
IEEE Robotics & Automation Magazine42 1070-9932/99/$10.00©2000IEEE SEPTEMBER 2000

©
19

98
C

or
bi

s
C

or
p.

an
d

19
94

Ph
ot

oD
is

c
In

c.
.

T
o date, there are already some commercial CAD
software for robotics, such as Workspace [1],
Robotica [2,3] and the Robotics Toolbox for
MATLAB. For both Robotica and the Robotics
Toolbox of MATLAB, only a collection of func-

tions is provided to be used in either the Mathematica or
MATLAB environment. Although Workspace provides a
powerful visualization tool of mechanical design for robots, it
does not have the functionality to integrate trajectory plan-
ning, dynamic simulation, and controller design together.

The current practice of controller design for a given robot
is very troublesome. Engineers and researchers normally need
to use a combination of tools for model building, controller
design, and numerical simulation. Addi-
tional efforts are necessary in converting the
controller algorithms in higher-level lan-
guages into real-time control codes. Though
some of the software can be converted into
C automatically for real-time implementa-
tion, the resulting code is generally very
large and not optimized. During this process, many problems
are encountered because design and implementation are de-
veloped in two or more different environments. The develop-
ment life cycle is thus very long.

All these factors have motivated the design and develop-
ment of a new integrated open-architecture platform for robot
simulation, controller design, and real-time implementa-
tion—OpenRob. The proposed system provides not only a
user-friendly simulation and educational platform but also an
open-architecture, control system development environment
for real-time control of robotic systems in conjunction with
an appropriate motion-controller card. Besides the built-in
conventional robot models, trajectory planning, and mo-
tion-control algorithms, OpenRob also enables the user to in-
tegrate user specified robots, control algorithms, and
trajectory-planning schemes into the system. This open sys-
tem provides a one-stop solution in the sense that
model building, controller design, and numerical
simulation are integrated into one platform for the
ease of real-time implementation. This will greatly
shorten the development life cycle and avoid the
problem of compatibility and portability of codes. In
addition, the software can also be used as a tool for
teaching robotics courses. In this article, we present
an overview of the OpenRob software, discuss im-
plementation issues, and provide a few case studies
involving OpenRob.

Overview of OpenRob
OpenRob is developed using the standard style of
Windows application that can be run on any Win32
platform: Windows 95/98/NT. Figure 1 shows the
main window platform of OpenRob. It is divided
into two panes. The upper one is the System
Configurator pane in which all the configuration

settings are managed while the lower one is the Perfor-
mance Graphs pane that can be used to display the control
performance graphically.

A friendly and interactive user interface is provided in the
System Configurator, which is divided into three func-
tional modules to represent three main system functions:
Trajectory Planner, Controller, and Robot. For
each module, there are two combo list boxes for the user to
configure the corresponding category and type. By left-click-
ing the mouse on the modules, the corresponding dialog box
or property sheet will be popped out for setting the configura-
tion of the module. After each functional module has been
configured, the Motion Commander button on the toolbar

is pushed to load the specified trajectory planning, mo-
tion-control algorithm, and the corresponding robot model
into the system for simulation study. The tracking perfor-
mances are displayed as graphs in the lower Performance
Graphs panes.

Furthermore, OpenRob also provides a user-friendly inter-
face for combining customized robot models, trajectory plan-
ning, and control algorithms into the system conveniently. This
is done by choosing the User Defined type item in the
combo list box for each function module, and an open file dia-
log box will be popped out for user to select the customized dy-
namic link libraries (DLLs) from the corresponding directory.
As long as the DLL designed by the user complies with the
well-defined export function declaration, it will be automati-
cally loaded and executed.

The main features of this open-architecture platform
include:

SEPTEMBER 2000 IEEE Robotics & Automation Magazine 43

OpenRob enables a user to customize his own
robot and build it into the system for

simulation and real-time control.

