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The low-dimensional representation of high-dimensional data and the concise description of its intrinsic
structures are central problems in data analysis. In this paper, an unsupervised learning algorithm called
weighted locally linear embedding (WLLE) is presented to discover the intrinsic structures of data, such
as neighborhood relationships, global distributions and clustering. The WLLE algorithm is motivated by
locally linear embedding (LLE) algorithm and cam weighted distance, a novel distance measure which
usually gives a deflective cam contours for equal-distance contour in classification for an improved clas-
sification. It is a major advantage of the WLLE to optimize the process of intrinsic structure discovery by
avoiding unreasonable neighbor searching, and at the same time, allow the discovery adapt to the char-
acteristics of input data set. Furthermore, the algorithm discovers intrinsic structures which can be used
to compute manipulative embedding for potential classification and recognition purposes, thus can work
as a feature extraction algorithm. Simulation studies demonstrate that the WLLE can give better results
in manifold learning and dimension reduction than LLE and neighborhood linear embedding (NLE), and is
more robust to parameter changes. Experiments on face images data sets and comparison to other famous
face recognition methods such as kernel-PCA (KPCA) and kernel direct discriminant analysis (KDDA) are
done to show the potential of WLLE for real world problem.

© 2008 Elsevier Ltd. All rights reserved.

1. Introduction

Many problems in machine learning begin with the pre-
processing of raw high-dimensional signals, such as face images,
speech spectrograms, EEG and ECG signals for medical diagnose.
For convenience of subsequent operations such as classification
[1], image processing [2] and outlier detection [3], the preprocess-
ing should extracts and highlights the inherent properties hidden
in the high-dimensional observations and represents the intrinsic
structures in a more compact and efficient way. However, the rep-
resentations must be learned or discovered automatically in the
case that no prior knowledge about the data is known. Automatic
methods which discover hidden structures from the statistical reg-
ularities of large data sets can be studied in the general framework
of unsupervised learning [4,5].

The strategies and methodologies to solve this problem can be
categorized into linear and nonlinear methods. Principal component
analysis (PCA) is a linear projection method that emphasizes on the
features of observations with large variability that can be discovered
using cross correlation [6]. Classical multidimensional scaling (MDS)
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seeks to preserve pairwise distance and simple formations of obser-
vations such as triangle [7]. Due to the nonlinear relationships of
high-dimensional observations in nature, several geometry-oriented
methods are introduced by mapping high-dimensional inputs into
low-dimensional embeddings nonlinearly such as ISOMAP, by which
the geodesic relationship among the input data and the calculated
low-dimensional embeddings remains consistent [8].

Linear techniques based on PCA or linear discriminant analysis
(LDA) cannot provide reliable and robust solutions to nonlinearity
distribution such as face patterns. As a result, nonlinear techniques
such as kernel-PCA (KPCA) [9], generalized discriminant analysis
(GDA), and kernel direct discriminant analysis (KDDA) [2] was pro-
posed to solve the problem of nonlinearity in data distribution. The
KPCA was proposed in Ref. [9], which is as simple as standard PCA
because no nonlinear optimization is involved. However, it may have
trouble when very large number of observations is needed to be pro-
cessed. KDDA is proposed and used to do face recognition to deal
with the nonlinearity and small sample size of the face pattern's dis-
tribution and data sets [2]. All of these kernel-based algorithms have
a further problem of large training sample, overfitting, and finding
suitable kernel functions for each specific data set.

Local linear embedding (LLE) is an unsupervised learning al-
gorithm that computes low-dimensional, neighborhood-preserved
embeddings of high-dimensional inputs [4,5]. Unlike clustering
methods for local dimension reduction [10], LLE maps its inputs into
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a single global coordinate system of lower dimensionality, and its
optimizations do not involve local minima [4]. By exploiting the
local symmetries of linear reconstructions, LLE is able to learn the
global structure of nonlinear manifolds. It eliminates the need to
estimate pairwise distances between widely separated data points
and recovers global nonlinear structure from locally linear fits [5].
It is suitable to solve the problem of dimension reduction arises in
many fields of information processing, including machine learning,
data compression, scientific visualization, pattern recognition, and
neural computing [11–13].

However, LLE algorithm, as well as many other machine learn-
ing and pattern recognition algorithms, such as nearest neighbor
classifier [14,15], radial basis function networks [16], support vec-
tor machines (SVMs) for classification [17], k-means algorithm for
clustering [18,19], actually rely on a distance metric. As a direct
result, the performance of the method depends critically on the
choice of appropriate metric. Many early works have been carried
out to relax this restriction, such as optimal metric for k-nearest
neighbor density estimation [15], optimal local metric [14] and opti-
mal global metric [20]. More recent research along this line contin-
ued to develop various locally adaptive metrics [20–25] for metric
learning-based algorithms; in Ref. [26], how to find a better distance
measure for similarity estimation was discussed, and a group of new
distance measures are derived and proved to bemore efficient in fea-
ture extraction than traditional Euclidean and Manhattan distances;
in Ref. [27], the authors extended the LLE procedure with a weight-
ing scheme by associating weights with face images to represent
their probability of occurrence, and obtained better performance on
face recognition.

The existing methods handle this problem only from the aspect
of the query point. They analyze the measurement space emanating
from the query point, and study how the distance measure should
be changed or weighted. These approaches only examine a small lo-
cal region surrounding the query sample, as such the most of the
inter-prototype information is neglected. To solve this problem, cam
weighted distance for improving nearest neighbor finding is devel-
oped in Ref. [28]. The “camweighted distance”was so named because
that it usually gives a deflective cam contours for equal-distance con-
tour in classification as mentioned and shown in Ref. [28, Fig. 1]. This
method optimizes the distance measure with respect to the analysis
of the inter-prototype relations. Since the prototypes are not isolated
instances, the nearby prototypes actively affect the confidence level
of the information provided by the prototype being considered. As
a result, to improve distance measure globally, we should consider
both variances with its own orientation and discrimination with re-
spect to its different surroundings of each prototype.

