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Abstract—In this paper, output feedback adaptive neural net-
work (NN) controls are investigated for two classes of nonlinear dis-
crete-time systems with unknown control directions: 1) nonlinear
pure-feedback systems and 2) nonlinear autoregressive moving av-
erage with exogenous inputs (NARMAX) systems. To overcome the
noncausal problem, which has been known to be a major obstacle
in the discrete-time control design, both systems are transformed
to a predictor for output feedback control design. Implicit function
theorem is used to overcome the difficulty of the nonaffine appear-
ance of the control input. The problem of lacking a priori knowl-
edge on the control directions is solved by using discrete Nussbaum
gain. The high-order neural network (HONN) is employed to ap-
proximate the unknown control. The closed-loop system achieves
semiglobal uniformly-ultimately-bounded (SGUUB) stability and
the output tracking error is made within a neighborhood around
zero. Simulation results are presented to demonstrate the effective-
ness of the proposed control.

Index Terms—Discrete Nussbaum gain, discrete-time system,
nonlinear autoregressive moving average with exogenous inputs
(NARMAX) systems, neural networks (NNs), pure-feedback
system, unknown control directions.

I. INTRODUCTION

I N recent years, control design for complex nonlinear
systems has attracted an ever increasing interest, and con-

trol design based on neural network (NN) has been drawing
much attention owing to NN’s excellent function approxima-
tion ability [1]. NN control has been extensively studied for
both continuous-time and discrete-time systems. For contin-
uous-time systems, much research work has been carried out
on affine nonlinear systems through feedback linearization, and
recently, some research papers devoted to nonaffine systems
have been reported in the literature. There are fewer analysis
tools for nonaffine systems compared with affine systems, e.g.,
the feedback linearization used for many affine systems are
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not directly applicable to nonaffine systems. It makes control
problem of nonaffine systems more challenging.

In continuous time, to overcome the design difficulty for
nonaffine systems, adaptive NN control using implicit function
theorem was presented with mathematical rigor in [2], and
combined with backstepping design, implicit-function-based
adaptive NN control has been proposed for a class of pure-feed-
back continuous-time system in [3]. The tracking-error-ob-
server-based pseudoinverse control has been proposed in [4]
where the pseudoinverse control consists of a linear dynamic
compensator and an adaptive NN compensator.

In comparison with continuous-time control design, NN con-
trol design of discrete-time systems is more difficult due to lack
of mathematical tools in discrete time. For instance, Lyapunov
design for nonlinear discrete-time systems becomes much more
intractable than for continuous-time systems because the lin-
earity property of the derivative of a Lyapunov function in con-
tinuous time is not present in the difference of Lyapunov func-
tion in discrete time [5]. Though not as intensive as that in the
continuous time, NN control of the discrete-time systems has
also drawn much attention [6]. Using passivity property, adap-
tive NN control has been designed for a class of discrete-time
nonlinear system in normal form [7]. This result is further ex-
tended in [8] with constrained input.

Recently, the discrete-time systems in lower triangular struc-
ture have attracted much research interest. For strict-feedback
form nonlinear system, after states prediction and system trans-
formation, backstepping design has been applied using NNs ap-
proximating both virtual and real controls [9]. The result has
also been extended to multiple-input–multiple-ouput (MIMO)
systems in [10] and [11]. For pure-feedback systems in which
the control is of nonaffine appearance, adaptive NN control with
a single NN was studied in [12].

The nonlinear autoregressive moving average with exoge-
nous inputs (NARMAX) model proposed in [13] comprises a
general nonlinear discrete-time model structure, and it has re-
ceived much attention in the discrete-time control literature. In
[14], NN has been used for identification and control of induc-
tion machines represented by a NARMAX model. In [15], based
on the NN identified model, a novel linearization method at
each step was proposed to deal with the difficulty of nonaffine
input and the method was further used in [16] to construct an in-
ternal-model-based NN control. It is noted that these results of
controlling NARMAX systems are based on offline NN learning
and certain approximation accuracy should be guaranteed be-
fore control design.
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On the other hand, several adaptive NN control approaches
have been proposed for NAMAX systems based on Lyapunov
stability theory and they guarantee the closed-loop stability
without the requirement of an offline NN training. In [17],
for a class of nonlinear system transformable to nonlinear
autoregressive moving average (NARMA) model, multimodel
adaptive control was proposed with an NN used to compensate
the unknown nonlinearity. In [18], NARMA model was repre-
sented as a linear part plus a nonlinear part and then a linear
generalized minimum variance (GMV) control was designed
with an NN to deal with the nonlinearity.