Figure 1. Sample layout of the system platform.

◆ Several workspaces can be opened and executed at the
same time.

◆ A powerful System Configurator is provided for
easy configuration and friendly man-machine commu-
nication.

◆ A flexible graphic plotting environment is embedded in
the system for easy monitoring and observing of the
control performance.

◆ Eight commonly used robots, including some commer-
cial robots, have been built into the system, which in-
clude their forward/inverse kinematics and dynamic
models [4-6].

◆ Several common trajectory-planning algorithms have
been introduced into the system, such as Linear Func-
tion with Parabolic Blend, Cubic Polynomial, Quintic
Polynomial, and the like, in which the optimal nonlin-
ear programming schemes are also integrated [7-9].

◆ Six different motion-control algorithms have been im-
plemented in the system, which includes classical PID
control, variant PID control, computed torque control,
sliding-mode control, adaptive neural network control,
and adaptive structural network control [10-13].

◆ An open system interface is provided for the user to load
the custom robot model, trajectory-planning algo-
rithms, and control schemes into the system.

Implementation Issues
In order to make the system more flexible, portable, and a
“true” open-architecture platform, the DLL technology has
been incorporated into the system. The DLL is an executable
file that acts as a shared library of functions. Dynamic linking
provides a way for a process to call a function that is not part of
its executable code. The executable code for the function is
located in a DLL, which contains one or more functions that
are compiled, linked, and stored separately from the processes
that use them. DLLs also facilitate the sharing of data and re-
sources. Multiple applications can simultaneously access the
contents of a single copy of a DLL in memory. The optional
DLL packages in OpenRob have been divided into three cat-
egories in accordance with the three main functional modules.
These built-in DLLs will be loaded automatically when the
specific functional categories and types are selected.

Robot Module
KINEMATICS
For the ease of maintenance and updating of the robot config-
uration data, a special configuration file (.cfg file) is designed
for each type of robot to store the default configuration de-
clared in data structure Robot. Hence, when a particular
type of robot is chosen, OpenRob will load the default .cfg file
into the memory and reinitiate the Robot structure automat-
ically. The format of the .cfg file is defined as follows, and a
sample configuration file for a planar two-link robot is shown
in Fig. 2.

1. The first line of the .cfg should be a comment line begin-
ning with symbol “#.”

2. Each configuration data occupies one line and it should
be prefixed with symbol “=.” Before symbol “=” any charac-
ters can be added. Empty lines are allowed between two con-
figuration data items.

3. The sequence of the configuration data is as follows:
(a) Number of degrees of freedom;

SEPTEMBER 2000IEEE Robotics & Automation Magazine44

Figure 2. A sample configuration file for a planar robot.

Joint

Link i − 1
Link

i

ai

di zi 1−

θi

xi 1−

xi

zi
α i Link i + 1

Joint i + 1

i

Figure 3. Definition of the link and joint parameters.

(b) Sequence of joint types denoted with a string of “P”
and “R,” in which “P” is used to represent a prismatic joint
while “R” represents a revolute one.

(c) D-H representation parameters a, α, d, θ for each DOF
(refer to Fig. 3).

(d) Link inertia parameters such as mass, mass center, and
inertia tensor for each link.

(e) Joint limits parameters such as low and high position
limits, velocity, acceleration, and torque/force limits.

(f) The dimension and elements of the parametric vector
for the linear-in-the-parameters (LIPs) expression of the dy-
namics [5, 13].

To implement the basic operations in kinematics, six func-
tions are provided as follows:

◆ PToCylindric(): Converts the position description
from Cartesian coordinates to cylindrical coordinates.

◆ PToSpheric(): Converts the position description
from Cartesian coordinates to spherical coordinates.

◆ CartToEuler(): Converts the orientation presenta-
tion from Cartesian coordinates to Euler angles (roll,
pitch, yaw).