In this paper, we proposed weighted locally linear embedding
(WLLE) by modifying the LLE algorithm based on the weighted
distance measurement to improve the dimension reduction and
internal feature extraction performance especially for the deformed
distributed data. In the case that data distribution is deformed be-
cause of the attraction, repulsion, strengthening effect and weaken-
ing effect each sample point receives from its neighbors, Euclidean
distance for measuring the similarity will lead to performance
decline. By taking into account the distribution information sur-
rounding each prototype to optimize the distance measure, we
can improve the neighbor finding procedure of LLE algorithm and
avoid the redundancy and overlapping due to improper neigh-
bor selection. Better neighbors selection will make the dimension
reduced representations more accurate to represent the inter-
nal feature, characteristic, and structure of the high-dimensional
data.

The main contributions of the paper are as follows:

(i) a novel weighted distance measurement for neighborhood
searching is adopted to solve the problem of neighbors

redundancy and overlapping when the samples are not well-
distributed;

(ii) a modified LLE based on the weighted distance measurement
called WLLE is presented to give better performance of internal
feature extraction;

(iii) the problem that the LLE cannot give faithful embeddings for a
kind of difficult data set, in which some data are noisy, sparse
or weakly connected, is solved by WLLE; and

(iv) the WLLE algorithm is tested using several manifolds and im-
ages, the results of simulations demonstrate that the WLLE not
only has better performance in manifold learning, but also is
more robust to parameter changes.

The rest of the paper is organized as follows. The main features of
LLE algorithm and modified NLE algorithm are briefly introduced
in Section 2. Then weighted distance measurement is introduced
in Section 3 for modification of LLE in the following sections. In
Section 4, weighted distance measurement is adopted to form a new
nonlinear dimension reduction algorithm, WLLE. Simulation studies
on both artificial manifold data sets and real-world data sets are
given in Section 5. Then, the motivation and origin of this work and
the main advantages of WLLE are discussed in Section 6. Section 7
concludes this work at last.

2. LLE and NLE

For ease of the forthcoming discussion, we firstly introduce the
main features of the LLE algorithm. It is an unsupervised learning
algorithm that attempts to map high-dimensional data to low-
dimensional, neighborhood-preserved embeddings. It is based on
the simple geometric intuitions: (i) each high-dimensional data
point and its neighbors lie on or close to a locally linear patch
of a manifold [4], and (ii) the local geometric characterization in
original data space is unchanged in the output data space. From
a mathematic point of view, the problem LLE attempts to re-
solve is: given a set X = [x1, x2, . . . , xN], where xi (i = 1, . . . ,N) is
ith node on a high-dimensional manifold embedded in RD, i.e.,
xi ∈ RD, and then find a set Y = [y1, y2, . . . , yN] in Rd, where d>D
such that the intrinsic structure in X can be represented by that
of Y .

The neighbor finding process of LLE is usually carried out us-
ing the grouping technique such as k-nearest neighbors (KNN) or
choosing neighbors within a ball of fixed radius (�-neighborhoods)
based on Euclidean distance for each data point in the given data
set. These neighbors are then used to reconstruct the given point by
linear coefficients. The KNN method is widely used due to its sim-
plicity and ease of implementation. However, due to the complex-
ity, nonlinearity and variety of high-dimensional input samples, the
K is difficult to choose properly to obtain a acceptable level of re-
dundancy and overlapping. A small K leads to possible isolation of
nodes. For the extreme case where K = 0, all nodes are totally sepa-
rated and no intrinsic structure can be observed. A large K increases
redundancy and overlapping. For instance, if K=N−1, each individ-
ual node is directly connected to the rest of the nodes such that all
nodes belongs to one cluster, no matter what the exact number of
clusters is.

Therefore, the choice of K affects the tradeoff between the
redundancy present in the structure and the number of isolated
nodes. Thus, an adaptive scheme to select K is more appropriate for
finding neighbors. Based on this idea, a modified algorithm named
NLE was proposed [29,30]. It is an adaptive scheme that select
neighbors according to the inherent properties of the input data sub-
structures. By defining dij the Euclidean distance from mode xj to xi
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and Si the data set containing all the neighbor of xi, the neighbor
finding procedure of NLE for a given point xi can be summarized as
follows:

(i) If dij=min{dim}, ∀m ∈ 1, 2, . . . ,N, then xj is regarded as a neigh-
bor of the node xi, we initial Si = {xj}.

(ii) If dik = 2edmin{dim}, ∀m ∈ 1, 2, . . . ,N, then xk is regard as a
neighbor of node xi if djk > dik.

(iii) When Si contains two or more elements, for ∀m ∈ Si, if djm >dji
and djm > dmi are satisfy, then Si = Si ∪ {xm}.

This modified adaptive neighbor searching algorithm not only solves
the problem of redundancy and overlapping but also avoids the trial
and error operation, which is a obvious shortcoming of KNN algo-
rithm. However, according to NLEs neighborhood selection criterion,
the number of neighbor selected to be used is usually small. Gen-
erally speaking, for a data point x, the NLE determine the nearest
neighbor x1 to be the first neighbor point; from the second nearest
neighbor, say, x2, it will be considered a neighbor of x only when the
distance between x2 and x1 is larger than the distance between x2
and x. As a result, it is not surprising that the number of neighbors
selected by NLE algorithm is usually much smaller than other algo-
rithms. For example, according to the experiment on two peaks data
sample, the average number of neighbor for 1000 samples chosen
by NLE is only 3.74 [31]. This may result from the strict neighbor se-
lection rules of NLE. Besides this experiment, we have also do many
other simulations and find the neighbor size by NLE algorithm is
smaller than other ones. In that case, the reconstruction information
may not be enough for data reconstruction.

After carefully considering the LLE and NLEs neighbor selection
criterion, we propose a new algorithm by using weighted distance
measurement in neighbor searching. The new algorithm can solve
the problem of redundancy in LLE and avoid NLEs problem that no
enough data are chosen as neighbors at the same time.

