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Adaptive Neural Network Tracking Control of MIMO
Nonlinear Systems With Unknown Dead Zones

and Control Directions
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Abstract—In this paper, adaptive neural network (NN) tracking
control is investigated for a class of uncertain multiple-input–mul-
tiple-output (MIMO) nonlinear systems in triangular control
structure with unknown nonsymmetric dead zones and control
directions. The design is based on the principle of sliding mode
control and the use of Nussbaum-type functions in solving the
problem of the completely unknown control directions. It is shown
that the dead-zone output can be represented as a simple linear
system with a static time-varying gain and bounded disturbance by
introducing characteristic function. By utilizing the integral-type
Lyapunov function and introducing an adaptive compensation
term for the upper bound of the optimal approximation error
and the dead-zone disturbance, the closed-loop control system is
proved to be semiglobally uniformly ultimately bounded, with
tracking errors converging to zero under the condition that the
slopes of unknown dead zones are equal. Simulation results
demonstrate the effectiveness of the approach.

Index Terms—Adaptive control, dead zone, neural network (NN)
control, Nussbaum function, sliding mode control.

I. INTRODUCTION

I N recent years, adaptive control system design using ei-
ther neural networks (NNs) or fuzzy logic systems to pa-

rametrize the unknown nonlinearities has received much atten-
tion [1]–[5]. Direct adaptive tracking control was proposed for
a class of continuous-time nonlinear systems using radial basis
function NNs in [1]. By utilizing modulation function and fuzzy
systems, adaptive fuzzy control was investigated in [2]. Multi-
layer-neural-network-based indirect adaptive control was devel-
oped for feedback linearization of a class of nonlinear systems
in [3]. Using a families of novel integral Lyapunov functions
for avoiding the possible controller singularity problem without
using projection, adaptive neural controls were presented for a
class of nonlinear systems in a Brunovsky form [4], and for a
class of multiple-input–multiple-output (MIMO) nonlinear sys-
tems with a triangular structure in the control inputs in [5] and
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[6]. Furthermore, two design schemes of adaptive controller for
single-input–single-output (SISO)/MIMO uncertain nonlinear
systems were proposed in [7] and [8], and ensured tracking error
converging to zero. Based on the principle of sliding mode con-
trol and the approximation capability of fuzzy systems, decen-
tralized indirect and direct adaptive fuzzy control schemes were
proposed for a class of nonlinear systems with unknown con-
stant control gains and unknown function control gains in [9]
and [10].

When there is no a priori knowledge about the signs of con-
trol gains, adaptive control of such systems becomes much more
difficult. The first solution was given in [11] for a class of first-
order linear systems, where the Nussbaum-type gain was origi-
nally proposed. When the high-frequency control gains and their
signs are unknown, gains of Nussbaum-type [11] have been ef-
fectively used in controller design in solving the difficulty of
unknown control directions [12] and [13].

Nonsmooth nonlinear characteristics such as dead zone,
backlash, and hysteresis are common in actuator and sensors
such as mechanical connections, hydraulic actuators, and
electric servomotors. Dead zone is one of the most important
nonsmooth nonlinearities in many industrial processes, which
can severely limit system performance; and its study has been
drawing much interest in the control community for a long time
[14]–[20]. To handle the systems with unknown dead zones,
adaptive dead-zone inverses were proposed in [14]–[16]. In
[14] and [15], adaptive dead-zone inverses were built for linear
systems with unmeasurable dead-zone outputs. Asymptotical
adaptive cancellation of an unknown dead zone was achieved
analytically under the condition that the output of a dead zone
was measurable in [16]. A compensation scheme was presented
for general nonlinear actuator dead zone of unknown width in
[18]. In [19], by a given matching condition to the reference
model, adaptive control with adaptive dead-zone inverse has
been introduced. By using a new description of a dead zone
with equal slopes, robust adaptive control was developed for a
class of nonlinear systems in [20] without constructing the in-
verse of the dead zone. In [21], decentralized variable structure
control was proposed for a class of uncertain large scale linear
systems with state time-delay and dead-zone input. However,
the parameters of the dead zones [21] need to be
known, and the disturbances satisfy the matching condition. In
[22], a servomechanism problem of controlling a scalar output
variable to -track was addressed for a class of special SISO
linear system with nonlinear actuator characteristics. Adaptive
output feedback control using backstepping and smooth inverse
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function of the dead zone was proposed for a class of SISO
nonlinear systems with unknown dead zone [23].

