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Neural-Network Control of Nonaffine Nonlinear
System With Zero Dynamics by State and
Output Feedback
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Abstract—This paper focuses on adaptive control of non- dynamics. The stability of the internal dynamics is simply de-
affine nonlinear systems with zero dynamics using multilayer termined by the locations of the zeros, and the stability of zero
neural networks. Through neural network approximation, — gynamics implies the global stability of the internal dynamics.
state feedback control is firstly investigated for nonaffine . N .
single-inputsingle-output (SISO) systems. By using a high gain For. nonlinear systems, mtumpns for linear systems are gsed to
observer to reconstruct the system states, an extension is madedefine zero dynamics of nonlinear system. They are defined to
to output feedback neural-network control of nonaffine systems, be the internal dynamics of the systems when the system output

whose states and time derivatives of the output are unavailable. s kept at zero. However, unlike the linear case, no results on the
It is shown that output tracking errors converge to adjustable i i
neighborhoods of the origin for both state feedback and output glob_al stability or eyen large .range stability can be drawn for
feedback control. the internal dynamics of nonlinear systems and only local sta-
_ ) ~bility is guaranteed for the internal dynamics even if the zero dy-
Index Terms—High-gain observer, neural networks, nonaffine - amics are globally exponentially stable. The zero dynamics of
system, output feedback control, zero dynamics. - S .
nonlinear system are an intrinsic feature of a nonlinear system,
which do not depend on the choice of the control law or the de-
I. INTRODUCTION sired trajectories when they are represented in a normal form

N RECENT YEARS, control system design for Cc)mple)\(/vhere the control input. does not explicitly appear in the in-

nonlinear systems has attracted much attention. Many Fg_[nal dynamics [11], [13]. But sometimes it is difficult to ob-

markable results in this area have been obtained, including fe ptthe nforma!{_forrp betgausevsidt]he d'tﬁ'(iu.lty ”t1 construc_:tmg
back linearization techniques [1], adaptive backstepping desi ranstormation functions. With control inputappears in

[2], neural-network (NN) control [3], [4] and fuzzy logic con- e internal dynamics, different forms may exist [1]. It is not

trol [5]. Most of these researches are conducted for systemsdmicu" to arrive at similar conclusions and properties as those

affine form. Based on differential geometry theory which is ha norma_l form. Much re_search work has been carried out for
ystems with zero dynamics [14]-[18].

very useful analytical tool for nonlinear control system desigﬁ, v, NNs h b q scularly attracti d
several adaptive schemes have been developed in dealing wit ecently, S have been made particularly attraclive an

the problem of parametric uncertainties [6], [7] for affine nonpromising fqr appli_catiops to modeling. and_ contrg! 9f nonline_ar
linear systems. But there are some practical systems, suc ytems, owing to its universal approximation abilities, learning

chemical reactions [8], their input variables cannot be expres gdaptation, parallel distributed apilitie;. The fegsibility of
in an affine form. Because the input does not appear linea plying NNs to model unknown functions in dynamic systems

which makes the direct feedback linearization difficult, contr as been demonstrated in several studies [19], [20]. From these

system design for nonaffine nonlinear systems are not an e ks, it has been shown that_ for stable an.d eﬁ'C'em online
task. control using the backpropagation (BP) learning algorithm, the

Zero dynamics exist in many practical systems includini entification must be sufficiently accurate before control action

isothermal continuous stirred tank reactors (CSTR) [9], fiel ould be initiated. In practical control appligations, it is .d'esir-
controlled dc motors [10], controlled van der Pol equation [112€ 0 have systematic methods of ensuring the stabilty, ro-

aircraft trajectory tracking control [12], and others. It is ne bustness, and performance properties of the overall system. Re-

essary to investigate their influence on control system desi .ntl3(;, sevlt_aral good NN clontrolsaparoa;:reszh;v%been prop%sed
Zero dynamics play an important role in the areas of modelin ?Se on Lyapunov analysis [3], [4], [21], [22]. One main ad-

analysis, and control of linear and nonlinear systems. For lin é’i}nta:jge othhese schen}[ﬁs IS t?ﬁt thf adaptive I?WS tﬁre ?eglyrfd
systems, internal dynamics are defined to be the states that%f?he (Tn y;ul)unov sytn esE, ere O;ﬁ’ guaran ele b €s a|'| Idy
not observable after a Lie derivative coordinate transformati@h ¢ ©'0S€d-100p SyStems. HOWEVer, they can only be applie