◆ FrameTransform(): Calculates the numerical result
of the transformation matrix T j

i from frame j to frame i
for a given robot configuration and joint variables.

◆ ForwardKinematics(): Calculates the numerical
result of the transformation matrix Tn

0 from the
end-effector frame to the base frame for a given robot
configuration and joint variables.

SEPTEMBER 2000 IEEE Robotics & Automation Magazine 45

Figure 4. Tuning pages for classical (left) and variant (right) PID controllers.

Figure 5. Tuning pages for a computed torque controller.

◆ ForwardJacobian(): Calculates the linear and angu-
lar velocities of the end-effector for a given robot config-
uration and joint velocities by using the Jacobian matrix.

Given the robot configuration and joint variables, the func-
tion FrameTransform() can be used to generate any trans-

formation matrix Ti
j where i j i j n≥ =, , , ,0 … . Therefore, if

we set initial equal to 0 while final is equal to the DOF
of the robot, then the matrix obtained will be the forward kine-

matics T. Furthermore, the position and orientation of the
end-effector given in T can also be converted to other repre-
sentation forms using the functions PToCylindric(),
PToSpheric(), and CarToEuler().

With the FrameTransform(), the forward Jacobian can
be generated easily. By calculating Ti

0 for
i n= 0, ,… , and extracting the first three ele-
ments in the third and fourth columns of Ti

0

as Z i andOi , respectively, the Jacobian J can
be constructed using the following equa-
tions [10]:

J J J J n= ⋅ ⋅ ⋅[]1 2 (1)

where the ith column J i is given by

J

Z O O

Z
i

Zi

i n i

i

i

=

× −

− −

−

−

1 1

1

1

()
, if joint is revolute

0

, if joint is prismatic.i
(2)

Besides the above algorithms, a graphical user interface
(GUI) property sheet for the Robot module is built-in in this
open-architecture system for easy understanding and operation.
By left-clicking the Robot module box in the System
Configurator, the robot property sheet pops out with six
property pages: Link Parameters, Inertia Parame-
ters, Robot Limits, Kinematics, Jacobian, Dynam-
ics. In the Link Parameters, Inertia Parameters,
and Robot Limits property pages, by increasing or decreas-
ing the joint index, the configuration data for each joint is dis-
played. The configuration data can also be changed and saved to
file except for the commercial robots such as Puma and Stan-
ford. The Kinematics and Jacobian property pages pro-

SEPTEMBER 2000IEEE Robotics & Automation Magazine46

According to the presentation of the desired
path, trajectory planning can be conducted
either in joint space or in Cartesian space.

Figure 6. Tuning page for a sliding-mode controller.

Figure 7. Tuning pages for an adaptive neural network controller.

vide a learning tool to study kinematics and Jacobian properties
of robots. After keying in the joint positions for each joint and
clicking the Forward Kinematics button, the position and
orientation of the end-effector can be obtained and displayed in
the lower frames. Furthermore, different descriptions for posi-
tion in Cartesian, cylindrical, and spherical spaces and for orien-
tation in transformation matrix or Euler angle representations
can also be selected from the combo list box and the displayed
data will be automatically updated accordingly. In the same
way, after filling in the joint position and velocities, the linear
and angular velocities of the end-effector can also be obtained
in the Jacobian property page.

DYNAMICS
From Lagrangian-Euler formulation, the dynamic equations
of an n link manipulator can be stated as

D q q C q q q G q()�� (, �)� ()+ + = τ (3)

whereq R n∈ is the vector of joint variables, τ ∈ R n is the vec-
tor of joint torque applied by the actuators, D q R n n() ∈ × is the
symmetric positive definite inertial matrix, C q q R n n(, �) ∈ × is
the Coriolis and centrifugal force matrix, andG q R n() ∈ is the
gravitational force vector [5, 12, 13].

