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a b s t r a c t

In this paper, adaptive control is studied for a class of nonlinear discrete-time systems in strict-feedback
form with unknown control directions. The system is transformed to an n-step ahead predictor, based
on which an adaptive control employing the predicted future states has been proposed. The discrete
Nussbaum gain is exploited to overcome the difficulty caused by unknown control directions. The
proposed control guarantees the boundedness of all the closed-loop signals and the output tracking error
can be made to converge to zero if the system is free of external disturbance. The effectiveness of the
proposed control is demonstrated in the simulation.

© 2008 Elsevier B.V. All rights reserved.
1. Introduction

In recent decades, adaptive control of discrete-time systems
has been studied extensively and lately, nonlinear discrete-time
systems in the strict-feedback form have attracted much re-
search interest. In a seminal work [7], it is proved that a class of
continuous nonlinear systems can be transformed to parameter-
strict-feedback formvia parameter-independent diffeomorphisms.
A similar result is obtained in the discrete-time [15], in which the
geometric conditions for the systems transformable to the form
are given and then the discrete-time backstepping design is pro-
posed. Later, by exploiting the parameter projection properties, the
discrete-time backstepping has been extended for robust control
in the presence of nonparametric uncertainties [18], time-varying
parameters [19], and further in [17] the overparameterization in
discrete-time backstepping is overcome. In [20], a novel param-
eter estimation is proposed for this class of discrete-time systems
and it guarantees the convergence of estimates to the real values in
finite steps if the system is free of any disturbance or nonparamet-
ric uncertainties. Using neural network approximation, controlling
strict-feedback systems with unknown system functions has been
studied in [3] in which a system transformation was carried out
before applying backstepping design. The result has also been ex-
tended to multi-input and multi-output (MIMO) systems in [4].

As indicated in the above mentioned papers, the Lyapunov
design for nonlinear discrete-time systems becomes much more
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intractable than in the continuous-time. The reason lies in that
the linearity property of the derivative of a Lyapunov function
in continuous-time is not present in the difference of Lyapunov
function in the discrete-time [13]. Many controls designed for
continuous-time systems may be not suitable for discrete-time
systems due to some inherent difficulties in discrete-time models.

As an effort to extend the results of adaptive control of
parameter-strict-feedback nonlinear systems, in this paper we
will study the tracking problem of a more general class of
strict-feedback nonlinear systems in which the control gains are
unknown constants. Strict-feedback systems in this form is first
studied in continuous-time [14], in which it is indicated that
a class of nonlinear triangular systems T1S proposed in [12] is
transformable to this form.

One challenge of controlling the systems in this form lies
in the unknown signs of the control gains, which are normally
required to be known a priori in the adaptive control literature.
These signs, called control directions in [6], represent motion
directions of the system under any control, and the knowledge
of these signs makes the adaptive control design much easier.
When the control directions are unknown, some control methods
have been developed in the literature. In [9], the correction vector
approach was proposed, and it has been extended to design
adaptive control of first-order nonlinear systems with unknown
control directions [1]. Nonlinear robust control has been proposed
in [6], which can identify online the unknown control directions
and can guarantee global stability of the closed-loop system.
The Nussbaum gain was first proposed by Nussbaum [10] in
continuous-time for adaptive control of first order systems and
later it was adopted in the adaptive control of linear systems
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with nonlinear uncertainties [11] to counteract the lack of a prior
knowledge of control directions. In [14], the Nussbaum gain has
been successfully combined with backstepping design for strict-
feedback systems, and then it becomes a systematical design
approach for continuous-time counterpart of the discrete-time
system studied in this paper. The discreteNussbaumgain proposed
in [8] will be exploited for controlling strict-feedback discrete-
time systems for the first time. The discrete-time Nussbaum gain
is very different from its continuous-time counterpart, and hence,
the control design in continuous-time is not applicable to discrete-
time.

The other challenge is that the elegantly devised coordinate
mapping in [15,17–19] for discrete-time backstepping is not
applicablewhen the control gains are unknown. Thus, in this paper,
the original n-th order strict-feedback system is first transformed
into an n-step ahead predictor, based on which the adaptive
control can be constructed by the certainty equivalence principle
rather than the backsteping. The n-step ahead predictor involves
the future states and consequently, a states prediction has been
constructed. A difficulty arises here that the prediction errors
may cause instability of the closed-loop system. Therefore, an
augmented error combining tracking error and prediction error is
introduced in the adaptive control law to compensate the effect of
prediction error.

To illustrate the control design, a disturbance-free case is
studied first and then robust control is presented in the presence of
bounded disturbance by dead-zone technique. It should be pointed
that, even though the upper bound of the disturbance is unknown,
the adaptive algorithm with dead-zone can still be constructed in
this paper. However, a priori knowledge of the upper and lower
bounds,whichmay not be easy to be obtained in practice, is usually
required to be known in building the adaptive controls with dead-
zone. All the closed-loop signals are guaranteed to be globally
bounded and the tracking errorwill converge to zero in the absence
of disturbance.

The main contributions of the paper lie in:

(i) The n-th order strict-feedback system is transformed into an
n-step ahead predictor, then a systematic adaptive control
design has been synthesized.

(ii) Discrete Nussbaum gain is for the first time exploited for
strict-feedback systems to cope with unknown control gains
and the proposed control structure is free of controller
singularity.