For a class of a single-input–single-output (SISO) affine
NARMA system, direct adaptive NN control was proposed
in [19]. For NARMAX systems with bounded disturbance,
based on the system transformation, adaptive NN control
was studied in [20]. For nonaffine NARMA systems, the im-
plicit-function-based NN control was first proposed in [21] and
[22] where the implicit function theory was used to assert the
existence of a desired control. In [21], the control design was
constructed with offline NN training, while in [22], adaptive
NN control with online tuning was designed. The implicit-func-
tion-based discrete-time adaptive NN control has been further
developed in [23] using multilayer neural network (MNN) to
approximate the desired control.

In this paper, we will study output-feedback control of the dis-
crete-time systems in both pure-feedback form and NARMAX
form in the presence of unknown control directions. The control
directions (the signs of “control variable” gains in affine sys-
tems, or the signs of partial derivatives over “control variables”
in nonaffine systems) are normally required to be known a priori
in adaptive control. When the control directions are unknown,
the control problem becomes much more difficult, because in
this case, we cannot decide the direction along which the control
operates. It may be noted that for adaptive NN control in [22],
the control direction was not assumed to be known, but the sta-
bility result was proved using NN weights convergence results,
which cannot be guaranteed without the persistent exciting con-
dition. In the adaptive control literature, the unknown control
direction problem has received much attention in the past two
decades.

In continuous time, the breakthrough solution to counteract
the lack of a prior knowledge of the control directions was first
given for a class of first-order linear systems by introducing
the Nussbaum gain [24]. For high-order nonlinear systems in
strict-feedback form with unknown functions, adaptive NN con-
trol design using Nussbaum gain was developed in [25]. Alter-
native approaches to deal with the unknown control directions
can also be found in the literature. In [26], the projected param-
eter approach was used for adaptive control of the first-order
nonlinear systems with unknown control directions. In [27], on-
line identification of the unknown control directions was pro-
posed for a class of the second-order nonlinear systems.

In discrete time, to solve the unknown control direction
problem, a two-step adaptation law was proposed for a first-order
discrete system without knowledge of control gain [28]. How-
ever, this procedure is limited to the first-order linear system. For
stable adaptive control of high-order linear systems, the discrete
Nussbaum gain was first proposed in [29]. The discrete Nuss-

baum gain is more intractable compared to its continuous-time
counterpart, and hence, the control design in continuous time is
not directly applicable to discrete time. In this paper, the discrete
Nussbaum gain will be employed for adaptive NN control for the
first time. In contrast to the control design in continuous time,
the Nussbaum gain is not explicitly used in the control law but
rather it is embedded in the NN weights adaptation law.

The main contributions of the paper are as follows.
1) The control designs for a class of pure-feedback system

and a class of NARMAX system are unified.
2) Implicit function theory is exploited for the control de-

sign to assert the existence of an ideal control. It solves
the difficulty of nonaffine appearance of the control
input.

3) By introducing the discrete Nussbaum gain, the pro-
posed adaptive NN control overcomes the unknown con-
trol direction problem. In addition, neither the upper
bounds nor the lower bounds of the control gains are re-
quired to be known.

Throughout this paper, the following notations are in order.
• denotes the Euclidean norm of vectors and induced

norm of matrices.
• means that is defined as .
• represents the transpose of a vector or a matrix.
• stands for -dimension zero vector.
• and denote the ideal NN weights vector and its

estimate at the th step, respectively. Let
denote the estimate error.

The remainder of this paper is organized as follows. Section II
introduces the systems and the control problem to be studied, as
well as preliminaries that are necessary for adaptive NN con-
trol design. In Section III, the pure-feedback systems are trans-
formed into a class of NARMAX systems, and in Section IV,
the NARMAX systems are further transformed by prediction
approach into a suitable form for control design. In Section V,
adaptive NN control is first synthesized without considering the
external disturbance and the NN approximation error, and then,
dead zone technique is used to cope with the disturbance and
the approximation error. Simulation studies and some remarks
are provided in Section VI. This paper ends with conclusion in
Section VII.

