations, 7 is determined by further assuming
that motor 2 is locked at 6, = 0, i.e., the two links are align. Subsequently, we have
I, = 3.46 kg m? and I, = 1.55 kg m?. For the second-order systems above, if critical
damping is assumed (¢ = 1), then &, = I,@?, and ky; = 21,0, 0, (i =1,2) are the

corresponding natural frequencies. Choosing w,; = 2.5 and w,; = 3.0, we have

o1 = — 21.6(0) — 041) — 17364, (4.11)
Tppy = — 14.0(6, — 0) — 9.30,. (4.12)
Table 1
System parameters
Link 1 Link 2
Length Li=10m L, =08 m
Flexural rigidity El, = 5.0 Nm? El, = 3.0 Nm?
Linear density p;=0.1 kgm™! p, =0.1 kgm™!
Hub initial Iy = 3.0 kg m? I» = 1.5 kg m?

Payload M, =0.1 kg M, =0.05 kg
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The EBRC in [12] is given by
T = Tppi — kyy)' (0, 1) / 10,(s)y"(0,5) ds, i=1,2, (4.13)

where )/ (0,7) are the base strain feedback for each link.
While the adaptive energy-based robust controller (AERC) used for simulation
study is given by

5 = oo — k! 0.0) [ 166)7(0.9) 0 (@14

with k; = ¥2 and the adaptation law of Y is
YSI(ZL) = aiYsi‘éi| t 0 / |0 |y// S 0 O'I'YSZ'(ZL), i= 1,2 (415)

Fig. 2 shows the tip deflections of EBRC with different fixed gains, say k; = 100,
1000 and 5000, and the AERC with «; =4 x 10* and a, = 6 x 10*, ¢; = 0.1 and
k(0) = 1000. It can be seen that EBRC controller with k; = 100 gives the worst
performance while the EBRC with higher k; can suppress the residual vibration
effectively. However, high gain is not desirable from a practical point of view. It can

0.08 T T T T T T T
) link 1
0.06|- o dotted: EBRC with k =100 - ‘ i
— T dash-dotted: EBRC with k _=1000
£ 0.04 S\ si
(7]
c
S 002
[$]
2
D 0
©
o
£ -0.02
-0.04
-0.06
0 5
t(s)
0.02 T T T T T T T
0.015 : link 2 : : : : : C
_ i~ dotted: EBRC with k. _100
E oorr N dash-dotted: EBRC with k =100 .
S 0.005 '
O
@
k5 0
©
£ -0.005 s A
_ dashed: EBRC with k =5000
001 A B solid: AERC ]
-0.015 i 1 1 1 1 | 1 | L 1
0 1 2 3 4 5 6 7 8 9 10

t(s)
Fig. 2. Tip deflections under EBRCs and AERC.
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be seen that the AERC can also achieve comparatively good performance while k; is
adjusted adaptively.

Fig. 3 shows changes of k; in gain adaptive robust controller. The maximum
values of &, and ky, are 6699 and 1418, respectively, and the minimum values of k;
and ky, are 370 and 388, respectively. It can be seen that k; are relatively high at the
beginning, then with the residual vibrations become small, &; also become small. &;
will converge to zero as time approaches infinity. This is very desirable in engineering
practice.

What we care about most in tip position control is the tip trajectories, which are
required to converge fast with as small vibrations/overshoots as possible to improve
positioning accuracy. Under the assumption of small deflection, the tip position of
the two links can be approximated by

pi = L0y +yi(Ly, 1),

P2 = L0y + y2(Ly, 1)
in which the angular displacements 6, and 6, should be represented in radians in-
stead of degrees. The tip positions p; and p, are plotted in Fig. 4. It is seen that the

tip trajectories of gain adaptive robust control are quite good since it is smooth,
converging fast and there are very little vibrations and overshoots.

7000 T

link 1

6000 -
5000
4000
xll)
3000
2000
1000

0

1600

1400
1200
ﬁ1000
800
600

400

200 | I | I | I I I |
0 1 2 3 4 5 6 7 8 9 10

t(s)

Fig. 3. Changes of k; in AERC.
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Fig. 4. Tip trajectory under EBRCs and AERC.

For better understanding, and a clear presentation, other signals in the closed-
loop are compared between the EBRC with different k;s and the gain adap-
tive robust controller. Fig. 5 shows the joint angle response, while Fig. 6
shows the control torque. It can be seen that all signals in the closed-loop are
bounded.