The dynamic equations are usually used in the computer
simulation of robot motion and controller design. The follow-
ing three basic algorithms are provided in OpenRob:

◆ DynamicsSimulation(): Given the current states
(joint position and velocity) and the torque of the robot,
the Runge-Kutta-Merson algorithm is called to solve
the differential equations to obtain the next states of joint
position and velocity.

◆ SolveODE(): The robust adaptive step size numerical
algorithm of the Runge-Kutta-Merson method is used
to solve the ordinary differential equations [13].

◆ AutoDeriveDynamics(): Given the current state
variable x q qT T T= [�] , input force/torque, and robot
configuration parameters, �x is calculated as the result of
the function.

As an open-architecture platform, OpenRob enables a user
to customize his own robot and build it into the system for
simulation and real-time control. A user interface has been de-
signed to load the custom robot into the system. If the selected
DLL file and corresponding .cfg file can be loaded successfully,
the DLL file name will be updated in the robot type combo list
box and the system will be adjusted automatically to this cus-
tom environment so that all the existing tools in the system
can be used to access this custom robot.

Trajectory-Planning Module
Trajectory planning is another important module in the control
of robotic manipulators. It can reduce a user’s efforts in specify-
ing the complicated functions of space and time. Given the de-
sired destination location or the traveling path with a sequence
of via points, the trajectory planner generally interpolates it by a
class of polynomial functions and generates a sequence of
time-based joint position, velocity, and acceleration.

According to the presentation of the desired path, trajec-
tory planning can be conducted either in joint space or in Car-
tesian space. For joint-space planning, the time history of all
joint variables and their first and second derivatives are
planned to describe the desired motion of the manipulator.
For Cartesian-space planning, the time history of the
end-effectors’ position, velocity, and acceleration are planned
first, and the corresponding joint position, velocity, and accel-
eration are then derived from inverse kinematics.

SEPTEMBER 2000 IEEE Robotics & Automation Magazine 47

Figure 9. Neural network node configuration dialogue box.Figure 8. Property page for a neural network node distribution.

Normally, motion can be divided into two types. The first
one is stop-over motion in which the robot stops at each de-
sired via point, while the other one is continuous motion in
which the robot goes through each via point without stopping.

STOP-OVER TRAJECTORY PLANNING
There are two types of planning methods to specify the
stop-over motion: synchronized and unsynchronized
schemes. In synchronized motion all joints arrive at each via
point simultaneously, while in unsynchronized motion all
joints reach their destinations as fast as possible according to

their own dynamics. The common requirement is that the
minimum time interval for each joint under its own velocity
and acceleration constraints during each motion section
should be determined first. Then, in synchronized motion,
the longest time among them will be selected as the common
time interval so that all the joints can finish their motion si-
multaneously; and in unsynchronized motion, each joint se-
lects its own minimum travel time to reach the via point.

In general, polynomial interpolation is widely used to de-
sign the trajectory. In order to create a smooth path with con-
tinuous position and velocity, we start with the linear function

SEPTEMBER 2000IEEE Robotics & Automation Magazine48

Figure 10. Tuning pages for an adaptive structural network controller.

Figure 11. Screen shots for a planar robot’s kinematics and dynamics properties.

but add a blend region at each path point. Different accelera-
tion and velocity profiles can be selected along the trajectory,
such as linear function with parabolic blends (LFPB), linear
function with cubic blends (LFCB), and linear function with
quartic blends (LFQB). Sometimes, high-order polynomial
functions, such as cubic and quintic polynomial interpola-
tions, are used for the smoothness of the signals.

CONTINUOUS CUBIC OPTIMAL TRAJECTORY PLANNING

In continuous go-through motion, let N be the number of
the desired via points that include the start and end points, q ji

be the position of joint j at the via point i, and t i be the time

when the robot passes through the via point i for
j n= −0 1, ,… and i N= −0 1, ,… . The piecewise cubic func-
tion is used for joint j between q ji and q j i()+1 .