(iii) The predicted future states are employed in the control law
and the effects of the prediction errors are compensated by
introducing an augmented error.

Throughout this paper, the following notations are used in
order

• ‖ · ‖ denotes the Euclidean norm of vectors and induced norm
of matrices.

• A := B means that B is defined as A.

• [ ]
T represents the transpose of vector.

• 0[p] stands for p-dimension zero vector.

• (ˆ) and (˜) denote the estimate of parameters and estimation
error, respectively.

• N+ denotes the set of all nonnegative integers.
2. Problem formulation and preliminaries

2.1. System representation

Consider a class of strict-feedback nonlinear discrete-time
systems in the following form:

ξ1(k + 1) = ΘT
1Φ1(ξ̄1(k)) + g1ξ2(k)

ξ2(k + 1) = ΘT
2Φ2(ξ̄2(k)) + g2ξ3(k)

...

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + gnu(k) + d(k)

y(k) = ξ1(k)

(1)

where ξ̄i(k) = [ξ1(k), ξ2(k), . . . , ξi(k)]T are system states, Θi ∈ Rpi ,
gi ∈ R, i = 1, 2, . . . , n, are unknown system parameters (pi’s are
positive integers), Φi(ξ̄i(k)) : Ri

→ Rpi are known vector-valued
functions, and d(k) is the external disturbance which is bounded,
i.e., |d(k)| ≤ d̄. The value of d̄, is not required to be known and
it is only used in the analysis. The control objective is to make
the output y(k) track a bounded reference trajectory yd(k) and to
guarantee the boundedness of all the closed-loop signals.

Assumption 1. The system functions Φi(ξ̄i(k)) are Lipschitz func-
tions, i.e., ‖Φi(ε1)−Φi(ε2)‖ ≤ Li‖ε1−ε2‖,∀ε1, ε2 ∈ Ri, where Li is the
Lipschitz coefficient, and the control gains gi 6= 0, i = 1, 2, . . . , n.

Remark 1. When the control gains gi = 1, system (1) becomes in
parameter-strict-feedback form studied in [15,17–19]. But when
gi’s are unknown, the control design for system (1) would be a
challenge.

2.2. Useful Definitions and Lemmas

Definition 1 ([2]). Let x1(k) and x2(k) be two discrete-time scalar
or vector signals, ∀k ∈ N+.

• We denote x1(k) = O[x2(k)], if there exist positive constantsm1,
m2 and k0 such that ‖x1(k)‖ ≤ m1 maxk′≤k ‖x2(k′)‖ + m2, ∀k >
k0.

• We denote x1(k) = o[x2(k)], if there exists a discrete-time
function α(k) satisfying limk→∞ α(k) → 0 and a constant k0
such that ‖x1(k)‖ ≤ α(k)maxk′≤k ‖x2(k′)‖, ∀k > k0.

• We denote x1(k) ∼ x2(k) if they satisfy x1(k) = O[x2(k)] and
x2(k) = O[x1(k)].

Lemma 1 ([5]). For some given real scalar sequences s(k), b1(k), b2(k)
and vector sequence σ(k), if the following conditions hold:

(i) limk→∞
s2(k)

b1(k)+b2(k)σT(k)σ(k)
= 0,

(ii) 0 < b1(k) < K and 0 ≤ b2(k) < K, ∀k ≥ 1, with a finite K,
(iii) σ(k) = O[s(k)].

Then, we have
(a) limk→∞ s(k) = 0, and (b) σ(k) is bounded.

Lemma 2. Under Assumption 1, the states and input of system (1)
satisfy

ξ̄i(k) = O[y(k + i − 1)], i = 1, 2, . . . , n
u(k) = O[y(k + n)].

(2)

Proof. See Appendix A. �
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2.3. The discrete Nussbaum gain

The first discrete Nussbaum gain was proposed in [8], in which
it is pointed that it is essential for the discrete sequence x(k) to
satisfy

x(0) = 0, x(k) ≥ 0, |∆x(k)| ≤ δ0, ∀k (3)

where ∆x(k) = x(k + 1) − x(k), and δ0 is a positive constant.
Then, the discrete Nussbaum gain proposed in [8] is defined on the
sequence x(k) as

N(x(k)) = xs(k)sN(x(k)), xs(k) = sup
k′≤k

{x(k′)} (4)

where sN(x(k)) is the sign function of the discrete Nussbaum gain,
i.e., sN(x(k)) = ±1. The initial value is set as sN(x(0)) = +1.
Thereafter, the sign function sN(x(k)) will be chosen by comparing
the summation

SN(x(k)) =

k∑
k′=0

N(x(k′))∆x(k′) (5)

with a pair of switching curves defined by f (xs(k)) = ±x
3
2
s (k). The

detail follows:
Step (a): At k = k1, measure the output y(k1) and compute

∆x(k1) and x(k1 + 1) = x(k1) + ∆x(k1) and SN(x(k1)) = SN(x(k1 −

1)) + N(x(k1))∆x(k1).

Case (sN(x(k1)) = +1) :

If SN(x(k1)) ≤ x
3
2
s (k1), then go to Step (b)

If SN(x(k1)) > x
3
2
s (k1), then go to Step (c)

Case (sN(x(k1)) = −1) :


If SN(x(k1)) < −x

3
2
s (k1),

then go to Step (b)

If SN(x(k1)) ≥ −x
3
2
s (k1),

then go to Step (c)

Step (b): Set sN(x(k1 + 1)) = 1, go to step (d).