II. PROBLEM FORMULATION AND PRELIMINARIES

A. Pure-Feedback System

Consider the following SISO discrete-time systems in pure-
feedback form:

(1)
where , ,

, are the system states, and are the unknown
nonlinear functions, and are the system
input and output, respectively, and denotes the external
disturbance, which is bounded by an unknown constant so that

.
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Assumption 1: The system functions and in
(1) are continuous with respect to all the arguments and contin-
uously differentiable with respect to the second argument.

Assumption 2: There exist constants such
that , , where

, ,
and .

The partial derivatives are actually the control gains
of system (1). Assumption 2 implies that the control gains are
strictly either positive or negative, but their signs, the control
directions, are unknown. For convenience, let us introduce the
notations and . It should be noted that
the constants and are only used for analysis and are not
required to be known in the control design.

Assumption 3: The system functions and
are Lipschitz functions.

B. NARMAX System

Consider the following SISO discrete-time systems in
NARMAX form:

(2)

where , , is an unknown
nonlinear function, and are the system
input and output, respectively, and denotes the external
disturbance, which is bounded by an unknown constant , i.e.,

.
Assumption 4: The system function in

(2) is continuous with respect to all the arguments and continu-
ously differentiable with respect to .

Assumption 5: There exist constants such that
, where .

Assumption 6: System (2) is inverse stable, i.e., system (2) is
bounded-output–bounded-input (BOBI). In addition, the func-
tion is
a Lipschitz function.

The control objective is to synthesize an adaptive NN control
for system (1) and system (2), such that all signals in the

closed-loop systems are bounded and the output tracks a
bounded reference trajectory .

C. HONN Approximation

There are many well-developed approaches used to approx-
imate an unknown function. NN is one of the most frequently
employed approximation method due to the fact that NN is
shown to be capable of universally approximating any unknown
continuous function to arbitrary precision [30]–[33]. Similar
to biological neural networks, NN consists of massive simple
processing units that correspond to biological neurons. With the
highly parallel structure, NNs are of powerful computing ability
and intelligence to learn and adapt with respect to the fresh and
unknown data. Higher order neural network (HONN) is a kind
of linearly parametrized neural network (LPNN) [1], and it has
been shown to have a strong storage capacity, approximation,
and learning capability. HONN satisfies the conditions of the
Stone–Weierstrass theorem and can, therefore, approximate any

continuous function over a compact set [34], [35]. It is pointed
out in [36] that by utilizing a priori information, HONN is very
efficient in solving problems because the order or structure
of HONN can be tailored to the order or structure of a given
problem. The structure of HONN is expressed as follows:

(3)

(4)

where is the input to HONN, is the NN nodes
number, is a collection of not-ordered subsets
of , e.g., , , ’s
are the nonnegative integers, is an adjustable synaptic weight
vector, and is a monotonically increasing and differen-
tiable sigmoidal function. In this paper, it is chosen as a hyper-
bolic tangent function, i.e., .

For a smooth function over a compact set ,
given a small constant real number , if is sufficiently
large, there exists a set of ideal bounded weights such that

(5)

From the universal approximation results for NNs [37], it is
known that the constant can be made arbitrarily small by
increasing the NN nodes number .

Lemma 1 [20]: Consider the basis functions of HONN (3)
with being the input vector. The following properties of
HONN will be used in the proof of the closed-loop system
stability:

(6)

where denotes the max eigenvalue of .

D. Preliminaries

The following lemmas and definitions will be used for con-
trol design and system stability analysis in the remainder of this
paper.

Definition 1 [20]: The future output of a discrete-time con-
trol system is said to be a semidetermined future output (SDFO)
at time instant , if it can be predicted based on the available
system information up to the time instant , and it controls up
to the time instant without considering the unknown un-
certainties.