In order to maximize the speed of operation, the traveling
time for the robot should be minimized. In OpenRob, Nelder
and Mead’s flexible polyhedron search [8] has been utilized to
accomplish this.

DESIGN OF TRAJECTORY PLANNER

In OpenRob, Trajectory Planner is designed to config-
ure and implement the mentioned trajectory-planning algo-
rithms as individual DLLs. As an open-architecture platform,

SEPTEMBER 2000 IEEE Robotics & Automation Magazine 49

Figure 12. Screen shots for a cylindrical robot’s kinematics and dynamics properties.

Table 1. Control Algorithms Implemented in OpenRob

Control Type Control Law Adjustable Gains

Classical PID τ τ= + + ∫K e K e K e dD P I

t�
0

KD, KP , and KI

Variant PID τ τ= + ∫K r K rdP I

t

0
KP , KI, K1, K2, and K3

Computed Torque τ τ= + + + + +∫� (��)(�) � (, �) � � ()..D q q K e K e K e d C q q q G qd D P I

t

0
KD, KP , and KI

Sliding Mode τ = K rrsgn() Kr , K1, K2, and K3

Adaptive NN [13]
τ = • + •

+ •

[{ � } { }]�� [{ � } { }] �

[{ � } { }]

W q W q

W

D
T

D r C
T

C r

G
T

G

Ξ Ξ

Ξ + + +∫K r K rdP I r

t
τ τ

0

KP , KI, K1, K2, K3, and Kr

Adaptive SN [13]
τ

τ

= • + +

+ +

[{ � } { }]�� [{ � }] � �P S q P W q W P

K r K rd

T
r

T
s r

T

P I

1
2

0 0

0

t

∫
KP , KI, K1, K2, and K3

OpenRob enables a user to customize his own trajec-
tory-planning algorithms and build them into the
system for simulation and real-time control.

Controller Module
Six types of control algorithms have been built into
the platform for computer simulation study and
real-time implementation. They are the classical PID
control, variant PID control, sliding-mode control,
computed torque control, adaptive neural network
control, and adaptive structural network control
[10-14], as given in Table 1.

For the ease of software development and porta-
bility, the control algorithms are developed in DLL
style. In each DLL, four main standard C style func-
tions, RunController(), Initialize(),
Rollback(), and Tuning() are declared as ex-
port functions. The features of these exported func-
tions are described as follows.

◆ Initialize(): Initializes the parameters re-
lated to the controller.

◆ Tuning(): Invokes the friendly GUI for the
user to tune the corresponding controller pa-
rameter.

◆ RunController(): Given the desired trajec-
tory and the states, this executes the control al-
gorithm to compute the output torque.

◆ Rollback(): De-initializes the controller-re-
lated parameters.

To ease the tuning of the controller parameters,
GUIs as shown in Figures 4-10 have been designed.
The user can easily change the gains by keying the val-
ues in the corresponding boxes.

As an open-architecture platform, OpenRob en-
ables a user to customize his own control algorithm
and implement it in the system for simulation and
real-time control purposes. By selecting the “User
Defined Control” option of the Controller mod-
ule in System Configurator, a dialog box will be
popped out for the user to select his desired control al-
gorithm DLL file.

Case Studies
In order to demonstrate the functionalities of OpenRob
and have a clear picture of the overall performance, several
case studies are conducted in this section. In the first case,
the kinematics and dynamics properties of two different
robots are considered. The second case involves the Tra-
jectory Planner, in which different trajectory-plan-
ning schemes are studied. In the third case, the control
performances of different algorithms are presented.

Case 1: Study of Different Robot Models
In this case study, Planar (RR) and Cylindrical
(RPP) robots are selected for preliminary study of ro-

SEPTEMBER 2000IEEE Robotics & Automation Magazine50

Figure 13. Trajectory planned with the LFPB method in stop-over motion (Case 2).