[13]. By keeping the system output at zero, we obtain the zé relatively simple classes of nonlinear plants in affine forms
' , [4]. For NN control system design of general nonlinear sys-

tems, several researchers have suggested to use NNs as emula-
Manuscript received June 11, 2001; revised September 12, 2002. tors of inverse systems. The main idea is that for a system with
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tional University of Singapore, Singapore 117576, Singapore (e'maﬂie system output is one-to-one, thus allowing the construction
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implicit function theory, the NN control methods proposed imput « does not appear linearly, which makes the direct feed-
[20], [23] have been used to emulate the “inverse controlleBack linearization difficult/impossible.

to achieve the desired control objectives, though no rigorous

proof was given in [23]. Based on this idea, adaptive control with- System Transform via Lie Derivative

rigorous analysis has been investigated for nonaffine nonlineai_et I, ;» denote the Lie derivative of the functidriz) with

system by using multilayer NNs in [24], [25] and was appliegespect to the vector field(x, u) as
in [8]. None of the above works considered the zero dynamics, olh(z)]
Lih = ———=

though it plays an important role in nonlinear system control. f(z,u).
In this paper, we are interested in how to control the _ o Oz ) _
single-input-single-output (SISO) nonaffine nonlinear systegher ordeLL1|e derivatives can be defined recursively as
with zero dynamics using multilayer NNs. The problem is no[tf];h = Lf(Lf h), k> 1.
only academically challenging but also of practical interest. Let2, C R" andQ, C R b_e tW(_) compact sets such th_at
Academically, it is very much involved and tedious to extend € {2 andu € Q. System (1) is said to have a strong relative
the results in [24], [25] for nonaffine nonlinear SISO systerfl€dreep in U = Q. x Q, if there exists a positive integer
to nonaffine nonlinear system with zero dynamics. In practick,< » < oo such that

there are indeed systems that have zero dynamics which include [Li h} 9 |:Lp h]
certain types of CSTR systems [9], field-controlled dc motor 71 _ 0,i=0,1,...,p—1, ! £0 (2
systems [10] and others. In this paper, based on the implicit ou ou

function theorem, multilayer NNs are used to approximafer all (z,u) € U [26].

the implicit desired feedback control. For the system’s zero Assumption 2.1:System (1) possesses a strong relative de-
dynamics, we first assume that the zero dynamics are mgreep < n, V(z,u) € U.

imum-phase, i.e., zero dynamics are exponentially stable, theefine¢;(z) = Ljf_lh, 7 =1,2,...,n. Under Assumption
under the Lipschitz condition assumption, by using convergel, it was shown in [1], [6] that there exist other p functions

Lyapunov theorem, we can show that the system’s interng+1(z), ..., ¢»(z), which are independent af such that the
states do remain in a compact set. mapping
The main contributions of this paper are: 1) the proof of the O(x) = [b1(2), () é (:E)]T 3)

existence of implicit desired feedback control based on implicit

function theorem; 2) state feedback control for nonaffine nohas a Jacobian matrix which is nonsingular foralle €2,.
linear system using NNs; and 3) observer-based NN output cdirerefore ®(z) is a diffeomorphism ofi)... By setting

trol for nonaffine nonlinear system. It should be noted that, al- T

though the control schemes are developed for nonaffine systems & =91(5), d2(w), ..., do(w)]
with zero dynamics, they also can be applied to affine system 1=[ppr1(2), bpya(®), ..., bu(@)]”

without zero dynamics, affine system with zero dynamics andstem (1) can be transformed into a normal form in the new
nonaffine system without zero dynamics, assuming all the %Ordinate[fT,nT]T = ®(x) as follows:

sumptions are satisfied. There is no doubt these kinds of sys- .

tems cover a wide class of practical processes. &= it i=1..,p—1

This paper is organized as follows. In Section Il, by using fp = b(&nu (4)
Lie derivative, the general form of the SISO nonaffine system is = a(&mn.u)
transformed into a normal form in the new coordinates. Then the y= &

existence of implicit desired feedback control (IDFC) is provedhere
under some mild assumptions. The state feedback control and b(é,m, u) =L2h

the output feedback control are presented in Sections Ill and ) =y

IV, respectively. A practical CSTR process simulation shows the ¢(&,n,uw) =[gq1(§,m,u), g2(§,m,w), .. ., gn—p(&, 0, w)]
effectiveness of the proposed control methods. Gi(&,mu) =Lidpri(x), i=1,2,...,n—p

z=0""(&n), (&mu)el.
with the compact set/ being defined as

U= {(f,n,u)‘(f,n) EP(Q); ueE Q“}.