Definition 2: Let be an open subset of . A mapping
is said to be Lipschitz on if there exists a

positive constant such that

for all .
Definition 3 [10]: A trajectory of the closed-loop

system is said to be semiglobally uniformly-ultimately-bounded
(SGUUB), if for any a priori given compact set, there exist a
feedback control, a bound , and a number ,
such that the trajectory of the closed-loop system starting from
the compact set satisfies for all .
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Lemma 2 [38]: Consider a function with
and where

. Then, there exist a neighbor-
hood of in and a unique function such
that and , .

Lemma 3 [39]: For some given real scalar sequences ,
, and and vector sequence , if the following con-

ditions hold:
i) ;

ii) and with a finite ;
iii) , where and

are some finite constants;
then we have a) , and b) is bounded.

E. The Discrete Nussbaum Gain

Definition 4: Consider a discrete nonlinear function
defined on a sequence with .

is a discrete Nussbaum gain if and only if it satisfies
the following two properties:

i) if increases without bound, then

(7)

ii) if , then with some positive
constants and ;

where is defined as

(8)

with .
In summary, for a discrete Nussbaum gain, if is un-

bounded, then oscillates between positive infinity and
negative infinity, but if is bounded, then is
bounded as well.

The first discrete Nussbaum gain was proposed in [29], in
which it is pointed out that it is essential for the discrete se-
quence to satisfy

(9)

where is a positive constant. Then, the discrete Nussbaum
gain proposed in [29] is defined on the sequence as

(10)

where is the sign function of the discrete Nuss-
baum gain, i.e., . The initial value is set as

. Thereafter, the sign function will
be chosen by comparing the summation with a pair
of switching curves defined by . The
details are as follows.
Step 1) At , measure the output and compute

and and
.

In this paper, is calculated from (33) for NN

control in the absence of disturbance and approxi-
mation error, and from (40) for NN robust control.
Case :

If then go to Step 2)

If then go to Step 3)

Case :

If then go to Step 2)

If then go to Step 3)

Step 2) Set , go to Step 4).
Step 3) Set , go to Step 4).
Step 4) Return to Step 1) and wait for the measurement of

output.
In the following lemma, a family of discrete Nussbaum gain is

proposed based on the one defined above. The continuous-time
counterpart lemma is reported in [40].

Lemma 4: Consider the discrete Nussbaum gain defined in
(10).

i) Given an arbitrary bounded function ,
and , where and are unknown
positive constants, then is also
a discrete Nussbaum gain if .

ii) Given an arbitrary function , then
is still a discrete Nussbaum

gain if .
Proof: See the Appendix.

Remark 1: It should be emphasized here that in contrast to
continuous-time Nusbaum gain, there is a strong restriction on
the argument of the discrete Nussbuam gain, , i.e., i) it
is a nonnegative sequence, ii) the magnitude of the increment

is bounded by some constant, and iii) for the discrete
Nussbaum gain obtained from Lemma 4, there is one more re-
striction . These constraints make the design based
on the discrete Nussbaum gain more challenging than the con-
tinuous-time case.

The following lemma will be used for stability analysis in this
paper.

Lemma 5 [41]: Let be a positive-definite function de-
fined , be discrete Nussbaum gain, and be a nonzero
constant. If the following inequality holds, :

(11)

where , , and are some constants and is a positive in-
teger, then , , and

must be bounded .

III. TRANSFORMATION OF PURE-FEEDBACK SYSTEM

In this section, using the same transformation procedure as
in [12], it is shown that system (1) under Assumptions 1–3 is
transformable to system (2) under Assumptions 4–6. For con-
venience, we define

(12)
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The first equation of (1) can be rewritten as

According to Assumption 2, the derivative of the left-hand side
of the above equation over is not zero, thus, according
to Lemma 2, there exists an implicit function asserted by
Lemma 2 such that can be seen as a function of
and as follows:

(13)

Similarly, from the second equation of (1), there exists an im-
plicit function asserted by Lemma 2 such that can
be expressed as a function of , , and as

(14)

Continuing the procedure consistently, we see that for ,
, there exists a function such that

. Then, let us introduce
a vector function as follows:

...

which leads to

(15)

To transform system (1) to the NARMAX form, we combine the
system equations in (1) together. Let us consider rewriting the

th equation in system (1) as follows:

Combining with derived from
(15), we obtain

Then, let us substitute the th equation into the th equation,
, so that we obtain (16), shown at the bottom

of the page. It is easy to check that

(17)

According to Assumption 1, it is easy to show that the system
function in (16) is continuous with respect to all the argu-
ments and continuously differentiable with respect to .