3. Distribution deformation and weighted distance

In the data manipulation like nearest neighbor searching, each
datum can be regarded as the center of a probability distribution
and the similarity of its neighbors to the datum can be measured
by Euclidean distance with the assumption that samples are well-
distributed. However, because of the attraction, repulsion, strength-
ening effect andweakening effect between data, the standard normal
distributions will be greatly deformed. Obviously, neglecting such a
deformation and still using Euclidean distance to measure the simi-
larity will lead to performance decline. As mentioned in Ref. [4], the
data set should be sufficient and well-sampled, otherwise the per-
formance of LLE algorithm will not be good enough. For example, as
illustrated in Fig. 1, the samples are not well-distributed, data density

Fig. 1. Select nearest neighbors using �-neighborhoods algorithm by Euclidean dis-
tance (solid line) and weighted distance (dash line).

changes sharply within a small area, the query point is marked by a
cross, and its neighbors marked by circles. We use �-neighborhoods
algorithm to finding nearest neighbors of the query point from its
neighbors. For this deformed distribution data set, �-neighborhoods
method based on standard Euclidean distance measurement selects
neighbors from a single direction, and these neighbors are closely
gathered. Obviously, if we use these chosen neighbors to reconstruct
the query point, the information captured in this direction will have
serious redundancy; at the same time, no information from other
directions are reserved for query point reconstruction. These chosen
neighbors cannot represent and reconstruct the query point well,
most internal features and intrinsic structure will be lost after di-
mension reduction by LLE.

To solve this problem, we introduce the weighted distance mea-
surement motivated by Ref. [28]. The main idea of the weighted
distance measurement is giving a different but appropriate distance
scale to each prototype to make the distance measure more reason-
able for representing the global distribution of the data set. Fig. 1
shows the advantages of this scaled adaptive distance measurement.
The modified �-neighborhoods method based on weighted distance
measurement select neighbors more reasonable than the one based
on standard Euclidean distance by giving the prototype data with
high density a smaller weight scaling while those with low density a
larger weight scaling. Thus, the previous redundancy and deficiency
problem can be solved.

As defined in Ref. [28], a simple yet effective transformation to
simulate the possible deformation of data distribution is constructed.

Definition 1 (Deformed distribution). Consider a d-dimensional ran-
dom vector Y = (Y1,Y2, . . . ,Yd)

T that takes a standard d-dimensional
normal distribution N(0, I), that is, it has a probability density
function

f (y)= 1

(2�)d/2
e−1/2yTy (1)

Let a random vector X be defined by the transformation

X =
(
a+ b

YT�
‖Y‖

)
Y (2)

where Y denotes the original well-distributed data set, a > b�0 are
the parameters reflect overall scale and orientation of distribution, �
is a normalized vector denoting the deformation orientation, ‖Y‖ =√
YTY , and X represent the deformed distribution with parameters

a and b in the direction �, denoted as X = Dd(a, b, �) [28].

According to the definition, a deformed distribution biases
towards a specific direction, which makes it an eccentric distribu-
tion. Thus, the assumption that data are well-distributed is dissatis-
fied for Euclidean distance to describe the similarity between data
points. Instead, an inverse transformation Y=X/(a+b cos�) is used to
restore the deformation, and then we can measure the distance nor-
mally since the transformed distribution is not eccentric anymore.
This is the main idea of the weighted distance measurement. This
weighted distance redresses the deformation problem and should
be more reasonable to evaluate the similarity for data set that is not
well-distributed.

Definition 2 (Weighted distance). Assume that x0 ∈ Rd is the center
of a deformed distribution Dd(a, b, �). The weighted distance from a
point x ∈ Rd to x0 is defined to be

Dist(x0, x)=
‖x− x0‖

a+ b
(x− x0)

T�
‖x− x0‖

(3)
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or

Dist(x0, x)= ‖x− x0‖/(a+ b cos�) (4)

where � is the angle between vectors x−x0 and �, and 1/(a+b cos�)
is the weight of the distance from x to x0 [28].

One disadvantage of the weighted distance measurement is just
a weighted distance, but not a metric, since Dist(x0, x) may not equal
to Dist(x, x0) under the definition of weighted distance. In fact, it
has been discussed in Ref. [32] that non-Euclidean or non-metric
measures can be informative in statistical learning algorithms.

To facilitate parameter estimation for weighted distance, we first
present some properties.

Theorem 1. If a random vector X = Dd(a, b, �), then E(X) = c1b� and
E(‖x‖)= c2a, where c1 and c2 are constants.

c1 =
√
2

�((d+ 1)/2)
�(d/2)d

(5)

c2 =
√
2
�((d+ 1)/2)

�(d/2)
(6)

where d is the dimensionality of the random vector X; � is the Gamma
function �(k)= ∫∞0 tk−1e−t dt (k >0) [28].

The expected value (or expectation) of a random variable is the
sum of the probability of each possible outcome of the experiment
multiplied by its value. Thus, for the random vector X, which has
a deformed distribution Dd(a, b, �), X = Dd(a, b, �), we can calculate
its expectation using the origin point of this distribution, xi, and its
k-nearest neighbors, Xi = {xi1, xi2, . . . , xik}, approximately.

First, we convert Xi to a set of vectors Vi={vi1, vi2, . . . , vik}, where
vij = xij − xi, j= 1, 2, . . . , k. Then, we calculate the mean of vij,

Ĝi =
k∑

j=1
vij/k (7)

to estimate E(X), and the mean of ‖vij‖,

L̂i =
k∑

j=1
‖vij‖/k (8)

to estimate E(‖X‖).
As � is a normalized vector denoting the deformation orientation

of the deformed distribution, it can be calculated as

�̂i = Ĝi

‖Ĝi‖
(9)

Since � is a normalized vector with unity gain, according to The-
orem 1, E(X) = c1b� and E(‖x‖) = c2a, and with the approximation
of expectation, E(X) and E(‖X‖), we can easily obtain the parameters
a, b:

âi = L̂i
c2

(10)

b̂i = ‖Ĝi‖
c1

(11)

4. Weighted locally linear embedding

The weighted distance can measure the similarity more reason-
able for the deformed-distributed data set than standard Euclidean

distance and is suitable for many distance based methods. Accord-
ingly, in this paper, we propose a novel dimension reduction algo-
rithm, WLLE which use weighted distance measurement to improve
the dimension reduction and internal feature extraction performance
especially for the deformed distributed data.

For data points X = {x1, x2, . . . , xN} in the high-dimensional space
RD, the goal of dimension reduction is to calculate a representative
in low-dimensional space Rd for the high-dimensional data, where
d>D.

We attempt to express data point number xi as a linear combi-
nation of its k-nearest neighbors xj, j= 1, 2, . . . , k.

x̂i =
∑
j∈�i

wijxj (12)

where �i is the neighborhood of sample xi. In the original algorithm,
standard Euclidean metric is used to select the nearest neighbors.
However, in this work, we utilize the weighted distance measure-
ment as in Section 3 in order to improve performance when the data
set are deformed-distributed.