Figure 14. Trajectory planned with the LFCB method in stop-over motion (Case 2).

Figure 15. Trajectory planned with the LFQB method in stop-over motion (Case 2).

bot kinematics and dynamics. After selecting Planar (RR) or
Cylindrical (RPP) from the robot type combo list box, and
by single clicking on the Robot functional box, a robot
property sheet with detailed information about the kine-
matic and dynamic parameters is popped out as shown in Fig.
11 and Fig. 12. This information is actually divided into six
categories: Link Parameters, Inertia Parameters,
Limit Parameters, Kinematics, Jacobian, and
Dynamics parameters. Furthermore, in the Kinematics
property page, one can enter the joint positions for each joint
by clicking the corresponding button, and the position and
orientation of the end-effector can be obtained directly from
the property page; and in the Jacobian property page, by
keying in position and velocity for each joint, the linear and
angular velocities of the end-effector can also be updated au-
tomatically. It can be seen that, with the friendly GUI, the
basic concepts of kinematics and dynamics can be observed
and studied interactively.

Case 2: Investigation of
Trajectory-Planning Schemes
In this case study, different trajectory-planning
schemes are demonstrated. For simplicity, the pla-
nar robot with the configuration in Fig. 2 is used.
Assuming the home position of the planar robot is
q1 0= and q 2 0= , a series of via points has been
specified with q1 0 50 50 0= −{ , , , }deg and
q 2 0 100 50 0= −{ , , , }deg. By selecting the planning
category as joint-space planning and the motion type
as stop-over or continuous motion, the generated
trajectories by the Trajectory Generator with
different profile schemes are shown in Figs. 13-18.
The first column of the performance graph panes
shows the desired joint position for each joint, while
the second and third ones are the corresponding de-
sired velocity and acceleration profiles.

It can be observed that although the position trajectories
are almost the same in different schemes, the velocity and ac-
celeration trajectories are totally different. In stop-over mo-
tion, all the joints start to move with zero velocities at the
same time and reach the desired point simultaneously with
zero velocities, then the motion continues in the next section
and so on. In continuous pass-through motion, all the joints
start from the initial point and go through each via point si-
multaneously with zero velocity and eventually stop at the fi-
nal point with zero velocity.

Case 3: Testing of Different Control Algorithms
In this section, the performances of different control schemes
are illustrated, such as classical PID control, variant PID con-
trol, sliding-mode control, computed torque control, neu-
ral-network-based adaptive control, and structural net-
work-based adaptive control. For simplicity, a planar two-link

SEPTEMBER 2000 IEEE Robotics & Automation Magazine 51

Figure 16. Trajectory planned with the cubic method in stop-over motion (Case 2).

Table 2. Controller Parameters Setting in Case 3

Control Type Adjustable Gains and Parameters

Classical PID KD = diag[]10 KP = diag[]1000 KI = 0

Variant PID KP = diag[]10 KI = 0 K1 100= diag[] K2 0= K3 0=

Computed Torque KD = diag[]10
�P0 2=

KP = diag[]100
�P1 0=

KI = 0
�P2 1= �P3 15= �P4 0=

Sliding Mode Kr = diag[,]200 100 K1 100= diag[] K2 0= K3 0=

Adaptive NN KP = diag[]10
ΓD = diag[.]0 001
NodeD = 100

σ 2 10=

KI = 0
ΓC = diag[.]0 001
NodeC = 100
τ r = 0

K1 100= diag[]
ΓG = diag[.]0 008
NodeG = 100

K2 0= K3 0=

Adaptive SN KP = diag[]10
Γi = diag[.]0 007

KI = 0
Γ0 0 05= diag[.]