Remark 2: Assume that the output is bounded, then
according to (16), must also be bounded because

. According to Lemma 3 in [12], the output bound-
edness guarantees the states boundedness for system (1). Then,
it is easy to check that after transformation from the original
system (1) under Assumptions 1–3, the transformed system (16)
satisfies Assumptions 4–6.

At this stage, the pure-feedback system (1) is transformed to
the NARMAX system (2) with and , and the
control objective for both systems (1) and (2) becomes unified.

IV. FUTURE OUTPUTS PREDICTION OF NARMAX SYSTEM

The difficulty in controlling system (2) lies in the existence of
future outputs , which are not available
at the current step. However, by carefully examining (2), it can
be seen that control input only affects future output

and those beyond, which means that the future outputs
are independent of . When the external

disturbance is ignored, the future outputs on the right-hand
side of (2) can be predicted at the current step. Let us consider
the output prediction approach in [20].

Moving back steps in (2), we obtain

(18)

(16)
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It implies that the output is an SDFO according to
Definition 1. Assuming that , by moving a step forward,
we obtain the following equation from (18):

(19)

Substituting (18) into (19), we see that there exists a function
such that

(20)

which implies that is also an SDFO. Continuing
the substituting recursively, it is easy to show ,

, are all SDFOs. Finally, we see that there
must exist a function such that

(21)

where

(22)

if and if , . It can be
easily shown that function is continuous and continuously
differentiable with respect to according to Assumption 4.
Rewrite system (21) as

(23)

where

(24)

Note that is obtained by iterative substitution of the system
function , which satisfies Lipschitz condition in Assumption
6. Then, there exists a finite constant such that .

V. ADAPTIVE NN CONTROL DESIGN

Without loss of generality, we will assume that and
in the rest of this paper. From the derivation of ,

we see that

The dynamics of the tracking error is given
by

(25)

It is easy to show that

Therefore, according to Lemma 2, there exists an ideal control
input such that

(26)

Using the ideal control , we have after
steps if . It implies that the ideal control is
a -step deadbeat control.

As mentioned in Section II-C, there exists an ideal constant
weights vector , such that

(27)

where is the NN approximation error and is a suffi-
cient large compact set.

Remark 3: Because system (23) is transformed from the
original system (2), Assumption 6 still holds for (23). Consid-
ering that we input to system (23), then the output

catches up in steps. This implies the boundedness
of output because the reference signal is bounded.
Then, from the BOBI property in Assumption 6, the bounded-
ness of is guaranteed.

Using HONN as an approximator of , then the output
feedback adaptive NN control is given as

(28)

Adding and subtracting on the right-hand
side of (25) leads to

(29)

where

with ,
according to the mean value theorem. For convenience, let us
introduce the following notations:

(30)

and it is obvious that . Substituting (27) into (29)
and noting that , we obtain

(31)

where

and it is trivial to show that .

A. NN Control Without Disturbance and Approximation Error

In this section, to clearly demonstrate the control design, let
us first study the NN control in the ideal case, where neither
external disturbance nor NN approximation error exits, i.e.,

. It will be shown that in the ideal case, the output
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tracking error will converge to zero ultimately. Then, in the
next section, we will take into consideration the disturbance
and approximation error to design a robust control law.

In the ideal case, (31) becomes as follows:

(32)

Consider the following adaptation law for the NN weights:

(33)

where is the discrete Nussbaum gain defined in (10),
and is introduced as an augmented error, then the tuning
rate can be an arbitrary positive constant to be specified
by the designer. It should be mentioned that the requirement on
the sequence in (9) is satisfied, and furthermore,

.
Theorem 1: Consider the adaptive closed-loop system con-

sisting of system (1) under Assumptions 1–3 or system (2) under
Assumptions 4–6, control (28) with NN weights adaptation law
(33). Assuming there is no external disturbance and approxi-
mation error, i.e., , all the signals in the closed-loop
system are SGUUB and the tracking error will converge to
zero ultimately.