T

Il. PROBLEM STATEMENT
Consider SISO nonaffine system

y = h(z) Define the smooth function
wherez € R™ is the state vector, € R is the input, and € R = (5)

is the output. The mappingy(-,-) : R"*! — R is a partially
unknown smooth vector field arfe-) : R™ — R is a partially
unknown smooth function, the degree of uncertainties will be a[b(E,n,u)] £0, Y nu) el

explained later. The control objective is to design a controller du ' o

such that the system outpyfollows the desired trajectory;. which implies that the smooth functidr is strictly either pos-
The main difficulty of this control problem is that the systenitive or negative for al(¢, 7, u) € U.

According to Assumption 2.1, it can be shown that
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Assumption 2.2:There exists a smooth functién(z) and a
positive constant > 0, such thab, (z) > |b,| > d > 0 holds
forall (z,u) € U.

Remark 2.1: From (5), we know thak, can be viewed as the

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

T
I, dv = 1,

(ko(L+dx)/ o) + 1, andds = ko(1 + dy)]|<(0)]].
Proof: Considering (4) and (6), (8) and (9) are apparent.

with constantsty > 0, Ao > 0, dyx = ||
dy =

control gain of the normal system (4). Assumption 2.2 meafsom linear system theory, (10) can be established easily.
that the plant input gain is bounded by a positive function of Considering (9), we can prove inequality (11) as follows:
x, which does not pose a strong restriction upon the class of -t
systems. In the following design procedure we only need the ||¢(t)|| <koe 2!||C(0)]| + ko/ e e | dr

0

existence of Assumption 2.2, and functiariz) is not required
to be knowna priori.

Assumption 2.3:There is a positive design constansatis-
fying [bu/2bu| < b1(x)/e, V(& m,u) € 2, X R.

From now on, without losing generality, we shall assume

bi(z) > by > d.

B. Implicit Desired Feedback Control
Define vectorsty, £; and¢ as

_ - (P_l) T P
§a = |Yd> Yd>- - Yq €ER

T
éa= |:€d vfl’))ﬂ/dﬁl)] € RP*?

~ -~ 1T
E=t—ti=[6,6,....) 6)
and a filtered tracking error as
= [AT1]¢ @)

whereA = [A, A, ...,
efficient vector so thaE( ) — 0ase, — 0, (i.e.,sP71 +
Ap—1577% 4 -+ + Ay is Hurwitz).

Lemma 2.1: Defmeg“ = [51 &, ..., 5,) 1)T and functions

€amax (1) = SUPg <, </ |€s(T)] @NABe, = supr, <, |es(?)]. Then,
the following equations and inequalities hold:

C(t) =AL(t) + bes(t) ®)
0 =0+ [ Abeds ©
|e]] <koe ! (10)
IS <kollC(0)]] + i— (1) (11)

eroTi

IO ko™ (ICOI+ 5 () + 526
0 0

(12)
(€Il <€ (B) + drl[C]] (13)
Il <dil[éall + daes,,. (T) + d3 (14)
where
0 1 0
A= :
0 0 1
L—=A1 =X Ap—1
0
b= : 15
0 (15)
L1

A,—1]" is an appropriately chosen co-

t
e=MH|C(0)]| + koe™ e, (F) / Moy
JO

eMt — 1

<hoe (0 >|| + e ™ .
0

esmx (t)

<kollC(O)] + 6smx(t)-

Noting the above equatlon and that

t T,
/ e =) e | dr :/ e =) e | dr
0 0
t
+/ e
T

—Xo(t—7) |€s| dr

we have (12) as follows:

Aot A teAOTl —1
IO Shoe GO + ket e, (1)
+ koef)‘ot—e)\(ﬁ — e Be.
Ao
N eMoT
koo <||<< M+ e <T1>)
ko
+ Yl V> T (16)

From (6) and (7), we know tha}, = e, — [A0
have (13) as
A T
o

Combining (11) and (13), we arrive at inequality below

el =€+ eaf| < el + &[] + neal
<di [|€all + daes,. (1) + ds 17

withd; = 1,dy = (k‘o(l +d)\)/)\0> + 1 andd; = ko(l +
d»)||<(0)]| being positive constants. Q.ED
From (4)—(7), the time derivative of the filtered tracking error
can be written as
(P)

és = b(f/n7 ) /yd (18)

Assumption 2.4:The desired trajectory vectdy is contin-
uous and availablél¢|| < ¢ with ¢ being a known bound.