K1 100= diag[] K2 0= K3 0=

robot is chosen. The desired trajectory is generated us-
ing a cubic joint-space planning scheme by specifying
the initial and final positions for the two joints as
q o

T= []0 0 deg, q f
T= −[]150 150 deg. The control

gains and adaptation parameters used for each control
scheme are given in Table 2. The performances are
shown in Figures 19-23. The performance graph pane
is divided into four sections; i.e., (1) top-left corner
shows the desired trajectory qd, the actual joint position
response q, and the corresponding control signal τ for
joint 1; (2) the bottom-left corner shows the joint
tracking error for joint 1; (3) the top-right corner shows
the desired and actual joint position response and the
corresponding control signal for joint 2; and (4) the
bottom-right corner shows the joint position error for
joint 2. Note that the curves of different colors repre-
senting q and qd are very close to each other and appear
to be only one line in a black and white printout such as
here.

Summary
In this article we have presented OpenRob, an inte-
grated open-architecture platform for computer-aided
control system design of robotic control systems. The
implementation issues have been described in detail. It
provides a one-stop solution in the sense that model
building, controller design, and simulation are inte-
grated into one platform for the ease of real-time im-
plementation. The open-architecture feature enables
users to further develop custom robot models, trajec-
tory-planning schemes, and control algorithms into
the system for simulation study and real-time control.
The software can also be used as a tool for educational
purposes. Several case studies have been provided to
demonstrate the features of this open-architecture sys-
tem.

Keywords
Robotics, robot control, computer simulation, com-
puter-aided control system design.

References
[1] Workspace 4 Educational User Guide Manual, Robot Simulations

Ltd., UK, 1997.
[2] J. Nethery and M.W. Spong, “Robotica: A mathematica pack-

age for robot analysis,” IEEE Robotics and Automation Mag., vol.
1, no. 1, pp. 13-20, 1994.

[3] J. Nethery and M.W. Spong, “A mathlink-based front end for
the Robotica package,” Mathematica J., , vol. 5, no. 2, pp.
72-79, 1995.

[4] J. Denavit and R.S. Hartenberg, “A kinematic notation for
lower-pair mechanism based on matrices,” Trans. ASME J. Ap-
plied Mechanics, vol. 77, pp. 215-221, 1955.

[5] M.W. Spong and M. Vidyasagar, Robot Dynamics and Control.
New York: Wiley, 1989.

[6] K.S. Fu, R.C. Gonzalez, and C.S.G. Lee, Robotics: Control,
Sensing, Vision and Intelligence. New York: McGraw-Hill,
1987.

SEPTEMBER 2000IEEE Robotics & Automation Magazine52

Figure 17. Trajectory planned with the quintic method in stop-over motion (Case 2).

Figure 18. Trajectory planned in continuous motion (Case 2).

Figure 19. Performance with classical PID control (Case 3).

[7] C.S. Lin, P.R. Chang, and J.Y.S. Luh, “Formulation and opti-
mization of cubic polynomial joint trajectories for industrial
robots,” IEEE Trans. Automatic Control, vol. AC-28, no. 12,
pp. 1066-1073, 1983.

[8] D.M. Himmelbian, Applied Nonlinear Programming, New York:
McGraw-Hill, 1972.

[9] S.S. Ge and D.L. Gu, “Implementation of trajectory planner in
OpenRob system,” in Proc. Int. Conf. Control, Automation,
Robotics and Vision, Singapore, Dec. 1998, vol. 1, pp.
524-528.

[10] J.J. Craig, Introduction to Robotics: Mechanics and Control. Read-
ing, MA: Addison-Wesley, 1989.

[11] J.-J.E. Slotine and W. Li, Applied Nonlinear Control.
Englewood Cliffs, NJ: Prentice Hall, 1991.

[12] F.L. Lewis, C.T. Abdallah, and D.M. Dawson, Control of Ro-
bot Manipulators. New York: MacMillan, 1993.

[13] S.S. Ge, T.H. Lee, and C.J. Harris, Adaptive Neural Network
Control of Robot Manipulators, River Edge, NJ: World Scien-
tific, 1998.