In this paper, we consider a class of uncertain MIMO non-
linear systems with both unknown dead zones and unknown
gain signs. By employing analytic extension for the functions
outside the dead band and introducing characteristic functions,
the dead-zone output is represented as a simple linear system
with a static time-varying gain and bounded disturbance.
Based on the proposed novel description of dead-zone model,
robust adaptive NN control is developed without necessarily
constructing a dead-zone inverse and knowing some parameter
bounds of dead zones. In addition, the problem of both un-
known control direction and unknown control gain functions is
solved by using Nussbaum-type functions and employing inte-
gral-type Lyapunov function. Moreover, all signals involved in
the closed-loop system are proved to be semiglobally uniformly
ultimately bounded, with tracking errors converging to zero
under the condition that the slopes of unknown dead zones are
equal.

This paper is organized as follows. The problem formulation
and preliminaries are given in Section II. Section III presents
multilayer NNs used in the controller design, and an adaptive
NN control is developed for SISO systems using an integral-
type Lyapunov function. Furthermore, this scheme is extended
to MIMO systems. The closed-loop system stabilities are ana-
lyzed as well. In Section IV, adaptive NN control is investigated
for a class of nonlinear MIMO systems with the dead zones of
equal slopes. Simulation results are performed to demonstrate
the effectiveness of the approach in Section V. Section VI con-
tains the conclusions.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Problem Formulation

Consider a class of uncertain MIMO nonlinear systems in tri-
angular control structure with dead zones in the following form:

Plant:

(1)

Dead zone:
if
if
if

(2)

where is the state vector
, , ;

are the unknown
continuous functions; are the
unknown differentiable control gains ;

denotes the th subsystem output; is the output
of the th dead zone (and the input to the th subsystem);

is the input to the th dead zone; and are the
unknown parameters of the th dead zone; and the functions

Fig. 1. Nonsymmetric nonlinear dead-zone model.

and are smooth nonlinear functions. The dead
zone with the input is shown in Fig. 1. This describes a very
general class of . As , , , and are all
unknown, control system design becomes difficult.

To facilitate control system design, we need to make the fol-
lowing assumptions that first appeared in [24].

Assumption 1: The dead-zone outputs are not
available.

Assumption 2: The dead-zone parameters and are un-
known bounded constants, but their signs are known, i.e.,

and , .
Assumption 3: The functions and are smooth,

and there exist unknown positive constants , , , and
such that

(3)

(4)

where and
.

For notational convenience, we will extend the definition for
functions and as follows:

(5)

(6)

Therefore, (3) is true for , and (4) is also true for
.

According to the differential mean value theorem, we know
that there exist and
such that

(7)

(8)

Based on Assumption 3, the dead zone (2) can be rewritten
as follows:

(9)
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where , is an unknown positive constant with
, and

(10)
if
if
if

(11)

if
if
if

(12)

(13)

if
if

(14)

if
if

(15)

if
if
if .

(16)

Remark 1: For the case of linear dead zone outside the dead-
band, control system design has been extensively studied [14],
[15], [20], [25]. To the best of our knowledge, (9) is to cap-
ture the most realistic situation, and as such it is different from
the existing idealized description [14], [16], [17], [19], [20],
[23]. As shown in [24], we know that

.
The control objective is to design an adaptive controller

for system (1) such that the output follows the specified de-
sired trajectory , .

Define and as

and the filtered tracking error as

(17)

where , , ,
are positive constants, specified by designer.

Assumption 4: Smooth functions and their signs are
unknown, and there exist constants and such that

, with ,
.

Assumption 5: The desired trajectory vectors are continuous

and available, and with
known compact set, .