Adding and subtracting, (z)/<)e, to the right-hand side of
(18), we obtain

1" ¢. Thus, we

[&|| < teat+ IS Capn (8) + €I

+ [0AT] €

bi(z)

= b(f, s u) +v— ?es (19)

with v(&, 1) = (bi(x)/ees —y{(ip) +[0AT] £. Sincedv/ou = 0
anda[b(¢,n,u)]/ou > d,¥(£,m,u) € U, we can obtain that
a[b(&,m,u) + v]/Ou > d, and the following lemma.
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Lemma 2.2: Assume thatf(z,y) : R* x R — R is con- Therefore,VO(n) < 0, whenever

tinuously differentiablev(z,y) € R™ x R, and there exists o

a positive constant such thatd f(z,y)/dy(z,y) > d > 0,  lInll 2 1~ (dilelléall + Lq + d2Lges,. (1) + dsLe) - (29)
V(z,y) € R™ x R. Then there exists a continuous (smooth% e

function y* = g(z) such thatf(z,y*) = 0. For the case BY €N L. = A Ledz/Aa, Ly = MLedi/Aa and L =
Of(z,y)/0y(z,y) < —d < 0, ¥(z,y) € R* x R. The re- Xo(Lq+dsLe)/ M, we conclude that there exists a positive con-
sult still holds. stantTp, such that (25) holds. Q.E.D.

Proof. See [25].
Corollary 2.1: If partial derivatived[b(¢,n, u) + v]/0u >
d > 0,whered is a positive constant. Then, there exists a contii., Existence of IDFC Control
uous (smooth) function* = a¢(&, n, v) such thab(&, n, u*) +
v = 0 holds.

Il. STATE FEEDBACK CONTROL

Lemma 3.1: For system (1), satisfying Assumptions 2.1 and
2.2, there exists a compact subBgtC ¢(f2,) and a continuous
inputu* = a¢(¢,n, v) (which is trajectory-dependent) such that

) ) . forall (£(0),7(0)) € @y, the error (19) can be expressed as
If system (4) is controlled by the input the state vectay is

C. Zero Dynamics

completely unobservable from the output, then the subsystem by = _Mes (30)
9
1= q(0,1,0(0,1,/(0,))) (20) Subsequently, (30) leads thm; .. |y(t) — ya(t)] = 0
is addressed as tlzero dynamic$l], [27]. asymptotically.
Assumption 2.5:System (4) is hyperbolically minimum- Proof: Considering (19), under Assumptions 2.1-2.2, we

phase, i.e., zero dynamics (20) is exponentially stable. In ddow that there exists a desired = «°(¢,n,v) satisfying
dition, assume that the control inputis designed as a func-b(¢,7n,«) + v = 0 from Corollary 2.1.

tion of the states: € Q, and the reference signg} satisfying  Since[¢T, nT|T = &(x), the continuous function® (¢, n, v)
Assumption 2.4, and the functiaii¢, n, v) is Lipschitz ing, i.e., is also a function of andv. If the IDFC input is chosen as

:Eze exists Lipschitz constanis and L, for ¢(¢,n,«) such u*(2) = a6, m,v), 2 = [$7657V1]T €Q.c R (31)

la(&.m.w) = (0. mu)ll < Lellgll + Ly, (€ mw) € U
(21) 2 = {(renm) | € @(), Gl < c}

wherey; = —yff) + [0AT] ¢ and compact set

wherew,, = a°(0,7,v(0,7)).
Under Assumption 2.5, by the converse theorem of Lyapungien
[28], there exists a Lyapunov functidry(n) which satisfies

) ) b(&,m,u*)+v=0. (32)
aollnll® <Vo(n) < or|nl| (22) , ,

WV ) Under the action ofu*(z), (19) and (32) imply that (30)
—Q(O 7, ty) < = Aalln]l (23) holds. Asby(z)/e > 0, (30) is asymptotically stable, i.e.,

limy .o |es] = 0. Becauses™ ! + X\, _15" "2 4+ .- + )\ is

(’)Vb : . .
<Ap|[nll (24)  Hurwitz, we havdim,_, .. |y(t) — ya(t)| = 0 asymptoncally.
N It should be noticed that the above resultis obtained under the
whereoy, o2, Aa, and/\,, are positive constants. condition of(¢, 1) € ®(Q..), Vt > 0. We will specify the initial

Lemma 2.3:For the internal dynamic§ = ¢({,n,u) of  gtates such that thls condition is satisfied. It follows from (30)
system (4), if Assumptions 2.4 and 2.5 are satisfied, then th%[| . f &1/ Bacause (@)/e > 0
- 1 L]

exist positive constants,, Ly, L. andTy, such that we have|es(t)| g |es( )|. Define the following compact set:

Ol < Laes,..(t) + Lo [|€all + Le,  VE>To.  (25)
Proof: According to Assumption 2.5, there exists a Lya®o = {(5(0)777(0)) ‘ {(5777) | les ()] < les(0)], [|éal| < c}
punov functionVy (7). DifferentiatingVy () along (4) yields
. 8V
Vo(n) =2224(¢, 1, ) C @ (), (£(0),m(0)) € ‘I’(Qm)} (33)
:%q(o )+ LM (&0, u) — q(0,m,uy)].  Then, for all(é(0),n(0)) € @o, we have(¢, n) € (), Vi >
an T an T 0. This completes the proof. Q.ED
(26) Remark 3.1:In Lemma 3.1, we suppose thg, is large
Noting (21)—(24), (26) can be written as enough such that* _e_ Q,. If the region of(2, is not large _
. ) enough, some restrictions should be imposed upon the desired
Vo(n) < =Aallnll® + Ao LelInlllI€]l + Ao LqlIn]l (27)  trajectoryé, and design parameter
Noting (14) in Lemma 2.1, we have Remark 3_.2: It i§ shown from Lemma 3.1thatthe mag_ni.tl_Jde
: ) c of the desired sign&],; affects the size of the allowed initial
Vo(n) < =Adllnll state regiond,. This is reasonable because if the referefice

+Xo||nl| (d1Le ||€al| + Lg + doLees,,, . (t) + dsLe). (28) is very large and out of the regich((2,.), the compact sep,
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will become an empty set and the tracking problem cannot biere § = S(VTZ), W =W-W*andV = V — V*

solved. are defined to be the neural weights estimation ersor,=
Lemma 3.1 only assumes the existence of IDECit does diag{3], 85, ..., §} with

not provide a method to construct it. In this paper, multilayer d s (2a)]

NNs shall be introduced to construgct for achieving tracking 8 =s(0]z) = T" yi=1,2,...,1 (41)

control. @ lza=0z

) and the residual ternd, is bounded by
B. Control Structure Based on Multilayer Neural Networks

* —tisT &
Because the IDFC input*(z) defined in (31) is a continuous ldul < IV 1lp HZW s
function on the compact sél., there exists an integér(the Proof: See [25].
number of hidden neurons) and ideal constant weight matricessince the function(¢, 7, ) in (4) is nonaffine in the input,
W* andV*, such that which is difficult to be dealt with directly. By using the mean
value theory in [29], there exists)a(0 < A < 1) such that

+||W*
F

S"VT2H+||W*||. (42)

w*(z) = w*Ts (V*T ) teu(2), V2EQ,  (34)

b(f 7, u) = b (5/ m, U*) + buA (u - U*) (43)

wherez = [2T,1]7 ande,(z) represents the approximation
error. The foIIowmg assumption is made for this functiovhere
approximation. oMb (En @

Assumption 3.1:0n the compact sef)., the ideal NN by, = w (44)
weightsW*, V* and the NN approximation error are bounded a=uy
by with uy = Au + (1 — A)u*. Considering (32) and (43), we can

(W < Wiy [VF]p < 0y eu(2)] < & (35) write the error (19) as
with w,,, v,, ande; being positive constants. €y = — bi(z) es + by, (u—u"). (45)
3

The ideal constant weightd ™ andV* are defined as ] i . ]
Sinceb,,, > 0 (Assumption 2.2), the following equation holds:
(W*,V*):= arg (W/,I%}%Ielgw {Zseué)~ |WTS (VTZ) - u*(2)| bu>\1 ¢, = _b ( )b
(36) o _
whereQ,, = { (W, V) | [[W]|| < wp, |V||r < v, . The mag- Noticing Lemma 3.2, substltutlng (34), (37), and (40) into (46),

nitude ofe,, (z) depends on the choices of the numband the we obtain the closed-loop error equation

u; es +u—u* (46)

constraint sef2,,. In general, the larger the weight numband ,_;. b1( ), T T
the constraint sef?,, are, the smaller the approximation error “» Cs = bues + wrs (V ) Uy
will be. . _ W*TS (V*TZ) _ €u(2’)
Let us consider the robust MNN controller of the form b ( )
_ 1 T 17T T &i{rT =
U = Upy + Up (37) = buA<+W (S SV ) + WSV z
.12 .oa
where - {—” (HZWTS/ o ‘ $VTz ) + ks |es|} e
€
i =WT'S (VTz) (38) —eu(2) + dy (47)
, e ) . . . .
wp = — [k_p <H§WTS, ’ ZH N 1) which shall be used in stability analysis.
13

C. Robust Weight Updating Algorithms and Stability Analysis

To updating the MNN weights, the following algorithms are
used:

+ kg |es|} €s (39)

with k. andk, being positive design parametel,andV being R A AT R

the estimation of the ideal neural weigiis* andV*, respec- W=-T, [(5 -5V Z) es + 6w (1+]es]) W] (48)
tively. The first part 7'S(V7T 2) in the controller is introduced Lo [, N }

to approximate the IDFC input* to realize tracking control. V=-T W St b6, (L+]e) V (49)
The second parnt;, is a bounding control term, which is intro-\yherer,, = rT > 0,T, =TT > 0,6, > 0andé, > 0

duced to limit the upper bounds of the system states. are constant deS|gn parameters. Becdiise= W — W* and

Lemma 2.2: The first partu,,,, = W2 S(V7z) in controller V — V — V*, andW™, V* are constant vectors, it is easy to
(37) is introduced to approximate the IDFC inpiitto realize gptain that

tracking control, its approximation error can be expressed as

WTg (VTZ) T (V*Ti) W=W and V=V

s (A AT e The first terms of the right-hand sides of (48) and (49) are
=W (5 -5V 5) + W S'V'zZ+d, (40) the modified backpropagation algorithms and the last terms
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Fig. 1. Control system structure.

of them correspond to a combination @fmodification [30] Theorem 3.1:For system (1) with Assumptions 2.1-2.5 and

ande;-modification [31], which are introduced to improve the3.1 being satisfied, let the controller be given by (37) and the NN

robustness in the presence of the NN approximation errorweights be updated by (48) and (49). Then, there exist compact

should be noted that, (48) and (49) are special classes of seveeasd, and(2y, and positive constants, ¢;,, 65, *, k7, k;, and

adaptive laws proposed in [25]. The above learning algorithrifssuch that if

hal\_/e anice property as stated below. 1) allinitial stateg((0),7(0)) € ®o, (W (0), V(0)) € Qo;
emma 3.3: The updated learning algorithms (48) and (49) 2) 1> 1%, ¢ < ¢*, 8y < 8%, 6, < 65, ky > k2, ky > k7 and

guarantee thaV'(t), V (t) € L for bounded initial weights e < &*, then the trajectoryt, 1, u) of the system remains
W(0) andV (0).

_ ) ) in the compact set/ and the tracking error converges to
Proof: Choose the Lyapunov function candidate a neighborhood of the origin which depends 6p, (6,

Vo = 12WTI'W + 1/2tr{VTT;'V}. Using the ek k)
propertytr{VTzWTS'} = WT§'VTz, the time derivative of I _ _
V,, along (48) and (49) is Proof: The proof con'_[ams two steps. First, we assume that
(&,m,u) € U holds for all time so that the transformation from
Ve =—-WT (S - S”VTZ) es — WISV ze, system (1) to the normal form (4) and the NN approximation in
5 5 Assumption 3.1 are valid. With this assumption, we can prove
— (14 es|) (61,, ‘WH + Oy )VH ) that the tracking error converges to a small neighborhood of the
) ) F origin. Later, we will show that for a proper reference signal
<6 HWH —s, v ) ya(t) and suitably chosen design parametgfsy, u) do remain
- F in the compact sd if the system starts from a bounded initial

~ |12
- |es| (5111 HWH + 617

i) =
F Step 1:Consider the Lyapunov function candidate
Since|WTS| < 6,,/4||W|]% + ||S]|2/6.,, we have
L4 o ST =177 T —17;
n=3 [b 2+ WITS W+tr{V I; VH . (50)

U

i

’2 Differentiating (50) along (47)—(49), we have

e s
V}F_ bw

| | 36117
—les
) 4

i+

Vi =e, [VVT (S - S*’VTZ) +WTSVTz 4wy +dy, — gu(z)]

_b1($)62+1d(b_1 *

Because every element 6fis not larger than one, we know ) e§+WTI:}W+tr{VTI:1V}

that|S]|> < I with I being the NN hidden-layer node number. eby, 72 di
Therefore,V,, < 0 once||W||*> > 41/362 or |V ||% > 1/6u,6.,. _ 1k (e n ) Gy 1) 4k fea]] €2
Becausd, 6., andé,, are positive constants, we conclude that e \UI” F R
W(t), V(t) € Loo. Q.E.D. bi(z) , 1d(b7)) ,
The state feedback control structure is shown in Fig. 1. If the — o s + S ar s + [du — eu(2)] s
u

high-gain observer in the dashed box is switched in, we have the . .
output feedback control as will be discussed in Section IV. — 0w (L e ) WIW =6, (1 + [es]) r {V V} :
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Noticing Assumption 2.3, we obtain
bi(z)) 1 d (b;l) 2
<abw > RV a )
_ [ (=)

o 13

+ bu,
b,

Considering (42), Lemma 3.2 and the following inequalities:

)

b

~ N .12 ~ 112 9
2WTW ="+ ||| - 1w
=112 %12
> W -
Eﬂ{VTV}: V}2+HV¢2—HVﬂF
F F F
> 17)2 V2
> 7] - v
we obtain
. k n ~ 112
V, < — [—P <‘ZWTSI‘
g F
B e .
=% e+ 0 (] - 1)
5 12 .
=5 e+ 0 ([P - 171 ) + e
( WIS +wm‘$"f/T2
F
Fp 1l 12 N
<-— 2lzwTs esz+|es|va2WTS'
g F
ky .
es2+|es|wm S'vTz
13
k
+ |es| (wm +€l) - ks |es|3 - ?])682

’lH

611/' * (12 6'17 *(12
0 4 S
w = 112 5111
— 2 o [ +7|es|||w*||

PRI
7 -
F

2

—U|e
2 S

|

Further, noticing the following inequalities:

les| vm HZWTS' . <ZZlzwTgs
e

S’f/%” <z

3

el |

we have

+ G les| + B2

where
B1
B2

+ + 611/ 2 + 61)
=W + € —Wm —
D) 2
bu + 8a 2,

g m Yrm 4k

A 2
S'vTz

2 2
‘ eS +
F

2

Um

+ —wm

2
‘ + B1 |es| + B2
F

2

2

W ® +

4k,

ik,

4k

2

+ 61)

~ 1|2 671 *12
7]+ 5 tes v

Um

2

€
— U .

2

-) <o

wy

(51)

(52)

) + ks |65|} 63

(53)

(54)

(55)

(56)
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Consideringe, |31 < k,/ee?+(e/4k,)p:°, inequality (54) can
be further written as

Vi < —ks e +ﬂ (57)

where constant
f= iﬂf + P, (58)

Now define

ee_{es lea| < ﬁ} (59)
0u={ (7.7) [|¥] < /271, f } (60
G,[,:{(es,w,v) ‘k leo|® +—HWH </3}
(61)

Sinceg, 6y, 6v, €, andks, k, are positive constants, we know
that ©., ©,, and Gz are compact sets. Equation (57) shows
thatV;, < 0 once the errors are outside the compactet

in (61). According to the standard Lyapunov theorem [32], we
conclude that,, W, andV are bounded. From (57) and (59),
it can be seen thaf; is strictly negative as long as is outside
the compact sed.. Therefore, there exists a constdhtsuch
that fort > Ty, the filtered tracking erroe, converges t®.,
that is to saye, < ., with S. (6w, v, €, kp, ks) = 3/ B/ks.
Using Lemma 2.3, the internal dynamijawill converge to

0, = {n(t)

Because:(t) converges tQ3.,, es,.. () is bounded as well.
Consequently}|n|| is bounded.

Noting (9) and||e?|| < koe~*°* with constantd, > 0 and
Ao > 0. Sinceles| < B.., Vt > T, from (12), we know that

1601 < ke (I + 5

Inll < Laca, () + Lu ll&all + Lc}

Vt>Ty. (62)

k
eennx (T1)> + A_E/Bes

Vi >Ti. (63)

Sincee,, . (T1) is bounded, we know thatye=*0*(||¢(0)|| +
(eMT1/X\g)es.  (T1)) decays exponentially. Inequality (63)
implies that the tracking erra; = y — yq will converge to a
neighborhood of the origin which depends 6n (6., ¢, kp, ks).

In summary, under the assumption(6fn, u) € U, there ex-
ists a constanl” > 73 such that 1) for alt > T, the tracking
errory — y4 converges to a neighborhood of the origin which
depends ond(,, 6., €, kp, ks); 2) the internal dynamicg con-
verges t®,, for all f > To; and 3) the parameter estimate errors
W andV are bounded bg,, if (W (0),V(0)) € O,

Step 2:To complete the proof, we need to show that for a
proper choice of the tracking signal(¢) and control parame-
ters, the trajectory do remain in the compact sét. Frome, =

~ . T N
[AT 1] £ and¢ = [CT gp} , we can see tha, = e; — AT¢.
Therefore

[éo]| < @l + €] < 1+ IADICON+les(e)-
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It follows from (63) and the fact that, will converge to
Be.. we know that|[€(t)]| < kallCO)| + kufe, + ke,
Vt > Ty, with kq, = ko(1 + ||A]), ks = (ka/Xo) + 1 and
ke = kq(e*T /Xo)es,.. (T1). Hence

le@ll < ||| + neatey

< kCLHC(O)H"‘kbﬂeS (5111751)757 kp7k5)+kc+c7 vVt >Ti. (64)