[14] R.P. Paul, Robot Manipulator: Mathematics, Programming and
Control, Cambridge, MA: MIT Press, 1981.

S.S. Ge received the B.Sc. degree in control engi-
neering from the Beijing University of Aeronautics
and Astronautics, China, in July 1986, and the
Ph.D. degree and the Diploma of Imperial College
(DIC) in mechanical/electrical engineering from
the Imperial College of Science, Technology, and
Medicine, University of London, UK, in January
1993. From May 1992 to June 1993, he was a post-
doctoral research associate at Leicester University,
UK. He has been with the Department of Electrical
Engineering at the National University of Singapore
as a lecturer from July 1993 to June 1998 and as a
senior lecturer since July 1998. He was a visiting
staff member in the Laboratoire d’Automatique de
Grenoble, France, in 1996 and the Department of
Electrical and Electronics Engineering, the Univer-
sity of Melbourne, Australia, in 1998 and 1999. He
served as an associate editor on the Conference Edi-
torial Board of the IEEE Control Systems Society in
1998 and 1999 and has been serving as an associate
editor of IEEE Transactions on Control Systems Tech-
nology since June 1999. He has authored and
coauthored over 100 international journal and con-
ference papers and one monograph, and he has
coinvented three patents. He was the winner of the
1999 National Technology Award of the National
Science and Technology Board. He serves as a tech-
nical consultant to industry. His current research in-
terests are adaptive control, neural networks and
fuzzy logic, robot control, real-time implementa-
tion, genetic algorithms, friction compensation, and
sensor fusion.

T.H. Lee received the B.A. degree with First Class
Honours in the Engineering Tripos from Cambridge
University, UK, in 1980, and the Ph.D. degree from
Yale University in 1987. He is the head of the Con-

SEPTEMBER 2000 IEEE Robotics & Automation Magazine 53

Figure 20. Performance with variant PID control (Case 3).

Figure 21. Performance with computed torque control (Case 3).

Figure 22. Performance with sliding-mode control (Case 3).

trol Division of the Department of Electrical Engi-
neering of the National University of Singapore, and
he is also the vice-dean (research) in the Faculty of
Engineering there. Dr. Lee’s research interests are in
the areas of adaptive systems, knowledge-based con-
trol, and intelligent mechatronics. He has published
over 100 technical papers in international journals
and conference proceedings in these areas, and he
currently holds associate editor appointments in
Automatica (an IFAC Journal); the IEEE Transactions
on Systems, Man and Cybernetics; Control Engineering
Practice (an IFAC journal); and the International Journal
of Systems Science. He is also the regional editor (for
the Far East) of Mechatronics (Oxford, Pergamon
Press). Dr. Lee was a recipient of the Cambridge
University Charles Baker Prize in Engineering.

D.L. Gu was born in Zheng Jiang, Jiangsu Province,
P.R. China, in 1969. He received his B.Eng. degree in
scientific instrument engineering from Zhejiang Uni-
versity, P.R. China, in 1991. He is currently an M.Eng.
student in the Department of Electrical Engineering,
the National University of Singapore, and with
Hewlett-Packard Singapore Pte. Ltd. as a research engi-
neer. His research interests include robotic control,
neural network control, and control applications.

L.C. Woon received the B.Eng. degree in electrical
engineering with First Class Honours in 1996 and the
M.Eng. in 1998, both from the National University of
Singapore. His main research interests are in the areas
of control of robot manipulators, neural network con-
trol, and real-time control systems.

Address for Correspondence: S.S. Ge, Department of
Electrical and Computer Engineering, National Uni-
versity of Singapore, Singapore 119260. E-mail:
elegesz@nus.edu.sg.

SEPTEMBER 2000IEEE Robotics & Automation Magazine54

Figure 24. Performance with structural-network-based adaptive control (Case 3).

Figure 23. Performance with neural-network-based adaptive control (Case 3).