The optimal weight matrix wij for data reconstruction can be
obtained by minimizing the approximation error const function

�(W)=
∑
i

∥∥∥∥∥∥xi −
∑
j∈�i

(wijxj)

∥∥∥∥∥∥
2

(13)

subject to the constraints

j /∈�i ⇒ wij = 0 (14)

∑
j∈�i

wij = 1 (15)

where wi = [wi1, . . . ,wik] are the weights connecting sample xi to
its neighbors. The first constraint says that only data points in
the neighborhood of data point i should be used in the recon-
struction of x̂i, while the second constraint imposes invariance to
translation.

To calculate the optimal weights, we first rewrite the approxi-
mation error cost function (13) as

�(W)= ‖xi − x̂i‖

=
∥∥∥∥∥∥xi

∑
j∈�i

wij −
∑
j∈�i

(wijxj)

∥∥∥∥∥∥
=

∑
j∈�i

wij
∑
k∈�i

wik(xi − xj)
T(xi − xk) (16)

By defining

Ci(j, k)= (xi − xj)
T(xi − xk) (17)

and applying a Lagrange multiplier �i, the approximation error be-
comes

�(Wi)=
∑
j∈�i

wij
∑
k∈�i

wikCi(j, k)+ �i

⎛
⎝∑
j∈�i

wij − 1

⎞
⎠ (18)

The optimal weights are found by requiring the partial derivatives
with respect to each weight wii to be zero,

��(wi)
�wij

=
∑
k∈�i

wikCi(j, k)+ �i = 0, ∀j ∈ �i (19)
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The desired solution wi is found by simply solving the equations,∑
k∈�i

Ci(j, k)wik = 1 (20)

and then rescale the weights so that they sum to one.
In unusual cases, it can arise that the matrix (17) is singular or

nearly singular. In this case, the least square problem for finding
the weights does not have a unique solution. In order to guarantee
numerical stability we regulate C by

Ci(j, k)← Ci(j, k)+ �rI (21)

where �r>trace(C) is a small constant to be defined as part of the
algorithm, and I is an identical matrix.

The final step of LLE is to compute a low-dimensional embedding
based on the reconstruction weights wij of the high-dimensional
inputs xi. The high-dimensional data are mapped into the low-
dimensional space Rd by requiring reconstruction to work as well
as possible. This leads to another minimization problem [29], the
low-dimensional outputs yi, i = 1, 2, . . . ,N are found by minimizing
the cost function,

	(Y)=
∑
i

∥∥∥∥∥∥yi −
∑
j∈�i

wijyj

∥∥∥∥∥∥
2

(22)

where Y = [y1, . . . , yN] consist of the data points embedded into the
low-dimensional space. Thisminimization problem is not well-posed
without further constraints. Zero mean and unity covariance is used
in the LLE algorithm tomake the problemwell-posed. In other words,
Y should obey the constraints

N∑
i=1

yi = 0 (23)

1
N
YYT = I (24)

where the first constraint is to assure that coordinates yi can be
translated by a constant displacement without affecting the cost,
while the second constraint imposes unit covariance of the embed-
ding vectors.

In matrix form, the cost function can be written as

	(Y)= Tr[(Y − YW)T(Y − YW)]

= Tr[(Y − YW)(Y − YW)T]

= Tr[Y(I −W)(I −W)TYT]

= Tr[YMYT] (25)

where the symmetric matrix

M = (I −W)(I −W)T (26)

The minimum of Eq. (25) subject to the constraint of Eq. (24) can be
obtained by finding the d smallest eigenvectors of M. The minimal
value of 	(Y) equals the sum of the eigenvalues of M. Notice that

M1= (I −W)(I −W)T1= 0 (27)

due to the requirement
∑

j∈�i
wij = 1. Therefore, the smallest eigen-

value is automatically zero with corresponding eigenvector 1, here
1 is a vector in which all elements are 1. Since the eigenvectors are
mutually orthogonal discarding it fulfills the constraint of Eq. (23).
To summarize, the d-dimensional embedding Y ∈ Rd×N consists of
eigenvector number 2, . . . , d+ 1 as its rows.

The whole procedure of dimension reduction as well as the
construction of weighted distance measurement are detailed in
Algorithm 1.

Algorithm 1. Weighted locally linear embedding procedure
Phase 1: Construct Weighted Distance
Given a raw high-dimensional data set D={xi}, i=1, 2, . . . ,N, xi ∈
RD, and a parameter kw, for an arbitrary datum xi ∈ D,
1: Find kw-nearest neighbors Xi = {xi1, xi2, . . . , xikw }, Xi ⊂ D by

compare the Euclidean distances between all neighbor
points and the query point.

2: Obtain Vi with its elements to be calculated as vij = xij −
xi, j= 1, . . . , kw.

3: Calculate Ĝi and L̂i, according to Eqs. (7) and (8).
4: Estimate ai, bi, �i by using Ĝi and L̂i, according to Eqs. (10),

(11) and (9).
Phase 2: Search Neighborhood
For an arbitrary datum xi ∈ D, i=1, 2, . . . ,N, find k-nearest neigh-
bors based on the weighted distance

1:Calculate the weighted distance from xi to ∀xj ∈ D, j � i
according to Eq. (3).

2: Find the k-nearest neighbor Xj = {xj1, xj2, . . . , xjk}, Xj ⊂ D,
which satisfy

Dist(xj, xi) <Dist(xk, xi) (28)

for ∀xj ∈ Xj, ∀xi ∈ D and ∀xk ∈ D /∈Xj.
Phase 3: Calculate Optimal Reconstruction Weights

1: Compute local covariance matrix according to Eq. (17).
2: Regulate the local covariance matrix according to Eq. (21).
3: Compute the reconstruction weights according to Eq. (20).

Phase 4: Compute Low-Dimensional Embedding
1: Construct a symmetric N × N matrix according to Eq. (26).
2: Calculate eigenvalues and eigenvectors of the

symmetric matrix (26).
3: Obtain low-dimensional embedding using bottom d + 1

eigenvectors (according to smallest d+ 1 eigenvalues) of
matrix (26).