Step (c): Set sN(x(k1 + 1)) = −1, go to step (d).

Step (d): Return to Step (a) andwait for themeasurement of output.

Lemma 3 ([8]). If xs(k) increases without bound, then

sup
xs(k)≥δ0

1
xs(k)

SN(x(k)) = +∞, inf
xs(k)≥δ0

1
xs(k)

SN(x(k)) = −∞. (6)

Lemma 4 ([8]). If xs(k) ≤ δ1, then |SN(x(k))| ≤ δ2 where δ1 and δ2
are some positive constants.

Lemma 5. Let V(k) be a positive definite function defined ∀k, N(x(k))
be the discrete Nussbaum gain proposed in [8], and θ be a nonzero
constant. If the following inequality holds:

V(k) ≤

k∑
k′=k1

(c1 + θN(x(k′)))∆x(k′) + c2x(k) + c3, ∀k (7)

where c1, c2 and c3 are some constants, k1 is a positive integer, then
V(k), x(k) and

∑k
k′=k1

(c1 + θN(x(k′)))∆x(k′) + c2x(k) + c3 must be
bounded, ∀k.

Proof. Suppose that x(k) is unbounded, then, because x(k) ≥ 0, ∀k,
xs(k) must increase without upper bound. Therefore, there must
exist a k0 such that xs(k) ≥ δ0 ≥ |∆x(k)|, ∀k ≥ k0.
Noting that x(k + 1) ≤ xs(k) + δ0, we have the following
inequality from (7), ∀k ≥ k0.

0 ≤
V(k)

xs(k)
≤

θ

xs(k)

k∑
k′=0

N(x(k′))∆x(k′) + c1
x(k + 1)
xs(k)

+ c2
x(k)

xs(k)

+
c3

xs(k)
−

1
xs(k)

k1−1∑
k′=0

(c1 + θN(x(k′)))∆x(k′)

≤
θ

xs(k)
SN(x(k)) + 2c1 + c2 +

c3
δ0

+ c4 (8)

where c4 =
1
δ0

|
∑k1−1

k′=0 (c1 + θN(x(k′)))∆x(k′)| is some finite
constant. According to Lemma 3, it yields a contradiction if x(k)
is unbounded, no matter θ > 0 or θ < 0. Therefore, x(k) is
bounded, as well as xs(k), ∀k. According to Lemma 4,

∑k
k′=0(c1 +

θN(x(k′)))∆x(k′) + c2x(k) + c3 and V(k) are also bounded. �

It should be mentioned that the counterpart of Lemma 5 in
continuous-time has been obtained in [14].

3. Future states prediction and system transformation

Asmentioned in Section 1,when the control gains are unknown,
the coordinate transformation-based discrete-time backstepping
in [15,17–19] is not applicable. In this paper, we will exploit an
alternative adaptive control design for strict-feedback discrete-
time systems in (1).

3.1. Future states prediction

It is noted in (1) that the future states ξ̄i(k + n − i), i =

1, 2, . . . , n − 1, are deterministic at the k-th step because they
are not dependent of control input. In this section, let us consider
predicting these future states in the presence of the unknown
parameters.

Let Θ̂i(k) and ĝi(k) denote the estimates of Θi and gi at the
k-th step, respectively. For convenience, we denote ¯̂Θ i(k) =

[Θ̂T
i (k), ĝi(k)]

T
∈ Rpi+1. Denote parameter estimate errors as

Θ̃i(k) = Θ̂i(k) − Θi, g̃i(k) = ĝi(k) − gi, and ¯̃Θ i(k) = [Θ̃T
i (k), g̃i(k)]

T.
Define one-step prediction ξ̂i(k + 1|k), the estimate of ξi(k + 1)

as follows:

ξ̂i(k + 1|k) =
¯̂Θ
T

i (k − n + 2)Ψi(k), i = 1, 2, . . . , n − 1 (9)

where Ψi(k) = [ΦT
i (ξ̄i(k)), ξi+1(k)]T ∈ Rpi+1.

Define two-step prediction ξ̂i(k + 2|k), the estimate of ξi(k + 2)
as follows:

ξ̂i(k + 2|k) =
¯̂Θ
T

i (k − n + 3)Ψ̂i(k + 1|k), i = 1, 2, . . . , n − 2 (10)

where

Ψ̂i(k + 1|k) = [ΦT
i (

¯̂
ξi(k + 1|k)), ξ̂i+1(k + 1|k)]T ∈ Rpi+1

¯̂
ξi(k + 1|k) = [ξ̂1(k + 1|k), ξ̂2(k + 1|k), . . . , ξ̂i(k + 1|k)]T. (11)

Define j-step (j = 3, 4, . . . , n−1) prediction ξ̂i(k+j|k), the estimate
of ξi(k + j) as follows:

ξ̂i(k + j|k) =
¯̂Θ
T

i (k − n + j + 1)Ψ̂i(k + j − 1|k),

i = 1, 2, . . . , n − j (12)

where

Ψ̂(k + j − 1|k) = [ΦT
i (

¯̂
ξi(k + j − 1|k)), ξ̂i+1(k + j − 1|k)]T

¯̂
ξi(k + j − 1|k) = [ξ̂1(k + j − 1|k), ξ̂2(k + j − 1|k), . . . ,

ξ̂i(k + j − 1|k)]T. (13)
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The parameter estimates are calculated from the following
update law:

¯̂Θ i(k + 1) =
¯̂Θ i(k − n + 2) −

ξ̃i(k + 1|k)Ψi(k)

1 + ΨT
i (k)Ψi(k)

,

i = 1, 2, . . . , n − 1

ξ̃i(k + 1|k) = ξ̂i(k + 1|k) − ξi(k + 1), ¯̂Θ i(k) = [Θ̂T
i (k), ĝi(k)]

T.