In the above, through simulations, we have shown the effectiveness of the con-
troller in (4.14) and (4.15). It should be pointed out that other kinds of signals or
other kinds of combinations of signals can also be considered depending on the
available sensor facilities, since the controller in (4.14) and (4.15) actually allows
great freedom of feedback design.

5. Conclusion

In this paper, gain adaptive robust regulation for multi-link flexible robots has
been presented. Theoretical proofs have shown that closed-loop system is stable, and
the controller is independent of system parameters and hence possess stability
robustness to parameter variations. Furthermore the controller can be easily
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Fig. 5. Joint angle under EBRCs and AERC.

implemented because the signals used in the feedback control can be measured di-
rectly or be chosen as measurable ones. Numerical simulations have shown that
system response converges fast and the residue vibrations are effectively suppressed
using the controller proposed.

Appendix A. Proof of Theorem 3.2

It can be easily proven by following the procedures in [11]. It is given here for
completeness and easy reference. Using the same Lyapunov functions (3.5), we
consider the motion of the system in the largest invariant set in the set V 0. Then
we have 0, = O and Y; = 0, hence, k; = 0. Subsequently, 0, =0, 1, = kyi(0; — O04),
i=12,....N

Firstly, consider link 1. With the aid of the notable Hamilton’s principle,
considering the motion of system in ¥ =0, we have the following PDEs of
link 1

ELY!/(0,1) — k(0 — 041) = 0, (A.1)
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Fig. 6. Control torque under EBRCs and AERC.
. n
piir(x1,1) = —ELy, (x1,0), 0<x <Ly (A2)
and boundary conditions (BCs) of link 1
11(0,8) =0, ¥,(0,£) =0, (A.3)
I kpl 0 0 A
11(0,8) == (01 — Oay). (A4)
El

Because 0; = 0, the robot is operated as if all the motors are locked. Consequently,
each motor can be taken simply as a concentrated mass. Hence, the bending moment
at the tip of link i — 1 should be equal to the base bending moment of link i, i.e.,

Ellfly,”,1<l‘171at> :EIzY,//(Oat>7 1227377N

Considering links 1 and 2, and noting that

EIzyg(O, l) = —T) = kp2(92 — 9d2)

then, we have another boundary condition

” k
Vi (Li,t) = ELZ(HZ = Oa2).
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It is noted that the left-hand sides of Eqs. (A.4) and (A.5) are functions of time, while
the right-hand sides are constants. Let us firstly assumed that the two constants are
zero. It is shown later that either constants being non-zero leads to invalid solutions.
Now Eqgs. (A.4) and (A.5) can be rewritten as

1 (0,1) =0, (A.6)

(L) = 0. (A7)
Using the Method of Separating Variables [19], the solution to (A.2) is assumed to be
of the form y(x,#) = ¥ (x)O(¢), and Eq. (A.2) becomes

q,////(x) . & _ _@ (AS)

Y(x) p o)’
where primes denote the derivatives of x and dots denote the derivatives of ¢. It is
clear that the left-hand side of Eq. (A.8) is a pure function of x while the right-hand
side depends on ¢ only. Therefore, both sides of Eq. (A.8) should be equal to a
constant. If k is used to denote the constant, the PDE (A.8) can be reduced into two
ordinary differential equations (ODEs), namely

o(1) = —kQ(1), (A.9)
" _ P1

" (xy) —E—]lk‘l’(xl). (A.10)
The BCs become

¥(0) =0,

70 =0 (A11)

P"(0) = 0,

Y'(L) =0.

We will consider Eq. (A.10) and conditions (A.11) with regard to different values of
the constant k.

It can be proved that when £ = 0 and & > 0, the solution to Eq. (A.10) is trivial.
Then we just need to consider the case for £ < 0.

Letting k = —w? < 0, Eq. (A.10) can be rewritten as

P (xy) = —(%)49@1) (A.12)
with
(%)4 - sz’%. (A.13)

The general solution to Eq. (A.12) is of the form
YP(x;) = Cie®' sin(ax;) + Coe™ cos(ax;y) + C3e~ ' sin(ax;) + Cse™ ™ cos(ax;),
(A.14)
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where a = v/v/2L;. From BCs (A.11), a set of equations are obtained

C,+Cy=0,
Ci+C+C—Cy =0, (A15)
Ci—C;=0, ’

(Cre™ — Cye ) cos(al,) — (Coe™t — C4e 1) sin(al;) = 0.