5. Experimental evaluation

To evaluate the dimension reduction and feature extraction effect
of the WLLE, the results of several sets of experiments are presented
in this section. The WLLE algorithm is tested on artificial manifold
data sets and compared to other manifold learning algorithms such
as LLE, NLE, ISOMAP and Laplacian Eigenmaps. Among these artifi-
cial manifold data sets, the Swiss roll and Toroidal helix are used to
test the ability to unfold the uniformly distributed manifolds; Gaus-
sian distribution and punched sphere are used to test the ability to
unfold the no-uniformly distributed manifolds; the 3D clusters is
used to test the clustering ability for all the dimension reduction
algorithms.

Two real-world data sets, different subjects' faces and different
poses of a face, are used to demonstrate the practical value of the
algorithm we proposed. LLE, NLE, PCA, KPCA and KDDA are also ap-
plied to these real-world data sets to do comparison with WLLE. The
first experiment is using a subset of the UMIST face data [33,34],
face images of five different individuals, to compare the feature ex-
traction performance of all the algorithms for later manipulation of
classification. The second experiment is using a data set which con-
tains 698 images of different poses of a face to compare the man-
ifold learning performance of high-dimensional data set for all the
algorithms.

Table 1 displays all the data sets that have been used in the
experiments and briefly summaries their major characteristics, such
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Table 1
Experimental data sets description

Data set Samples Neighbor size Dimension

Swiss roll 1000 12 3
Toroidal helix 1000 24 3
Gaussian 1000 12 3
Punctured sphere 1000 24 3
3-D clusters 1000 24 3
Different face images 100 24 10 304
Different pose images 698 8 4096

Sample Data WLLE NLE

LLE ISOMAP Laplacian Eigenmap

Fig. 2. Example of Swiss roll.

as the number of samples, the number of neighbors, the dimension
of the data sets.

5.1. Experiments on artificial manifold

In this section, we present the experimental results of WLLE
tested on several standard manifolds, and compare WLLE we pro-
posed to other dimension reduction methods such as LLE, NLE,
ISOMAP and Laplacian Eigenmaps.

For comparison of the embedding property, we have conducted
all the manifolds embedding with the three algorithms, LLE, NLE
and WLLE. For each data set, every algorithm is used to obtain a
2D embedding. Figs. 2–5 show the embedding results of these three
algorithms for themanifold data sets. In each figure, the sampled data
set is shown at the top left, in a 3D representation; the embedding
result by WLLE is shown at the top middle; the result by NLE is
shown at top right; the result of LLE is shown at bottom left and
the result of ISOMAP and Laplacian Eigenmaps are shown at bottom
middle and bottom right, respectively.

Swiss roll is a randomly sampled plane is rolled up into a spiral.
Fig. 2 shows the sampled Swiss roll and the embedding results for it
by the five algorithms, and we can see that the embedding effects of
the five algorithms are quite different. LLE and ISOMAP unrolls the
3D data set into a plane, we can see the neighborhood relationships
of LLE and ISOMAP are preserved well from the color coding, and the
shape of ISOMAP's embedding is smoother than that of LLE. Both NLE
and WLLE unroll the original data set to a 2D roll, while the shape of
WLLE is more regular. According to the color, the neighborhood re-
lationships in 3D are preserved in the lower dimension embeddings
of these methods. The results can be viewed from different aspects.
On one side, from the “manifold embedding” point of view, the goal

Sample Data WLLE NLE

LLE ISOMAP Laplacian Eigenmap

Fig. 3. Example of Toroidal helix.

Sample Data WLLE NLE

LLE ISOMAP Laplacian Eigenmap

Fig. 4. Example of Gaussian distribution.

of manifold embedding is to find a Euclidean representation of the
original data points, and the Isomap and LLE algorithms yield better
embedding results than the NLE and WLLE. On the other side, from
“feature extraction” point of view, the embedding results given by
the NLE and WLLE keep both the local neighborhood relationship
among the data and the global shape and distribution of the original
data set, which means more intrinsic features have been reserved.
The result of Laplacian Eigenmaps is an ark line which makes less
sense.

Toroidal helix is a one-dimension curve coiled around a helix.
There is a small amount of noise in the sampling along the helix. The
dimension reduction method should unravel the coil into a circle.
From Fig. 3, we can see that the LLE algorithm maps the 3D Toroidal
helix into 2D circle in a shape of triangular. ISOMAP and Laplacian
Eigenmaps give a 2D embedding of a perfectly regular circle, which
means it uncoiled the Toroidal helix string. Both WLLE and NLE can
embed the original 3D helix to a flower-like shape circle, which
means more properties of the original data set are preserved in the
2D embedding. Further more, the result of WLLE has a very regular
shape, while the NLE gives a deformed shape result.
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Sample Data WLLE NLE

LLE ISOMAP Laplacian Eigenmap

Fig. 5. Example of punched sphere.

The data set of Gaussian distribution is drawn from a Gaus-
sian distribution, a good nonlinear dimensionality reduction method
should form concentric circles. In Fig. 4, from the top right and bot-
tom right, we can see both WLLE, LLE and ISOMAP algorithm give
a good concentric circle 2D embedding of the 3D Gaussian distribu-
tion, but NLE and Laplacian Eigenmaps cannot correctly embed the
density property of the original data set and gives deformed shape
of circles.

The punched sphere is the bottom 3
4 of a sphere which is sampled

no-uniformly. The sampling is densest along the top rim and sparsest
on the bottom of the sphere. Its intrinsic structure should be 2D
concentric circles. From Fig. 5, the LLE algorithm has some problem to
correctly reconstruct the original data set in 2D embedding; the NLE
algorithm gives a plane with correct distribution but the shape is not
circle; the WLLE and ISOMAP algorithm give better embeddings as
an exact concentric circles preserve exactly the density information
of the original data set: densest along the top rim with red color and
sparsest on the bottom of the sphere with blue color. The embedding
given by Laplacian Eigenmaps seems the most correct 2D embedding
for the 3D punched sphere. It unfold the punched sphere exactly in
both density of distribution and order of colors.

5.2. Clustering

In this clusters data set, random 3D points are assigned to tight
non-overlapping data clusters. Since most nonlinear dimension re-
duction techniques require a connected data set, the clusters are
randomly connected with blue 1D line segments. A good nonlinear
dimension reduction technique should preserve clusters, as shown
by the color groupings. In Fig. 6, a three-clusters data set is shown
at the top left, the embedding result of this data set by WLLE, NLE
and LLE is shown at top right, bottom left and bottom right, respec-
tively. We can see that the WLLE embeds the 3D clusters faithfully
to 2D clusters, so does the NLE. The result of ISOMAP is also mean-
ingful and easy to identify. However, the result of LLE is not good
enough since two clusters of the three in original data set shrink to
one point or even disappear in its 2D embedding, which cause prob-
lem to distinguish the clusters and the connection line between clus-
ters. The result of Laplacian Eigenmaps may have the same problem
as LLE.