Proof: First, let us assume that the NN is constructed to
cover a large enough compact set such that the inputs
and the outputs are within the NN approximation range ,
while we will show that it is indeed the case, if we initially con-
struct the NN with approximation range covering a prescribed
compact set, and the so-called circular argument does not apply
here in this very proof.

Choose a positive-definite function as

(34)

The first difference equation of is given as

(35)

Denote and then, noting
and according to Lemma 4, we

can see that is still a discrete Nussbaum gain. Taking
summation on both sides of (35) and noting ,
we have

(36)

Applying Lemma 5 to (36) results in the boundedness of
and . Noting the definition of , we obtain the bound-
edness of immediately. From the definition of ,
it is seen that . Thus, the boundedness of

implies the boundedness of and
. In (33), we see that

, and therefore, is a nondecreasing sequence. Thus, the
boundedness of results in

(37)

According to the definition of in (33), we have

(38)

From Lemma 1, we see is bounded. Then, applying
Lemma 3 to (38), we obtain

(39)

Noting the boundedness of , we immediately have
. Next, because , where the reference

signal is bounded, the boundedness of output is ob-
vious. According to Remark 2, the boundedness of control
and states of system (1) is guaranteed.

So far, we have proved that given any initial condition
, there is a corresponding bounding compact set so that

, , if the NN approximation range is initialized to
cover .

Next, let us consider that the initial condition and control
parameters to be chosen are known at the beginning. It implies
the bounding set is determined. Then, if initially the NN ap-
proximation range is constructed to cover the bounding set

, the boundedness of all the closed-loop signals is guaranteed.
According to Definition 3 (given any initial condition, there is
a corresponding control such that the all the closed-loop sig-
nals are bounded), the proposed adaptive NN control achieves
SGUUB stability. This completes the proof.

B. Robust NN Control

In this section, the proposed control in Section V-A will be
improved to deal with the external disturbance and NN approx-
imation error. The dead zone method will be studied in the
NN weights adaptation law. The disturbance is assumed to be
bounded but we do not know the upper bound of the disturbance.
The basic idea in this section is that the NN weights adaptation
process is only proceeded when the augmented error is larger
than a threshold, i.e., , where can be arbitrary
positive constant to be set by the designer.
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The control law still assumes the form in (28) but the adapta-
tion law of NN weights has been modified including dead zone
as follows:

if
others

(40)

where is the discrete Nussbaum gain defined in (10).
Theorem 2: Consider the adaptive closed-loop system con-

sisting of system (1) under Assumptions 1–3 or system (2) under
Assumptions 4–6, NN control (28) with NN weights adaptation
law (40). All the signals in the closed-loop system are SGUUB
and the discrete Nussbaum gain will converge to a con-
stant ultimately. Denote , then the tracking
error satisfies , where the tuning
rate and the threshold value can be arbitrary con-
stants to be specified by the designer.

Proof: The proof is also shown in two parts as the proof
of Theorem 1. First, we assume the NN is constructed to cover
a large enough compact set such that the inputs and the out-
puts are within the NN approximation range . Substituting the
error dynamics (31) into the augmented error and taking
disturbance into account, we have

(41)

Choose the same positive-definite function as

(42)

and note that

(43)

and . Then, we see that the difference equation of
can be written as follows by using the same technique as

in Section V-A:

(44)

Note that

Then, by denoting , we have

(45)

where . The following inequality follows
immediately:

(46)

Following the same procedure as in Section V-A, we conclude
the boundedness of , , , and , and in
addition, from the boundedness of , we have

(47)

Let us define a time interval as and suppose
that is an infinite set. Then, we have

which conflicts with , because ,
when . Therefore, must be a finite set and then, we
have

which implies that will converge to a constant ulti-
mately. By denoting the limit of as , it can be derived
from the definition of in (40) that

Then, following the same procedure as in Section V-A, the
SGUUB of other closed-loop signals can be concluded. This
completes the proof.

VI. SIMULATION RESULTS

A. Pure-Feedback System

In this section, the following second-order nonlinear pure-
feedback plant is used for simulation studies:

(49)

where system functions are

where and the disturbance is
. The control objective is to

make the output track the desired reference trajectory
, where
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Fig. 1. Reference signal and system states.