B. Nussbaum Function Properties

In order to deal with the unknown control gain sign, the Nuss-
baum gain technique is employed in this paper. A function
is called a Nussbaum-type function if it has the following prop-
erties:

1)

2)

Commonly used Nussbaum functions include: ,
, and [11], [13], [22], [26]. For

clarity, the even Nussbaum function
is used throughout this paper.

Lemma 1 [12]: Let and be smooth functions de-
fined on with , , and be
an even smooth Nussbaum-type function. If the following in-
equality holds:

(18)

where is a nonzero constant and represents some suit-
able constant, then , , and must be
bounded on .

Lemma 2 [13]: Let be smooth functions defined on
with , , and be an even smooth

Nussbaum-type function. If the following inequality holds:

(19)

where represents some suitable constant, is a positive
constant, and is a time-varying parameter, which takes
values in the unknown closed intervals , with

, then must be bounded
on .

Lemma 3 [26]: For any given positive constant , if the
solution of the resulting closed-loop system is bounded on the
interval , then .

In this paper, denotes the 2-norm, denotes the
Frobenius norm, with

, and and denote the smallest and largest
eigenvalues of a square matrix , respectively.

III. CONTROL SYSTEM DESIGN AND STABILITY ANALYSIS

A. Multilayer Neural Networks (MNNs)

NNs have been widely used in modeling and control of non-
linear systems because of their good capabilities of nonlinear
function approximation, learning, and fault tolerance. In this
paper, three-layer NNs will be used to approximate a contin-
uous function as described by [27], [28]

(20)
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where , ,
and are the first-to-second

layer and the second-to-third layer weights, respectively,
with

and constant , and the NN node number
.

Let

(21)

where are ideal NN weights, is a compact
set, and is the NN approximation error.

The ideal weights and are “artificial” quantity re-
quired for analytical purposes. and are defined as fol-
lows:

(22)

It is clear that and are usually unknown and need to be
estimated in controller design. Let and be the estimates of

and , respectively, and .
Lemma 4 [28]: For NN (20), the NN estimation error can be

expressed as

(23)

where , with
, , and the

residual term is bounded by

(24)

According to (21) and (23), we obtain

(25)

B. Adaptive NN Control for SISO System

To illustrate the design methodology clearly, we first consider
the SISO system .

From (1), (9), and (16), we obtain

(26)

where .
To avoid control singularity, we employ integral Lyapunov

function [4]. In this paper, we define a smooth scalar function
as follows:

(27)

where and

By second mean value theorem for integrals, can be
rewritten as

(28)

with . Because , it is shown that
is positive definitive with respect to .

Differentiating with respect to time , we obtain

(29)

Because and
, it is shown that

(30)

Substituting (26) and (30) into (29), and applying (16), we ob-
tain

(31)

where

(32)
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(33)

with and .
Define a compact set

(34)

where is a sufficiently large compact set satisfying
, which will be defined later in step 2 in Theorem 1.

Let be the approximation of the three-layer
NNs, which are discussed in Section III-A, on the compact
to , then we have

(35)

where ,
, and

denote the estimates of and
, respectively, and are ideal constant weights,

with , and constant ,
with

, , the NN node
number , the residual term is bounded by

(36)
and the approximation error in (35) satisfies

, with constant .
Consider the following control law:

(37)

(38)

where , , and are pos-
itive constants, is the estimate of with

at time , and

(39)

The adaptive laws are employed as follows:

(40)

(41)

(42)

where , , , , , and are strictly
positive constants.

Theorem 1: Consider the closed-loop system consisting of
the plant (1), the adaptive control given by (37) and (40)–(42).
Under Assumptions 1–5, for bounded initial conditions, the
overall closed-loop neural control system is semiglobally stable
in the sense that all of the signals in the closed-loop system are
bounded, the parameter estimates

(43)

and , the state vector

(44)

where and , and the compact set and the
vector will be defined later in the proof.