(14)

Lemma 6. The parameter estimates, ¯̂Θ i(k), i = 1, 2, . . . , n − 1
obtained from (14) are bounded and the estimate errors satisfy

¯̃
ξi(k + n − i|k) = o[O[y(k + n − 1)]]

where ¯̃
ξi(k + n − i|k) =

¯̂
ξi(k + n − i|k) − ξ̄i(k + n − i).

Proof. See Appendix B. �

3.2. System transformation

Let us rewrite system (1) as
y(k + n) = ΘT

1Φ1(ξ̄1(k + n − 1)) + g1ξ2(k + n − 1)
ξ2(k + n − 1) = ΘT

2Φ2(ξ̄2(k + n − 2)) + g2ξ3(k + n − 2)
...

ξn(k + 1) = ΘT
nΦn(ξ̄n(k)) + gnu(k) + d(k)

(15)

and by iterative substitution, all the equations can be combined
together as follows

y(k + n) =

n∑
i=1

ΘT
fi
Φi(ξ̄i(k + n − i)) + gu(k) + do(k) (16)

where

Θf1 = Θ1,Θfi =

(
i−1∏
j=1

gj

)
Θi, i = 2, 3, . . . , n, g =

n∏
j=1

gj, do(k)

=
g

gn
d(k) (17)

Define

ΘT
f = [ΘT

f1
, . . . ,ΘT

fn
]
T

∈ Rp

Φ(k + n − 1) = [ΦT
1(ξ̄1(k + n − 1)),ΦT

2(ξ̄2(k + n − 2)), . . . ,
ΦT

n(ξ̄n(k))]
T

∈ Rp (18)

where p =
∑n

i=1 pi. Then, Eq. (16) can be written in a compact form
as

y(k + n) = ΘT
f Φ(k + n − 1) + gu(k) + do(k). (19)

4. Adaptive control without disturbance

In this section, we consider the adaptive control in the
disturbance free case, i.e., do(k) = 0. From (19), to achieve the
output tracking, one possible control structure is:

u(k) =
1

ĝ(k)
(−Θ̂T

f (k)Φ(k + n − 1) + yd(k + n))

where ĝ(k) and Θ̂f (k) are estimates of g and Θf , respectively. But
this control structure is not well defined because it runs risk of
singularity, i.e., ĝ(k) may fall into a small neighborhood of zero.
As indicated in [16], this problem is far more from trivial because
in order to avoid singularity, the existing solutions to the control
problem are usually given locally or assume a priori knowledge
of the system, i.e., the sign and upper bound of the control gain
g. In this paper, however, we estimate Θf g = g−1Θf and g−1

instead of Θf and g and thus, the resultant control is well defined.
But in the parameter estimation update law, the sign of control
gain g, the control direction, will be required to determine to
which direction the estimation proceed. To overcome the difficulty
caused by unknown control direction, the discrete Nussbaum gain
is used in the update law.

It is also noted that the noncausal problem exists in the above
control due to the future states depended function Φ(k + n − 1)
defined in (18). To solve the noncausal problem, let us consider
predicting Φ(k + n − 1) in the following manner:

Φ̂(k + n − 1|k) = [ΦT
1(

¯̂
ξ1(k + n − 1|k)),ΦT

2(
¯̂
ξ2(k + n − 2|k)),

. . . ,ΦT
n(ξ̄n(k))]

T (20)

where ¯̂
ξi(k + n − i|k), i = 1, 2, . . . , n − 1, are defined in (11) and

(13).

Lemma 7. Denote Φ̃(k + n − 1|k) = Φ̂(k + n − 1|k) − Φ(k + n − 1),
where Φ̂(k + n − 1|k) and Φ(k + n − 1) are defined in (18) and (20).
Then, we have Φ̃(k + n − 1|k) = o[O[y(k + n − 1)]].

Proof. Noting the Lipschitz condition of Φi(·), i = 1, 2, . . . , n, one
can easily derive it from the result that ¯̃

ξi(k + n − i|k) = o[O[y(k +

n − 1)]] in Lemma 6. �

Using the predicted function Φ̂(k + n − 1|k), the following
adaptive control is proposed

u(k) = −Θ̂T
f g(k)Φ̂(k + n − 1|k) + ĝI(k)yd(k + n) (21)

where Θ̂T
f g(k) and ĝI(k) are the estimates of Θf g = g−1Θf and g−1.