Sample Data WLLE NLE

LLE ISOMAP Laplacian Eigenmap

Fig. 6. 3-D clusters.

Table 2
Computational time comparison

Algorithm WLLE NLE LLE ISOMAP Laplacian Eigenmaps

Swiss roll 8.4 11.8 3.1 95.2 1.2
Toroidal helix 6.2 12.1 1.3 125.5 1.1
Gaussian distribution 7.3 10.9 3.9 100.7 0.99
Punched sphere 6.8 7.9 6.9 100.2 1.3
3D clusters 5.5 10.6 2.2 74.1 1.1

Besides the embedding performance, computational cost is also
a critical issue to evaluate an algorithm. To summarize the com-
putational cost for all these artificial manifold data sets, Table 2
shows the computational time (second) of each algorithm for all the
artificial manifold data sets. From the table, WLLE has higher com-
putational cost than LLE and Laplacian Eigenmaps, but lower com-
putational cost than NLE and ISOMAP. All the computation are done
in a computer with Pentium 4 cpu 2.8GHz, 1GB of ram to assure the
same environment of computing.

5.3. Face images

Face recognition is the one of the most popular research topic
in pattern recognition during this decade [35–37]. It can be widely
used in entertainment, information security, intelligent robotics and
so on. Recently, great development has been done by researchers on
both algorithm and system. A critical part in face recognition is the
dimension reduction algorithm for feature extraction.

In this area, global feature extraction algorithm such as PCA, LDA
and all the methods based on combination of this two gave many
good results in applications on facial recognition. Later, as a nonlin-
ear extension of PCA, KPCA [9] has shown great advantages on data
representation for clustering and classification of complicated facial
data set. Based on the very observation that null subspace contains
useful information for clustering, in Ref. [2], Lu et al. proposed KDDA,
which is combination of KPCA and direct linear discriminant analy-
sis (DLDA). Another combination of LDA and KPCA, called complete
kernel Fisher discriminant (CKFD), has been proposed in Ref. [38].
All these kernel based methods have a major disadvantage in that
the selection of kernel function and its parameters is usually made
by trial and error or based on experience, which greatly weaken
the practical value of these methods. Moreover, the final projections
are related to all the training samples, so that the requirements for
training samples are usually strict.
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Fig. 7. Dimension reduction result of UMIST face data by six different methods.

Compare to these kernel based methods, LLE has its own ad-
vantages because of unsupervised property. On one hand, it do not
need training samples, which is especially helpful for small sample
size of the face pattern's distribution. On the other hand, it only has
one simple parameter, K number of neighbors selected, to be cho-
sen, which make it easy to be applied. However, the performance
of original LLE will decline when the data distribution is not well
or uniformed distributed. Another problem is that the algorithm is
not robust to parameter changes, which will be discussed in Section
6. To combat these problems, we proposed WLLE which may have
better performance for complicated data set such as face images.

5.3.1. Classification of different faces
To demonstrate the face recognition performance of WLLE and

compare to other famous methods for face recognition, in this sec-
tion, we utilize the UMIST face database [33,34] for experiment,
which consists of 564 images of 20 people in PGM format, approx-
imately 220 × 220 pixels in 256 shades of grey. Each covering a
range of poses from profile to frontal views. Subjects cover a range
of race/sex/appearance. The original 220×220 PGM format face im-
ages were cropped to 112 × 92 images, a standardized image size
commonly used in face recognition experiment. In our experiment,
we extract a typical subset of the UMIST face database, which con-
tains face images of five different individuals, each individual has 20
face images covering range from profile to frontal views. As such,
the subset we used in this experiment are 100 samples with dimen-
sionality of 10304 in five classes (different individuals). Six types
of low-dimensional representations are produced from the face im-
ages subset by using different feature extraction algorithms, PCA,

KPCA, KDDA, WLLE, LLE and NLE. For PCA, KPCA and KDDA, all of
the face images in subset are used in both the training procedure to
generate subspaces and the testing procedure to project them onto
the generated subspaces. For each image, its projections in the first
two most important features bases are visualized in the first row of
Fig. 7. For WLLE, LLE, and NLE, the high-dimensional face image data
are mapped into 2D embeddings, which are shown in the second
row of Fig. 7.

The low-dimensional representations produced by the algorithms
are quite different. Among them, the KDDA-based result and WLLE-
based result showed better clustering property, but the other four
algorithms result in some overlapping between different classes of
the face data, which may make them non-separable. Especially, the
result of KDDA is fairly linear separable, which may result from its
separability criteria-based algorithm. Unlike the diffuse shape of the
five classes in result by KDDA, the result by WLLE gives a parallel
shape of the five classes. Although no overlapping between different
classes, the short distance between clusters indicates that the WLLE-
based feature representation is less linear separable than the KDDA-
based result. Overall, simply inspection of Fig. 7 indicates that the
feature representations produced by KDDA andWLLE outperform, in
view of separability, the ones produced by PCA, KPCA, LLE and NLE.
This will later proved by feeding these 2D features obtained by six
algorithms into a simple SVM classifier.

Since the objective of this experiment is to compare the per-
formance of different feature extraction algorithms, we keep the
parameters of SVM unchanged during all the experiments. The
performance is evaluated using average error rate of eight runs
for each algorithm, which obtained by dividing total number of
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Fig. 8. Comparison of error rates and computational cost as functions of 
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Fig. 9. Comparison of error rates and computational cost as functions of K for WLLE and LLE.

misclassifications by product of number of samples and number
of runs.

Noted that the performance of kernel-based methods are greatly
affected by what kernel function chosen and the parameter changes
of the function, we use a RBF kernel function for both KPCA and
KDDA, and record the error rate with different kernel parameter,
the scale value 
2 for RBF kernel. Fig. 8 shows the error rates and
computational cost as functions of 
2 within the rage from 1e2 to 1e7
for algorithms KPCA and KDDA. Either error rate or computational
cost indicate that the KDDA algorithm outperform KPCA.