Proof: The proof includes two steps. We will first assume
that , , on which NN approximation (35) is
valid, and construct stable adaptive NN control over . Then,
we will show that there exists nonempty initial set such that
the state indeed remains in the compact set for all
if initial state initiates from .

We will first assume that holds for all time, and
find the upper bounds of system states. Later, for the appropriate
initial condition and the adaptive controller parameters,
we prove that state indeed remains in the compact set
for all .

Step 1: Suppose that , , then NN approxi-
mation (35) is valid. Consider the Lyapunov function candidate

(45)
Differentiating with respect to time leads to

(46)
Substituting inequality (31) into (46), noting (35) and (36), and
using control law (37) and (38), it follows that

(47)
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Using adaptive tuning laws (40)–(42), and the inequality
, for , , and the fact

that , we obtain

(48)

By completion of squares, the following inequalities hold:

(49)

(50)

(51)

We obtain

(52)

Define the following constants:

(53)

(54)

Thus, we have

(55)

Multiplying inequality (55) by yields

(56)
Integrating (56) over , we have

(57)

From (10)–(15) and Assumption 3, we know that
or

. According
to Lemma 2, we have that
are bounded in . According to Lemma 3, we know that
the above conclusion is true for . Therefore, ,

, and . Let be the upper bound of
in , and

(58)

then . Similarly,
, , and

.
Define . From equation

(17), we know that 1) there is a state–space representation for
mapping , i.e., with

, , being a stable
matrix; 2) there is a positive constant such that

; and 3) the solution for is

Accordingly, it follows that

Therefore, we have

(59)

Noting and , we obtain

Substituting inequality (59) into the above inequality leads to

(60)

Since , , and are positive constants, and and
depend on , we conclude that there ex-

ists a positive constant de-
pending on , , , , and such that

(61)
with , and

(62)

Noting and Assumption 5, we obtain
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Fig. 2. Compact sets in Theorem 1.

Therefore, we can conclude that all the closed-loop signals are
semiglobally uniformly ultimately bounded for bounded initial
conditions.

Step 2: In the following, we will find the conditions such that
, . First, define a set

(63)

It is easy to see that for all and , we
have , . Then, for the system with

, bounded , , , and , the fol-
lowing constant can be determined by:

(64)

From (53) and (54), we know that if the adaptive control pa-
rameters , , , and are chosen to be sufficiently small
and , , , and are taken to be suffi-
ciently large, then the constant can be made arbi-
trary small. Therefore, for the initial condition ,
bounded , , , and , if the adap-
tive control parameters are appropriately chosen such that

, then system state indeed stays in for
all time .

Through the process of the proof, it is clear that there is a
nonempty initial compact set ; as long as initial state
starts from , the state will never escape out of the con-
servative compact set , belonging to the chosen compact set

for all time . Because NN approximation is only valid on a
compact set, we have to present the idea in the above manner,
and at the same time avoid the so-called circular argument as
commonly understood in the classical-model-based control. To
help understand the above proof, the defined three compact sets
in Theorem 1 are shown in Fig. 2 as discussed in [29].

Remark 2: Because the output of an unknown dead zone
is not available, controller design based on the inverse of a
dead zone usually needs to estimate some unknown parameters

related to the dead zone [14], [19], [23], [30]. However, for
controller design based on (9), there is no need to estimate the
parameters related to dead zones, and can avoid the need for
parameter bounds of dead zones (for example, the parameters

and of the dead zone need to be known in [19, eq. (22)];
the parameters of the dead zones also need to be
known in [21, eq. (14)]). In addition, since and are
unknown, and are unknown as well, i.e.,
both and cannot be computable. However,
the particular description (9) makes the control system design
possible without necessarily constructing a dead-zone inverse
by utilizing Lemmas 1–3.

C. Adaptive NN Control for MIMO System

In this section, the design in Section III-B is extended to
MIMO system (1), which contains interconnected subsys-
tems. For the th subsystem

(65)
the filtering tracking error is determined by (17). From (9),
(16), and (65), we obtain

(66)

where .
Define a smooth scalar function as follows:

(67)

where and
.