Substituting the adaptive control (21) into the n-step predictor
(19) and subtracting yd(k + n) on both hand sides, we obtain the
following error dynamics if do(k) = 0
e(k + n) = y(k + n) − yd(k + n)

= ΘT
f Φ(k + n − 1) − gΘ̂T

f g(k)Φ̂(k + n − 1|k)

+ gĝI(k)yd(k + n) − yd(k + n)

= −gΘ̃T
f g(k)Φ(k + n − 1)

+ gg̃I(k)yd(k + n) − gβ(k + n − 1) (22)
where Θ̃f g(k), g̃I(k) and β(k + n − 1) are defined as

Θ̃f g(k) = Θ̂f g(k) − Θf g, g̃I(k) = ĝI(k) − g−1,β(k + n − 1)

= Θ̂T
f g(k)Φ̃(k + n − 1|k).

The parameter estimates in the control law are updated by the
following update law

ε(k) =
γe(k) + N(x(k))ψ(k)β(k − 1)

G(k)

Θ̂f g(k) = Θ̂f g(k − n) + γ
N(x(k))

D(k)
Φ(k − 1)ε(k), Θ̂f g(j) = 0[pj]

ĝI(k) = ĝI(k − n) − γ
N(x(k))

D(k)
yd(k)ε(k),

ĝI(j) = 0, j = 0,−1, . . . ,−n + 1

∆ψ(k) = ψ(k + 1) −ψ(k) =
−N(x(k))β(k − 1)ε(k)

D(k)
(23)

∆z(k) = z(k + 1) − z(k) =
G(k)ε2(k)

D(k)
, z(0) = ψ(0) = 0

β(k − 1) = Θ̂T
f g(k − n)Φ̃(k − 1|k − n)

x(k) = z(k) +
ψ2(k)

2
G(k) = 1 + |N(x(k))|

D(k) = (1 + |ψ(k)|)(1 + |N3(x(k))|)(1 + ‖Φ(k − 1)‖2
+ y2d(k)

+β2(k − 1) + ε2(k))
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where ε(k) is introduced as an augmented error and the tuning
parameter γ > 0 can be arbitrary constant specified by the
designer. It should bementioned that the requirement on sequence
x(k) in (3) is satisfied. It should be noted that β(k−1) and Φ(k−1)
used in the update law are available at the k-th step.

Remark 2. The adaptive control (21) employs predicted function,
Φ̂(k + n − 1|k), which is based on the predicted future states
ξ̄i(k + n − i), i = 1, 2, . . . , n − 1 that are defined in Section 3.1.

Theorem 1. Consider the adaptive closed-loop system consisting
of system (1) under Assumption 1, adaptive control (21) with
parameters update law (23), predicted future states defined in from
(9) to (12) with parameter estimation law (14). All the signals in the
closed-loop system are guaranteed to be bounded and the tracking
error e(k) will converge to zero, if there is no external disturbance.

Proof. Substituting the error dynamics (22) into the augmented
error ε(k), one obtains

γΘ̃T
f g(k − n)Φ(k − 1) − γg̃I(k − n)yd(k)

= −
1
g
G(k)ε(k) − γβ(k − 1) +

1
g
N(x(k))ψ(k)β(k − 1). (24)

Consider a positive definite function V(k) as

V(k) =

n∑
j=1

Θ̃T
f g(k − n + j)Θ̃f g(k − n + j) +

n∑
j=1

g̃I
2(k − n + j). (25)

The difference equation of V(k) is given as

∆V(k) = V(k) − V(k − 1)
= Θ̃T

f g(k)Θ̃f g(k) − Θ̃T
f g(k − n)Θ̃f g(k − n) + g̃I

2(k) − g̃I
2(k − n)

= (Θ̃f g(k) − Θ̃f g(k − n))T(Θ̃f g(k) − Θ̃f g(k − n))

+ 2Θ̃T
f g(k − n)(Θ̃f g(k) − Θ̃f g(k − n))

+ (g̃I(k) − g̃I(k − n))2 + 2g̃I(k − n)(g̃I(k) − g̃I(k − n))

= γ2 N
2(x(k))(ΦT(k − 1)Φ(k − 1) + y2d(k))

D2(k)
ε2(k)

+ 2N(x(k))
γΘ̃T

f g(k − n)Φ(k − 1)
D(k)

ε(k)

− 2N(x(k))
γg̃I(k − n)yd(k)

D(k)
ε(k)

and note that

∆x(k) = ∆z(k) +ψ(k)∆ψ(k) +
[∆ψ(k)]2

2
0 ≤ ∆z(k) ≤ 1, 0 ≤ ∆ψ(k) ≤ 1

|N(x(k))|[∆ψ(k)]2 ≤ ∆z(k) (26)

we have

∆V(k) ≤ γ2 G(k)ε2(k)

D(k)
− 2γ

N(x(k))β(k − 1)ε(k)
D(k)

−
2
g
N(x(k))

G(k)ε2(k)

D(k)

+
2
g
N(x(k))

N(x(k))ψ(k)β(k − 1)ε(k)
D(k)

≤ γ2∆z(k) + 2γ∆ψ(k) −
2
g
N(x(k))

(
∆z(k) +ψ(k)∆ψ(k)

+
[∆ψ(k)]2

2

)
+

1
|g|

|N(x(k))|[∆ψ(k)]2

≤ c1∆z(k) + 2γ∆ψ(k) −
2
g
N(x(k))∆x(k)
where c1 = γ2
+

1
|g|
. Taking summation of the above equation

results

V(k) ≤ −
2
g

k∑
k′=0

N(x(k′))∆x(k′)

+ c1z(k) + c1 + 2γψ(k) + 2γ + V(−1)

≤ −
2
g

k∑
N(x(k′))∆x(k′) + c1

(
z(k) +

ψ2(k)

2

)

+ c1 +
2γ2

c1
+ 2γ + V(−1)

≤ −
2
g

k∑
k′=0

N(x(k′))∆x(k′) + c1x(k) + c2 (27)

where c2 = c1 +
2γ2
c1

+2+V(−1). Applying Lemma 5 to (27) results
the boundedness of V(k) and x(k) and thus the boundedness of z(k),
which is a non-decreasing sequence. Further, this result implies the
following conclusions:

(a) Θ̂f g(k), ĝI(k), G(k), N(x(k)) and ψ(k) are bounded, and
(b)

√
∆z(k) ∈ L2[0,∞).