The only parameter for LLE-based methods is the number of
neighbors, K. As such, we record the error rate with different K for
LLE and WLLE algorithm. The NLE algorithm do not need choose pa-
rameter K. Fig. 9 shows the error rates and computational cost as

functions of K within the range from 8 to 88 for algorithmsWLLE and
LLE. Although the computational cost of WLLE is higher than LLE, the
error rate shows the classification performance of WLLE outperform
that of LLE.

For comparison of the all the six algorithm, we use optimal
parameter in the experiment shown in Table 3, which shows the
optimal parameter ranges, average computational cost and average
error rate in the optimal range. From Table 3, it can be easily ob-
served that PCA is the most simple algorithm but the classification
performance is not satisfactory. KDDA has low computational cost
and excellent classification performance, and is the best algorithm
for this face recognition problem. KPCA and NLE have high com-
putational costs and average classification error rates. WLLE shows
good performance for classification, but the computational cost is
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Table 3
Classification error rates and computational time comparison

Algorithm Parameter Computational time (s) Error rate (%)

PCA N.A. 0.5 47
KPCA 
2 : 2e2–8e2 16.5 10
KDDA 
2 �2e2 1.7 0
LLE K : 24–36 2.4 1
WLLE K : 24–72 13.3 0
NLE N.A. 11.5 8
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Fig. 10. 2D embeddings of different pose face images by WLLE.

relatively high compare to KDDA and LLE. Although the smallest er-
ror rates for WLLE and LLE are almost the same, one can see from
Fig. 9 that WLLE gives the optimal performance for a much larger
range of parameter than LLE, which means WLLE is more robust to
parameter changes than LLE. This will be discussed in detail later in
Sections 6.3 and 6.4.

5.3.2. Manifold learning of different poses of a face
In next simulation study, the feature extraction algorithms are

used to find the coherent relationship among a set of face images
[8]. This data set contains N = 698 gray images at a resolution of
64 × 64, and are different poses from left side view through front
view to right side view of the same face. The input datum xi of X is
constructed by formatting the image pixel column by column from
left to right and concatenation them to form the column vector.

The computed 2D embeddings by WLLE are shown in Fig. 10,
several face images are shown next to the corresponding embedding
point. These embeddings form an arch-bridge shape. To a certain
extent, it is identical to the motion trajectory of the faces. From the
left end of the arch, throughmiddle peak till the right end of the arch,
the embeddings are corresponding to the left pose face, front face
and right pose face. Although the face images are high-dimensional
data, the 2D embeddings of the face images are related to meaningful
attributes of the motion of the subject head in the images. Thus,
if a new face image is given, we can compute its corresponding
embedding and identify the face direction by finding its position in
Fig. 10.

For comparison, the same data are also processed by PCA, KPCA
and KDDA, which are shown in Figs. 11, 12, 13, respectively. All
of them show some patterns according to the different poses of
face images. The PCA and KPCA map the left and right views of
the face to the top and bottom part of the embedding, respectively.
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KDDA maps the left and right views of the face to the top right and
bottom left part of the embedding, respectively. Simple inspection of
Figs. 10–13 indicates that WLLE extracts a more smooth and mean-
ingful string of manifold for the images of different poses.

5.4. Comments to the experiment result

The WLLE method improved LLE method by using cam weighted
distance measurement in neighbor selection phase to avoid redun-
dant and insufficient neighbor selections. In this section, a number
of numerical experiments have been done to fully demonstrate the
properties of the proposed WLLE algorithm. Its main advantages and
disadvantages can be summarized as follows.

(i) WLLE has good performance for both uniform distribution and
non-uniform distribution. Especially for non-uniform distribu-
tion as in Figs. 4 and 5, WLLE has performance as good as
ISOMAP, but its computational cost is much lower than ISOMAP
as shown in Table 2;

(ii) WLLE is relatively robust to parameter changes as shown in
Fig. 9. This property will be discussed in detail later in Sections
6.3 and 6.4;

(iii) WLLE is helpful in both human face recognition and facial poses
identification as shown in Figs. 7 and 10;

(iv) compare to KDDA, WLLE cause much higher computational cost
but its performance is not better, as shown in Table 3; and

(v) the performance of WLLE will decline when the number of
neighbors is too small or too large, which can be seen from
Fig. 9.

6. Discussion

We conclude by tracing the origin of this work, discuss the main
advantages of WLLE compare to other dimension reduction methods
and possible future research.

6.1. Early motivation: a difficult example for LLE

The embeddings of LLE are optimized to preserve the geometry
of nearby inputs. Though the collective neighborhoods of these in-
puts are overlapping, the coupling between faraway inputs can be
severely attenuated if the data are noisy, sparse, or weakly con-
nected. Thus, the most common failure mode of LLE is to map far-
away inputs to nearby outputs in the embedding space [5].

A difficult example for LLE was mentioned in Ref. [5], and this
example is shown at the top left of Fig. 14, where the data were
generated from the volume of a 3D “barbell”. For this example, LLE
algorithm does not lead to reasonable results. It is arguable that in
this case this data set can be considered to belong to a collection of
manifolds of different dimensionality. Thus, the weakly connected
component cause difficult for giving faithful embedding. The possi-
ble resolution for this problem lies on identifying weakly connected
components or varying the number of neighbors K per data point.

NLE uses an adaptive neighbor selection method, which deter-
mines different neighbor size for each data, to substitute the KNN or
�-neighborhood neighbor selection used in LLE. However, its simple
neighbors selection algorithm used for reducing redundancy cannot
help for solving the weakly connected components problem caused
by multiple dimensionality. Further more, the too small neighbor
size decided by NLE makes the problem even worse.

The WLLE algorithm proposed in this paper chooses neighbors
based on a modified distance measurement, and this weighted dis-
tance measurement can strengthen the connection of the weakly
connected components in non-uniform sampled data. Thus, based on
this distance measurement, the neighborhoods selection algorithm
can adopt the weakly connected components as neighbors as well
as the strongly connected components, and the weakly connected
components can be identified. The top right of Fig. 14 shows the
embedding result by WLLE for the “barbell” data set. It is easy to
see WLLE preserves the clusters and the connection line faithfully.
Compare to the result of WLLE, NLE and LLE both give a worse em-
bedding result as shown at bottom left and bottom right of Fig. 14.
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In the figure we can see that the clusters and connection line is dif-
ficult to be identified in 2D embeddings by NLE and LLE, and most
of the properties in original 3D data set is lost.