Fig. 2. Control signal and NN weights norm.

, and guarantee the boundedness of all the closed-loop
signals. The system initial states are . The
HONN is constructed with 27 neurons. The tuning rate and
the threshold value are chosen as and .

First, we choose and the simulation results are pre-
sented in Figs. 1–3. Fig. 1 shows the reference signal and
system output . Fig. 2 illustrates the boundedness of the
control input and the NN weights vector estimate .
Fig. 3 shows the discrete sequence and discrete Nussbaum
gain .

It can be checked that
and such that

Assumption 2 is satisfied. Following the transformation proce-
dure, we define

(50)

and it is easy to check that
. According to (46), the discrete Nuss-

baum gain should turn to be ultimately negative

Fig. 3. Discrete Nussbaum gain ������� and its argument ����.

Fig. 4. Reference signal and system states.

because only when it is negative, is positive and
decreases. In Fig. 3, it can be seen that the discrete Nuss-

baum gain turns to be negative from positive at about step 200,
and thereafter, it remains negative. This explains how discrete
Nussbaum gain works. It will change its sign accordingly such
that we do not need to know the sign of the control gain of
the system.

In Fig. 1, it can be seen that the initial tracking performance
is not good. The output goes to an opposite direction compared
with the reference signal. It is the same with the control signal in
Fig. 2. This is due to the discrete Nussbaum gain still tuning, and
only when sufficient tracking error accumulation is achieved, it
will change to be in the correct sign. After the discrete Nuss-
baum gain turns to be negative at about step 200, it can be seen
that the tracking performance improves to be much better.

To further demonstrate that the proposed NN control is insen-
sitive to control direction, we choose for simulation. With
employment of the same control law and NN weights adapta-
tion law, the simulation results are shown in Figs. 4–6. It can
be seen from Fig. 5 that the discrete Nussbaum gain is always
positive and from Fig. 4 that the initial tracking errors are much
smaller than those in Fig. 1. It is also noted by comparison be-
tween Figs. 2 and 5 that the control signals are reversed to each
other.
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Fig. 5. Control signal and NN weights norm.

Fig. 6. Discrete Nussbaum gain ������� and its argument ����.

B. NARMAX System

In this section, the following NARMAX system studied in
[42] is used for simulation:

(51)
where the control gain is chosen to be and the distur-
bance is . The control objec-
tive is to make the output track the desired reference tra-
jectory ,
with , and guarantee the boundedness of all the closed-
loop signals. The initial condition is

. The NN control is constructed in the same manner as in
Section VI-A. The tuning rate and the threshold value are chosen
as and . The simulation results for
are presented in Figs. 7–9. Fig. 7 shows the reference signal

and system output . Fig. 8 illustrates the bounded-
ness of the control input and the NN weights vector esti-
mate . Fig. 9 shows the discrete sequence and dis-
crete Nussbaum gain .

It can be checked that . There-
fore, it is seen in Fig. 9 that the Nussbaum gain changes to be
negative after step 150 and remains to be so. Accordingly, the

Fig. 7. Reference signal and system output.

Fig. 8. Control signal and NN weights norm.

Fig. 9. Discrete Nussbaum gain ������� and its argument ����.

output and the control signal go to a wrong direction at initial
stage as shown in Figs. 7 and 8. After the discrete Nussbaum
gain turns to be negative, the output tracking performance im-
proves to be much better.

Next, let us change to . The simulation
results by the same control law and NN weights adaptation law
are shown in Figs. 10–12.
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Fig. 10. Reference signal and system output.

Fig. 11. Control signal and NN weights norm.

Fig. 12. Discrete Nussbaum gain ������� and its argument ����.

In summary, the adaptive NN control with discrete Nussbaum
gain adapts by searching alternately in the two directions. The
adaptive NN control will be able to reverse its direction of adap-
tation if initially the adaptation is in the wrong direction. How-
ever, we also noted that while the boundeness of all the signals
in the adaptive system was maintained, during those intervals
when the adaptation is in the wrong direction, the bounds may be

Fig. 13. NN learning errors of pure-feedback system (49).