By second mean value theorem for integrals, can be
rewritten as

(68)

with . Because , it is shown that
is positive definitive with respect to .

Differentiating with respect to time and applying (16)
and (66), we obtain
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(69)

where

(70)

(71)

(72)

Remark 3: Since
, , we may conclude

that the right-hand side of (71) is a function of variable
.

Define the compact sets and as follows:

(73)

(74)

where is a sufficiently large compact set satisfying
, ; will be defined later in

Theorem 2, , .

Let be the approximation of the three-layer
NNs, which are discussed in Section III-A, on the compact
to ; then we have

(75)

where and ,
and

denote the estimates of and , respectively,
and are ideal constant weights,

with ,

and constant , with
, ,

the NN node number , the residual term is bounded
by

(76)
and the approximation error in (75) satisfies

, with constant .
Consider the following control law:

(77)

(78)

where , , and are
positive constants, is the estimate of with

at time
, and

(79)

The adaptive laws are employed as follows:

(80)

(81)

(82)

where , , , , , and are strictly positive
constants.

Theorem 2: Consider the closed-loop system consisting of
the plant (1), control law (77), and adaptation laws (80)–(82).
If Assumptions 1–5 hold, then for bounded initial conditions,
the overall closed-loop neural control system is semiglobally
stable in the sense that all signals in the closed-loop system are
bounded, the parameter estimates

(83)
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and , the state vector

(84)

where , is
one state–space representation for mapping with

, ,
being a stable matrix, and being a positive constant satisfying

, , and

(85)

with , and

(86)

Proof: The proof includes two steps. We first suppose that
holds for all time, and find the upper bounds of system

states. Later, for the appropriate initial condition and the
adaptive controller parameters, we prove that state indeed
remains in the compact set for all .

Suppose that , , then NN approximation (75)
is valid. Consider the Lyapunov function candidate

(87)
Differentiating with respect to time leads to

(88)

Substituting inequality (69) into (88), and using (75) and (76)
and control law (77) and (78), it follows that

(89)

Using adaptive tuning laws (80)–(82), and the inequality
, for and , and the

fact that , we obtain

(90)

By completion of squares, the following inequalities hold:

(91)

(92)

(93)

We obtain

(94)

Define the following constants:

(95)

(96)

Thus, we have

(97)

Multiplying inequality (97) by yields

(98)

Integrating (98) over , we have

(99)

From (10)–(15) and Assumption 3, we know that
or

. According to
Lemma 2, we have that , , and
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are bounded in . According to Lemma 3, we see that
the above conclusion holds for . Therefore, ,

, and . Let be the upper bound of
in , and

(100)

then . Similarly,
, and , and

.
Furthermore, similar to the discussion in Theorem 1, we can

conclude that all the closed-loop signals are semiglobally uni-
formly ultimately bounded.

Remark 4: Since in control law determined by (77), is
an adaptive bounding for unknown parameter including prob-
ably large values of , , and , then large magni-
tude switching could occur in the control signal. In order to deal
with probably large values of , , and , a modified
control scheme is presented as follows.

Consider the following control law:

(101)

(102)

where , ,
, and are positive constants.

The adaptive laws are employed as follows:

(103)

(104)

where , , , and are strictly positive
constants.

Consider the Lyapunov function candidate

Noting that , it yields
the following inequality:

(105)

Therefore, employing the argument in Theorem 2, the similar
conclusion can be obtained as well.

From the above two design schemes, we can see that large
control efforts are required in this paper using either large mag-
nitude switching or high gains in order to deal with probably
large values of , , and .

IV. ADAPTIVE NN CONTROL WITH DEAD ZONES

OF EQUAL SLOPES

Note that in Section III, adaptive neural control is designed
for the system (1) with general nonlinear dead-zone inputs. In
this section, we consider a special case of the system (1) with the
dead zones of equal slopes. We make the following assumption.

Assumption 6: Suppose that the dead zones are described as
follows:

if
if
if .