6.2. Computational complexity analysis

All these three algorithms mainly consist of three phases: the
nearest neighbor phase; the optimal reconstruction weights phase;
and reconstruction of low embedding phase. Furthermore, both the
NLE and the WLLE have one more steps than the LLE in nearest
neighbor phase.

Given a dimension reduction problem with N data points of D
dimension, the computational complexity of the nearest neighbor
phase for LLE (using KNNmethod) is O(DN2), while the NLE has com-
putational complexity of O(DN2 + �ND), with an extra step for esti-
mation neighborhood, where � is the number of neighbors selected
which is unfixed value because the NLE determines the number of
neighbors adapt to the data set distribution. The WLLE has compu-
tational complexity of O(ND+2DN2) in nearest neighbor phase, con-
tains an extra step of parameters estimation. It is noted that in this
phase our new algorithm WLLE involves more computations than
original LLE, but the WLLE is computational competitive with the
NLE. The nearest neighbor step is simple to implement but can be
time consuming for large data set (N >104). However, many tech-
niques such as the K–D trees or ball trees can be used to compute
the neighbors in O(N logN) time [1,39].

The following two steps are the same for all the three algorithms.
The optimal reconstruction weights phase is typically the least ex-
pensive step of the whole algorithm, with the computation scales
O(DNK3), where K is the number of neighbors decided in former
step. This is the number of operations required to solve a K × K set
of linear equations for each data point.

The final step, low embedding reconstruction phase, is typically
the most computationally expensive, as computing the bottom
eigenvectors scales as O(dN2), where d is the dimension of recon-
structed embedding. However, there are many techniques currently
for speeding up the eigenvector problems. For example, specialized
methods for sparse, symmetric eigenvalue problems [40] can be
used to reduce the complexity; for very large problems, one can
consider alternative embedding cost function, such as direct descent
by conjugate gradient methods [41], stochastic gradient descent
[42], etc.

6.3. Stability problem

The results of LLE are typically stable over a range of neighbor-
hood sizes. The size of that range depend on features of the data set,
such as the sampling density, distribution and manifold geometry.

There are several criteria for choosing neighborhood size. First,
the dimensionality of embeddings d should be strictly less than the
number of neighbors, K. Some margin between d and K is generally
necessary to obtain a topology-preserving embedding, but the exact
relation between K and the faithfulness of the resulting embedding
remains an important open problem. Second, the LLE algorithm is
based on the assumption that a data point and its nearest neighbors
can be modeled as locally linear; for curved data sets, choosing K
too large will in general violate this assumption.

Figs. 15 and 16 shows a range of embeddings discovered by LLE
algorithm and WLLE algorithm, all on the same data set but using
different numbers of nearest neighbors, K. From these two figures,
the results of WLLE show a wider stable range of neighbor size, but
the results of LLE are easily break down as K becomes too small or
large. Especially, when the number of nearest neighbors K is set too
large, the embedding will jump across folds. It is difficult to faithfully
unravel the manifold because that large K makes a data point and

K=4 K=8 K=12

K=18 K=24 K=48

Fig. 15. Effect of neighborhood size on LLE.

K=4 K=8 K=12

K=18 K=24 K=48

Fig. 16. Effect of neighborhood size on WLLE.

its nearest neighbors hard to be modeled as locally linear. However,
the embeddings of WLLE under the same situation is much better,
since the neighbor selection algorithm adopted in WLLE ensures the
locally linear between data point and its neighbors even the neighbor
size is quite large.

Finally, in the case that the original data is itself low-dimensional,
which may result in K >D, the local reconstruction weights are no
longer uniquely defined since each data point can be reconstructed
perfectly from its neighbors. In this case, some further regularization
must be added to break the degeneracy. In the procedure of calcu-
lating optimal reconstruction weights as described in Section 4, one
thing should be mentioned is that in some unusual cases, the local
covariance matrix (17) will be singular or nearby singular, for exam-
ple when there are more neighbors than input dimensions (K >D),
or when the data points are not in general position. In these cases,
the local covariance matrix must be conditioned by adding a small
multiple of identity matrix as in Eq. (21).
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Fig. 17. Comparison of sensitivity to spiral height of Swiss roll.

6.4. Sensitivity to parameters

Besides the number of nearest neighbors K, there are many other
facts affect the embedding result. Most important aspects are the
features of the data set, such as the sampling density, distribution and
manifold geometry. For example, Swiss roll is a randomly sampled
plane which is rolled up into a spiral. One parameter of the data set
is “Z scaling”, the height of the spiral. It is obviously that a smaller
value of “Z scaling” will make the folding more compact and thus
harder to unravel. Fig. 17 shows the effect of the spiral height on
embeddings of both LLE and WLLE. The left column is the original
Swiss roll data with different spiral height, and the second and third
column are the 2D embeddings by LLE algorithm andWLLE algorithm
with respect to different spiral height, respectively.

It is shown in Fig. 17 that the spiral height of Swiss roll has great
effect on the embedding results of LLE.When the “Z scaling” becomes
small, the 2D representing of the Swiss roll cannot keep the regular
shape well. However, the result of WLLE seems more robust, the
change of spiral height has little effect on its results.

Another example of sensitivity to parameter changes is the effect
of neighbor size, which is discussed in Section 6.4 and shown in
Figs. 15 and 16. We know that WLLE algorithm is more robust with
different neighbor size than normal LLE algorithm. For LLE, if the
number of nearest neighbors K is set too large, the embedding will
jump across folds.

As a result, we may conclude that the WLLE algorithm has better
performance than normal LLE with parameter changes, which means
the WLLE is more robust in application.

7. Conclusion

In this paper, we have presented an unsupervised learning algo-
rithm to discover the intrinsic structures of data, such as neighbor-
hood relationships, global distributions and clustering. The proposed
algorithm optimized the process of intrinsic structure discovery by
avoiding unreasonable neighbor searching, and at the same time,

let the discovery adapt to the characteristics of input data set.
Furthermore, it is able to discover intrinsic structures of data
simultaneously, and the discovered structures can be used to com-
pute manipulative embedding for potential classification and recog-
nition purposes. Simulation studies and comparison with LLE and
NLE demonstrated that the WLLE can give better result in manifold
learning and dimension reduction and is more robust to parameter
changes. Experiments on face images data sets have shown the
potential of WLLE in practical problem such as face recognition.
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