Fig. 14. NN learning errors of NARMAX systems (51).

very large. This appears to be a limitation of the proposed con-
trol. Actually, when the control direction is unknown, no matter
what approach is used, if the adaptive NN control is initialized
to start in the bad regime where it adapts in the wrong direction,
it must at least remain in that regime until the errors become
correspondingly large. Only then can the adaptive NN control
determine that the direction of the adaptation is wrong so that it
can reverse its direction of the adaptation.

C. NN Learning Performance

To demonstrate the NN learning performance, we define the
following NN learning error:

(52)

as the measurement of NN learning performance. According to
(26) and (27), the better the NN approximation is (the smaller
the NN approximation error is), the smaller
is. If , we have .

The NN learning errors are demonstrated in Figs. 13 and 14.
It is noted that the NN learning performance is satisfactory, i.e.,
the defined NN learning error is ultimately bounded in a
neighborhood of zero.
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VII. CONCLUSION

In this paper, it has been shown that a class of nonlinear dis-
crete-time systems in pure-feedback form is transformable to a
class of inverse stable NARMAX system, and the control de-
sign for both systems can be synthesized in a unified frame.
By prediction approach, the original NARMAX system is trans-
formed to a suitable form for control design without noncausal
problem. Implicit function theorem has been exploited to iden-
tify the existence of an ideal deadbeat control, while HONN has
been used to approximate the ideal control, and discrete Nuss-
baum gain has been employed to counter the lack of knowledge
on control gain. The resulted adaptive NN control guarantees
the SGUUB of all the closed-loop signals. The performance of
the adaptive NN control has been investigated by simulation,
which shows that the adaptive NN control using a discrete Nuss-
baum gain works as predicted in the analysis. The results in this
paper can be further extended to another linearly parametrized
approximator that also has the property as in (6), such as radius
basis function (RBF) NN, fuzzy systems, polynomial, splines,
and wavelet networks.

APPENDIX

PROOF OF LEMMA 4

Proof: Case i) According to the prerequisite that
, is either strict positive or negative. Only proof

with positive is given here and the proof with negative
is omitted because they are quite similar. It should be noted
that because is nonnegative, we have and

.
First, let us consider that grows without bound. If the

sign of changes infinite times, then the switching
curve will be crossed infinite number
of times. Then, the first property in Definition 4 is satisfied. In
the following, we prove that definitely changes its
sign for infinite number of times if grows without bound.
Suppose that remains positive in an interval

, where , and noting that ,
we have

(53)

where . It is noted that in (53), the
inequality cannot be obtained without . This is why
the restriction is indispensable.

Because , , we
have

(54)

Substituting (54) into (53), we have

(55)

which implies that when , increases
at least as fast as as increases. Therefore, it
is obvious that the switching curve will be
crossed as increases if is unbounded.

On the other hand, suppose that remains on
the interval , then, by the similar approach, we
have

(56)

It implies decreases at least as fast as
when increases so that the switching curve of

will always be crossed as increases if
is unbounded.

According to the above analysis, it is impossible for
to keep its sign unchanged as grows unbounded. Therefore,

will change infinite times as . It is equiva-
lent to the fact that grows unbounded in both positive
direction and negative direction as grows unbounded. By
now, it is proved that the first property in Definition 4 is satisfied.

Second, let us consider that is bounded, i.e., .
Let us denote . Note that
is a monotonic nondecreasing sequence, and we have

. According to the definition of , we
have and , .

Then, it is easy to derive

(57)

Because the two properties in the definition of discrete Nuss-
baum gain are satisfied, it is concluded that is also
a discrete Nussbaum gain.

Case ii) Noting that and , then
we have

(58)
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where is defined in (8). It is noted in (58) that the
inequality will not hold without . This is the reason
why the restriction is indispensable. According to
the properties of discrete Nussbaum gain , when
increases without bound, it is easy to obtain the following:

(59)

and, similarly

(60)

Then, from (58), we conclude that satisfies the first
property in Definition 4. When is bounded, from the prop-
erty of , it is obvious that is bounded. There-
fore, it is easy to see from (58) that also satisfies the
second property in Definition 4. This completes the proof.
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