The dead-zone parameters , , , and are unknown
bounded constants, but their signs are known, i.e., ,

, , , and , .
In order to make full use of Assumption 6, the th dead-zone

output can be denoted as follows:

(106)

where
if
if
if

(107)

and , is an unknown positive constant with
.

For the th subsystem of the MIMO nonlinear system (1),
we design for each subsystem a full state feedback controller
as follows. The closed-loop stability can be proved as a whole,
which is similar to the proof of Theorem 2.

Consider the following control law:

(108)

(109)

where , is a positive constant,
is the estimate of with

at time , and the sign function is defined as

if
if
if

(110)

(111)

The adaptive laws are employed as follows:

(112)

(113)

(114)

where , , and is a strictly positive constant.
From (69) and (106), we know that

(115)

Authorized licensed use limited to: National University of Singapore. Downloaded on March 25, 2009 at 08:48 from IEEE Xplore.  Restrictions apply.



ZHANG AND GE: ADAPTIVE NEURAL NETWORK TRACKING CONTROL OF MIMO NONLINEAR SYSTEMS 493

Substituting (115) into (88), and using (75) and (76) and control
law (108) and (109), it follows that

(116)

Using adaptive tuning laws (112)–(114), and the fact that
, we obtain

(117)

Now, we will show that is uniformly continuous. Consider the
resulting closed-loop system. There are three modes for its right-
hand side corresponding to three cases: , , and

(sliding mode). Changing the sign of implies changes in the
motion law of the system and it does not make a jump in the
system state , therefore the system state is continuous, though
the right-hand side of the differential equation is changed. In
each mode, the system state is continuous, and hence is
continuous in view of (17).

Integrating (117) over , we have

(118)

According to Lemma 1, we have that , ,
are bounded in . Note

that

, and we obtain that
is bounded in for bounded initial

value . According to Lemma 3, we see that the above
conclusion is true for . Therefore, we know that

, , , , and , . Furthermore,
it is easy to obtain , , and . This means that
is uniformly continuous in the interval . According to
Barbalat’s lemma, we conclude that . From the
discussion in [31], we have . Let be the upper

bound of in ,

, then . Similarly, we

obtain , ,
and .

The following theorem shows the stability and control perfor-
mance of the closed-loop adaptive system.

Theorem 3: Consider the closed-loop system consisting of
the plant (1) under Assumptions 1 and 4–6, control law (108),
and adaptation laws (112)–(114). For bounded initial condi-
tions, the overall neural control system is semiglobally stable
in the sense that all of the signals in the closed-loop system are
bounded, the parameter estimates

(119)

the state vector

(120)

and the tracking errors converge to zero asymptotically, i.e.,
.

Remark 5: Although the stability proofs in Sections III-C
and IV is similar except the use of the sign function and the
tanh function, and -modification terms, the asymptotic sta-
bility cannot be obtained with different slopes of the dead zone.
In fact, if we adopt the same design scheme for the systems
with general nonlinear dead zones similar to the adaptive control
(108)–(114) without -modification and with the func-
tion, which is used in the control design, then we can obtain the
following inequality:

Since is a function of time in the above equation, we
know that the stability result cannot be obtained from the above
inequality and Lemma 1 as well as Lemma 2. Therefore, for the
dead zones with equal slopes, we can obtain asymptotic tracking
result using adaptive control given by (108)–(114) from Lemma
1 and Theorem 3. However, we can only obtain the semiglobally
stable result using adaptive control given by (77)–(82) for the
general dead zones by Lemma 2 and Theorem 2.

Remark 6: Under weak conditions, we can only achieve ul-
timate boundedness of system trajectory as detailed in Theo-
rems 1 and 2. However, under more strict conditions, we can
achieve the asymptotic stability as stated in Theorem 3. Though
we have obtained the asymptotic stability of the tracking error in
Theorem 3 by introducing discontinuous sign function ,
the discontinuous control law (108) will lead to the “chattering”
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Fig. 3. Output � (solid line) follows desired trajectory � (dashed line) using
control law (77) with nonsymmetric dead zones.

Fig. 4. Output � (solid line) follows desired trajectory � (dashed line) using
control law (77) with nonsymmetric dead zones.