Notice that y(k) = e(k) + yd(k), where the reference signal
yd(k) is bounded and thus we obtain y(k) = O[e(k)]. According to
Lemma 2, we have

ξ̄n(k) = O[y(k + n − 1)] = O[e(k + n − 1)]
u(k) = O[y(k + n)] = O[e(k + n)] (28)

and according to Lemma 2, one can easily obtain Φ(k − 1) =

O[e(k − 1)] from the Lipschitz condition of system functions Φi(·),
i = 1, 2, . . . , n.

From the definition of β(k + n − 1) in (23), the boundedness
of Θ̂f g(k), and according to Lemma 7, it is obvious that β(k −

1) = o[O[e(k − 1)]]. Then, from the boundedness of N(x(k)),
ψ(k), and G(k), it is easy to deduce that ε(k) ∼ e(k), and further,
from the definition of D(k) in (23), we have D(k) = O[ε2(k)].
The conclusion (b) implies that ∆z(k) =

G(k)ε2(k)
D(k)

→ 0. Applying
Lemma 1 and noting the boundedness of G(k), we conclude that
ε(k) → 0 and thus e(k) → 0 and then the boundedness
of states ξ̄n(k) and control input is obvious according to (28).
According to Lemma 6, we have the boundedness of the future
states prediction and parameters estimates used in the prediction
law. This completes the proof of the ultimately boundedness of all
the closed-loop signals. �

5. Adaptive control with disturbance

In this section, we consider using dead zone method to deal
with the external disturbance, which is bounded by an unknown
constant.

The control law still assume the form in (21) and the future
states estimation law is still defined from (9) to (12). The deadzone
method has been introduced into the parameter estimation laws
as follows:

ε(k) =
γe(k) + N(x(k))ψ(k)β(k − 1)

G(k)

Θ̂f g(k) = Θ̂f g(k − n) + γ
a(k)N(x(k))

D(k)
Φ(k − 1)ε(k), Θ̂f g(j) = 0[pj]

ĝI(k) = ĝI(k − n) − γ
a(k)N(x(k))

D(k)
yd(k)ε(k),

ĝI(j) = 0, j = 0,−1, . . . ,−n + 1

∆ψ(k) = ψ(k + 1) −ψ(k) =
−a(k)N(x(k))β(k − 1)ε(k)

D(k)
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∆z(k) = z(k + 1) − z(k) =
a(k)G(k)ε2(k)

D(k)
, z(0) = ψ(0) = 0

β(k − 1) = Θ̂T
f g(k − n)Φ̃(k − 1|k − n)

x(k) = z(k) +
ψ2(k)

2
G(k) = 1 + |N(x(k))|

D(k) = (1 + |ψ(k)|)(1 + |N(x(k))|3)(1 + ‖Φ(k − 1)‖2

+ y2d(k) + β2(k − 1) + ε2(k))

a(k) =

{
1 if |ε(k)| > λ
0 others (29)

where the tuning factor γ > 0 and threshold value λ > 0
can be arbitrary positive constants specified by the designer. In
addition, it is obvious that requirement on sequence x(k) in (3) is
still satisfied. It should be mentioned that the proposed deadzone
method does not require a priori knowledge of the upper bound of
the disturbance, which is necessary in building the adaptive laws
with dead-zones traditionally.

Theorem 2. Consider the adaptive closed-loop system consisting of
system (1), control (21) with parameter update law (29), predicted
future state defined in from (9) to (12)with parameter estimation law
(14). Under Assumption 1, all the signals in the closed-loop system are
bounded and G(k) = 1+|N(x(k))|will converge to a constant. Denote
C = limk→∞ G(k), then the tracking error satisfy limk→∞ sup |e(k)| <
Cλ
γ
, where γ and λ are the tuning factor and the threshold value

specified by the designer.
Proof. Substituting the error dynamics (22) into the augmented
error ε(k) and considering do(k) 6= 0, one obtains

γΘ̃T
f g(k − n)Φ(k − 1) − γg̃I(k − n)yd(k)

= −
1
g
G(k)ε(k) − γβ(k − 1)

+
1
g
γdo(k − n) +

1
g
N(x(k))ψ(k)β(k − 1). (30)

Consider the positive definite function V(k) same as in Section 4

V(k) =

n∑
j=1

Θ̃T
f g(k − n + j)Θ̃f g(k − n + j) +

n∑
j=1

g̃I
2(k − n + j). (31)

Note that

2
g
a(k)N(x(k))do(k − n)ε(k) ≤ a(k)

∣∣∣∣∣ 2d̄gnλ

∣∣∣∣∣ |N(x(k))|ε2(k). (32)

We have the difference equation of V(k) by using the same
technique in Section 4:

∆V(k) = V(k) − V(k − 1)

=
γ2a2(k)N2(x(k))(ΦT(k − 1)Φ(k − 1) + y2d(k))

D2(k)
G(k)ε2(k)

+ 2N(x(k))
a(k)γΘ̃T

f g(k − n)Φ(k − 1)
D(k)

ε(k)

− 2N(x(k))
a(k)γg̃I(k − n)yd(k)

D(k)
ε(k)

≤ γ2 a(k)G(k)ε2(k)

D(k)
+

∣∣∣∣∣ 2d̄gnλ

∣∣∣∣∣ a(k)|N(x(k))|ε2(k)

D(k)

− 2γ
a(k)N(x(k))β(k − 1)ε(k)

D(k)

−
2
g
N(x(k))

a(k)G(k)ε2(k)

D(k)

+
2
g
N(x(k))

a(k)N(x(k))ψ(k)β(k − 1)ε(k)
D(k)

. (33)
Note that
a(k)|N(x(k))|ε2(k)

D(k)
≤ ∆z(k)

|N(x(k))|[∆ψ(k)]2 ≤ ∆z(k).

Then, we have

∆V(k) ≤

(
γ2

+

∣∣∣∣∣ 2d̄gnλ

∣∣∣∣∣
)

∆z(k) + 2γ∆ψ(k) −
2
g
N(x(k))

×

(
∆z(k) +ψ(k)∆ψ(k) +

[∆ψ(k)]2

2

)

+
1
|g|

|N(x(k))|[∆ψ(k)]2

which leads to

V(k) ≤ −
2
g

k∑
k′=0

N(x(k′))∆x(k′) + c3x(k) + c4 (34)

where c3 and c4 are some finite constants.
Then, using the same analysis as in Section 4, we conclude the

boundedness of Θ̂f g(k), ĝI(k), G(k),N(x(k)) andψ(k). In addition, we
have ∆z(k) → 0, which implies either a(k) = 0 or G(k)ε2(k)

D(k)
→ 0

as k → ∞. If the latter case is true, we have ε(k) → 0 by
applying Lemma 1. If the former case is true, we have ε(k) ≤ λ
as k → ∞ from the definition of a(k). In summary, we always
have limk→∞ sup |ε(k)| ≤ λ and limk→∞ a(k) = 0, such that G(k) =

1 + |N(x(k))| will converge to a constant, which is denoted as C.
Noting that β(k − 1) = o[O[e(k − 1)]] → 0, we derive from the
definition of ε(k) in (29) that

lim
k→∞

sup |ε(k)| = lim
k→∞

sup
{∣∣∣∣γe(k) + N(x(k))ψ(k)β(k − 1)

G(k)

∣∣∣∣}
= lim

k→∞

sup
{∣∣∣∣γe(k)G(k)

∣∣∣∣} ≤ λ

which implies

lim
k→∞

sup |e(k)| ≤ lim
k→∞

G(k)λ

γ
=

Cλ

γ
. (35)

Then, following the same procedure as in the previous section,
the boundedness of other closed-loop signals can be concluded.
This complete the proof of the boundedness of all the closed-loop
signals. �

6. Simulation results

The following second order nonlinear plant is used for
simulation.
ξ1(k + 1) = a1ξ1(k) cos(ξ1(k)) + a2ξ1(k) sin(ξ1(k)) + a3ξ2(k)

ξ2(k + 1) = b1ξ2(k)
ξ1(k)

1 + ξ21(k)
+ b2

ξ32(k)

2 + ξ22(k)
+ b3u(k) + d(k)

y(k) = ξ1(k)

where a1 = 0.2, a2 = 0.1, a3 = 3, b1 = 0.3, b2 = −0.6, b3 = −0.1
and d(k) = 0.2 cos(0.05k) cos(ξ1(k)). The control objective is to
make the output y(k) track a desired reference trajectory yd(k) =

1.5 sin( π5 kT) + 1.5 cos( π10 kT), T = 0.05. The initial system states
are ξ̄2(j) = [1, 1]

T, j = −1, 0. The tuning factor and the threshold
value are chosen as γ = 6 and λ = 0.1. The simulation results are
presented in Figs. 1–4. Fig. 1 shows the output y(k), the reference
signal yd(k). Fig. 2 illustrates the boundedness of the control input
u(k), the estimated parameters ĝI(k), and ‖Θ̂f g(k)‖. Fig. 3 shows the
discrete sequence x(k) and discrete Nussbaum gain N(x(k)). The
discrete Nussbaum gain N(x(k)) adapts by searching alternately
in the two directions such that it can been see that it turns from
positive to negative in Fig. 3. Fig. 4 illustrates the terms β(k) and
ψ(k) which are caused by prediction error.



894 S. Sam Ge et al. / Systems & Control Letters 57 (2008) 888–895
Fig. 1. Output and reference.

Fig. 2. Control and estimation

Fig. 3. Discrete Nussbaum gain.