To obtain non-trivial solutions, the determinant of the coefficient matrix of
Egs. (A.15) must be zero, i.e.,

4(sin(aL,) cosh(aL;) + cos(aL;) sinh(aL;)) =0 (A.16)

which may be satisfied by an infinite number of a. Consider only positive g;, an
infinite number of solutions to the boundary value problem can be given by

¥i(x1) = Cie™ sin(ax;) + Che®™ cos(ax;) + Cye™ ™™ sin(ax;)
+ Cie ™™ cos(ax),

where C| ~ C} denote the solution to Eq. (A.15) corresponding to a;.

When k = —w? with o being non-zero number, the solution to Eq. (A.9) can be
obtained
q,(t) = D\e”" + Dhe™", (A.17)

where D} and D) are related to the initial conditions of y(x;,7). Note that the
“initial” moment #, should denote the moment when the system motion enters the
invariant set, rather than the initial operating moment since we are considering
the motion of the system in the largest invariant set in the set // = 0. Then from the
Superposition or Linearity Principle [19], a solution y(x,#) can be given by

Y = D40 (A18)

Note that the w; in Eq. (A.17) can be either positive or negative, without loss of
generality, if w; >0. This leads to D} =0 as follows. If D) #0, then
lim, . ¢;(¢) — oo and lim,_, §;(¢) — oo, and hence lim,_ ., y;(x;,#) — oco. This im-
plies the kinetic energy E; of the system approaches infinity, which contradicts the
fact the V in Eq. (3.5) is actually bounded. Therefore, D} must be zero. Conse-
quently, when k& < 0, the solution (A.18) approaches zero as time approaches infinity.

In summary, y;(x;,#) = 0 provided that the system motion is in the largest in-
variant set /= 0. Moreover, recalling that we already have 0, = 6,,, we further
conclude that if the system motion is in the largest invariant set ¥ = 0, the first link
must stop in the final position described by 6, = 6, and y;(x;,¢#) = 0. Then in this
case, the local frame X,0,7; is actually static with respect to the inertia frame X; 0, Y;.
This allows us to take X,0,Y, as the inertia frame in which the second link is to be
considered. Then we have the following PDEs of link 2

EDLYY(0,8) — k(0> — 042) = 0, (A.19)
pan(x2, ) = *Elzylzm (x2,1), 0<x; < Lo (A.20)
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Moreover, from Fig. 1 and the above conclusions, a set of boundary conditions
similar to (A.3), (A.6) and (A.7) also exist for Eq. (A.20), i.e.,

yZ(Oat) =0, y;(OJ) =0, yg’(O,t) =0, yg(Lth) =0.

Thus carrying out similar analysis for link 2 leads to the conclusion that link 2 must
stop at its final position described by 6, = 6, and y,(x,,7) = 0 provided that the
system motion is in the largest invariant set // = 0. This implies the local frame
X;03Y; can be considered as the inertia frame for link 3. Now it is easy to see that
repeating the same procedure until link N finally leads to the fact that if the system
motion is in the largest invariant set ¥ = 0, then all links must stop at their final
positions, i.e., §; = 0 and y;(x;,#) =0 (i =1,2,...,N).

Now, let us consider the case when the right-hand side of either Eq. (A.4) or (A.5)
is a non-zero constant is discussed. If this is true, then from y(x,¢) = ¥(x1)Q(¢),
QO(t) and hence y(x|,?) must be constant. This means that the first link is static,
which implies that the right-hand side of both Egs. (A.4) and (A.5) must equal the
same non-zero constant (from the moment balance of a static bending beam).
Subsequently, frame X,0,Y, can be taken as the inertia frame for link 2. Because the
base bending moment of link 2 equals the tip bending moment of link 1 (note the
condition ¥ = 0), the base bending moment of link 2 must be the same constant.
This, by assuming y»(x»,¢) = ¥(x2)Q(¢), implies link 2 is also static. Repeating the
same procedures for all links leads to a static bending N-link robot. Then from the
moment balance of the static robot, the base bending moment of link 1 should be
equal to the tip bending moment of link V. Since the free tip of link N is loaded with
a concentrated mass, the tip bending moment is zero. Therefore either the base
bending moment of link 1 or its tip bending moment must be zero.

Now invoking the truncation assumption, the elastic deflection of each link is
assumed to be described by a finite number of flexible modes, and subsequently the
system is of only finite dimensions. For this truncated system, because it has been
proven already that the largest invariant set // = 0 is the final equilibrium position,
the asymptotic stability directly follows the LaSalle’s theorem. [
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