Fig. 5. Control signal � using control law (77) with nonsymmetric dead zones.

phenomenon in control. This is also verified in the simulations:
good tracking performance, but chattering control signals. Chat-
tering may be undesirable in practice. This phenomenon can be
eliminated using controller (77) or (101). But the asymptotic
stability will disappear.

V. SIMULATION RESULTS

To demonstrate the effectiveness of the proposed approach,
the developed adaptive NN tracking controller is applied to the
following nonlinear system:

(121)

Fig. 6. Control signal � using control law (77) with nonsymmetric dead zones.

Fig. 7. Output � (solid line) follows desired trajectory � (dashed line) using
control law (101) with nonsymmetric dead zones and positive gains.

Fig. 8. Output � (solid line) follows desired trajectory � (dashed line) using
control law (101) with nonsymmetric dead zones and positive gains.

where and ,
are the outputs of the dead zones. The control

objective is to make the system outputs follow the
desired trajectory .

Both NNs , , contain ten hidden nodes
(i.e., ) and the coefficients in activation func-
tion are taken as . The desired tracking
trajectories are and

. The parameters of the dead zones are
, , , , ,

, , and . The control law is given
by (77), and the adaptive laws are determined by (80)–(82). The
design parameters of the above adaptive control are chosen as

, , , , ,
, ,

, and . The
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Fig. 9. Control signal � using control law (101) with nonsymmetric dead
zones and positive gains.

Fig. 10. Control signal � using control law (101) with nonsymmetric dead
zones and positive gains.

Fig. 11. Output � (solid line) follows desired trajectory � (dashed line)
using control law (101) with nonsymmetric dead zones and negative gains.

initial conditions are , ,
, , , and , .

and are taken as zeros; and are ran-
domly taken in the intervals and , respec-
tively, and are randomly taken in the interval .
The simulation results are shown in Figs. 3–6.

If we employ control law (101), adaptive laws (103) and
(104), , , , ,

, and ,
and all other conditions being the same as in Case 1, then the
simulation results are shown in Figs. 7–10.

If we choose ,
, control law (101), adaptive laws (103) and (104),

, , , and all other con-

Fig. 12. Output � (solid line) follows desired trajectory � (dashed line)
using control law (101) with nonsymmetric dead zones and negative gains.

Fig. 13. Control signal � using control law (101) with nonsymmetric dead
zones and negative gains.

Fig. 14. Control signal � using control law (101) with nonsymmetric dead
zones and negative gains.

Fig. 15. Output � (solid line) follows desired trajectory � (dashed line)
using control law (108) with equal slopes.

ditions being the same as in Case 2, then the simulation results
are shown in Figs. 11–14.
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Fig. 16. Output � (solid line) follows desired trajectory � (dashed line)
using control law (108) with equal slopes.

Fig. 17. Control signal � using control law (108) with equal slopes.

Fig. 18. Control signal � using control law (108) with equal slopes.

If we select , , control law
(108), adaptive laws (112)–(114), , ,

, , ,
, and all other conditions being the same as in

Case 1, the simulation results are shown in Figs. 15–18.
Figs. 3–18 clearly show that the system outputs and control

signals are bounded for system (121) with the dead zones. From
Figs. 3, 4, 7, 8, 11, 12, 15, and 16, it can be seen that fairly good
tracking performance is obtained. Fig. 17 shows that the control
signal happens to chattering phenomenon due to using dis-
continuous sign function .

VI. CONCLUSION

Three adaptive NN tracking control schemes have been pre-
sented for a class of uncertain MIMO nonlinear systems with

unknown dead zones and control directions. Controller singu-
larity problems have been solved by employing integral Lya-
punov function. Based on the intuitive concept and piecewise
description of a dead zone and the principle of sliding mode
control, the developed controller can guarantee that all signals
involved are semiglobally uniformly ultimately bounded. The
proposed approach does not require the bounds of the dead-zone
parameters to be known. Moreover, the functions outside the
dead band may be nonlinear functions.
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