7. Conclusion

This paper has studied the adaptive control for a class of
nonlinear discrete-time systems in strict-feedback form with
employment of future states prediction. The discrete Nussbaum
gain is exploited to counter the lack of knowledge of control
directions. The effect of prediction error on the closed-loop
Fig. 4. β(k) and ψ(k)

stability is compensated by introducing an augmented error in the
control parameters update law. All the signals in the closed-loop
system are guaranteed bounded and the output tracking error is
ultimately made to be zero in the absence of external disturbance.
The robust control has also been studied for bounded disturbance
with deadzonemethod. The boundedness of all the the closed-loop
signals still hold and the output tracking error will be bounded in
a neighborhood of zero.
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Appendix A

Proof. From system (1), we can see that

ξi+1(k) =
1
gi

(ξi(k + 1) − ΘT
i Φi(ξ̄i(k))).

Considering i = 1 and the Lipschitz condition of Φ1(·) in
Assumption 1, we have ξ2(k) = O[ξ1(k + 1)] = O[y(k + 1)] and
further ξ̄2(k) = O[ξ1(k + 1)] = O[y(k + 1)].

Considering i = 2, we can deduce that ξ3(k) = O[ξ̄2(k + 1)] and
further ξ̄3(k) = O[ξ̄2(k + 1)] = O[ξ1(k + 2)] = O[y(k + 2)].

Continuing the procedure, we have

ξ̄i(k) = O[ξ1(k + i − 1)], i = 1, 2, . . . , n

and ξn(k+1) = O[y(k+n)]. For the control input, from (1) we have

u(k) =
1
gn

(ξn(k + 1) − ΘT
nΦn(ξ̄n(k))) = O[y(k + n)] �

Appendix B

Proof. Firstly, let us analyze the one-step prediction error, ξ̃i(k +

1|k) = ξ̂i(k + 1|k) − ξi(k + 1), i = 1, 2, . . . , n − 1. Noting that

ξ̃i(k + 1|k) =
¯̃Θ
T
i (k − n + 2)Ψi(k) and considering a Lyapunov

function Vi(k) =
∑k

j=k−n+2 ‖
¯̃Θ i(j)‖2, then, following the analysis of
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projection algorithm in [5], we can deduce from (14) that ¯̂Θ i(k) is
bounded and

ξ̃i(k + 1|k)

Di(k)
:= α(k) ∈ L2[0,∞), Di(k) = [1 + ‖Ψi(k)‖

2
]
1/2

= O[y(k + i)] (36)

where the later equality is obtained according to Lemma 2 and the
Lipschitz condition of Ψi(·). From (36), we can see

ξ̃i(k + 1|k) = α(k)Di(k) = o[O[y(k + i)]]

¯̃
ξi(k + 1|k) = o[O[y(k + i)]] i = 1, 2, . . . , n − 1. (37)

Next, let us analyze the two-step prediction error, ξ̃i(k+ 2|k) =

ξ̂i(k + 2|k) − ξi(k + 2), i = 1, 2, . . . , n − 2.

ξ̃i(k + 2|k) = ξ̃i(k + 2|k + 1) + ξ̌i(k + 2|k)

where

ξ̃i(k + 2|k + 1) = ξ̂i(k + 2|k + 1) − ξi(k + 2) = o[O[y(k + i + 1)]]

ξ̌i(k + 2|k) = ξ̂i(k + 2|k) − ξ̂i(k + 2|k + 1)

=
¯̂Θ
T

i (k − n + 3)[Ψ̂i(k + 1|k) − Ψi(k + 1)]. (38)

As a result of the Lipschitz condition of Ψi(·), we have ‖Ψ̂i(k +

1|k) − Ψi(k + 1)‖ ≤ Li‖
¯̃
ξi+1(k + 1|k)‖ = o[O[y(k + i)]]. Consider the

boundedness of ¯̂Θ
T

i (k−n+3), we have ξ̌i(k+2|k) = o[O(y(k+i+1))].
Consequently, we have

ξ̃i(k + 2|k) = o[O[y(k + i + 1)]]
¯̃
ξi(k + 2|k) = o[O[y(k + i + 1)]] i = 1, 2, . . . , n − 2. (39)

Similarly, for the j-step prediction error ξ̃i(k + j|k) = ξ̂i(k + j|k) −

ξi(k + j), i = 1, 2, . . . , n − j, j = 3, 4, . . . , n − 1, we have

ξ̃i(k + j|k) = ξ̃i(k + j|k + 1) + ξ̌i(k + j|k)

where

ξ̃i(k + j|k + 1) = ξ̂i(k + j|k + 1) − ξi(k + j)
= o[O(y(k + i + j − 1))]

ξ̌i(k + j|k) = ξ̂i(k + j|k) − ξ̂i(k + j|k + 1)

=
¯̂Θ
T

i (k − n + j + 1)[Ψ̂i(k + j − 1|k)
−Ψi(k + j − 1|k + 1)]. (40)

Consider the Lipschitz condition ofΨi(·), we have ‖Ψ̂i(k+ j−1|k)−

Ψi(k + j − 1|k + 1)‖ ≤ Li‖
¯̌
ξi+1(k + j − 1|k)‖ = o[O[y(k + i + j − 1)]],

where ¯̌
ξi+1(k + j|k) = [ξ̌1(k + j|k), ξ̌2(k + j|k), . . . , ξ̌i+1(k + j|k)]. It

together with the boundedness of ¯̂Θ
T

i (k − n + j − 1) leads to
ξ̃i(k + j|k) = o[O[y(k + i + j − 1)]]. (41)

Let j = n − i, we have the following result

¯̃
ξi(k + n − i|k) = o[O[y(k + n − 1)]] i = 1, 2, . . . , n − j. (42)

This completes the proof. �
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