We now provide the conditions which guarantées &, vVt >
0. Define the compact set

Do = {5(0) | (€1 1E®I < RallcOI)
C ol 0] <5} (69
the positive constant

¢ = sup { {1l < RallC Ol + ke + ,£(0) € @0 }

cERT

c @E} (66)

the positive constants shown in (67)—(71) at the bottom of the
page. In summary, for all initial stag0) € ®,, the desired

signal||&4]| < ¢ < ¢*, if control parameters,,, 6,, k,, ks and
¢ are chosen such thét, < 6,0, < 6, ky > ky, ks >
kX ande < €*, then the system statewill stay in ¢, for all
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conclude that all signals of the closed-loop system are bounded.
This completes the proof. Q.E.D.

Remark 3.3: Compared with the existing exact linearization
techniques and NN control methods, the proposed robust adap-
tive NN controller clearly has some intrinsic advantages. For
example, there is no need to search for an explicit controller
to cancel the nonlinearities of the system exactly. In fact, even
though the functiong (z, «) andh(z) in system (1) are known,
itis in general not possible to get an explicit controller for feed-
back linearization. In addition, the requirements of an off-line
training phase and the persistent excitation condition are not
needed any more.

Remark 3.4:1tis shown in (55) and (56) that smallgy and
(3> might be obtained by choosing a smaltgr andé,,, which
may lead to a smaller tracking error. Nevertheless, from (60) it
can be seen that smalley andé, may cause larger NN weight
errors. In this case the control signal,may be increased and
out of regionUU in which Assumptions 2.1, 2.2, and 2.5 hold. On
the other hand, i, andé, are chosen to be very large, so are
(1 andS,, which will lead to a large tracking error will happen.
Hence, the parametéy, andé, should be adjusted carefully in
practical implementations.

IV. OuTPUT FEEDBACK CONTROL

In Section lll, the system states and the time derivatives of
the outputs», &3, . .., €, are supposed to be available for feed-
back. This limits the application of the approach, because, in

time. Furthermore, because the NN weights have been proveany practical systems, only outpytis measurable. In this
bounded for any bounddd (0) andV'(0) (see Lemma 3.3), we section, adaptive NN output feedback control is investigated for

5 1= sup {m\{ausn <kal[CO)]| + FoBe. (8,0,0,0,0) + ke +c.
S,ERT
f(O) Eq)(),c < C*} C (I)E} (67)
si = sup o, [ {€llell <kl + 118, (00,8,0.0,0) ke
§,ERT
£(0) €®y, ¢ < ¢*, 8, < 5;;} c cpg} (68)
k= int Ly [ (el <balGOO)+ b, G ,0.8,0)+ ket
£(0) €B, ¢ < ¢, 6, < 65,6, < 5:;} c ég} (69)
k= it L] {Ellel <BalCOO)+ 1B, B0k ) + e+
ksERT
£(0) €Bg, ¢ < ¢, 6, < 85,6, < 6%,k > k;;}c @i} (70)
and
o = sup {e[{ el < RallCOI + o, By ) 4 ket
eER
£(0) €Bg, ¢ < ¢, 8, < 85,6, < 8%,y > KDk > k;“} c @S}. (71)
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nonaffine nonlinear systems with internal dynamics by using a
high-gain observer to reconstruct the system states.

A. High-Gain Observer

Since only the outpuy = &; is measurable and the rest of
the output derivatives are not available, we need to estimate
&,&3,...,&, to implement the output feedback control. In the
following lemma, the high-gain observer used in [27] is pre-
sented, which will be used to estimate the output derivatives of
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may find a constant* > 0 such that for alt > ¢* the
first term

1 .
— A eAt/9 [7r(0) + A~ py(0)
€

+AT2b(0) + -+ I ATy U= (0)]

in (73) is bounded byéY; for each j. Further,
since [y)| < Yj, there exist constant®;, which
is independent ofe, such that the second term

system (4).

Lemma 4.1: Suppose the system outpy() and its firstn
derivatives are bounded, so that*)| < Y}, with positive con-
stantsY},. Consider the following linear system:

efri:m_tlizll...,n—l -
€My = =M Ty — AaTpp1 — -+ — Ap_1m2 — m1 + y(t)
(72)

wheree is any small positive constant and the paramedars

to A,_1 are chosen such that the polynomial+ X;s"~* +
-+ An—18 + 1 is Hurwitz. Then, we have the following.

1)

Thk+1

= y*) = —epPt) =1,
€

oon—1

Where’l/J = m, + 5\1’/Tn,1—|-7 ey -I-/_\n,l’]Tl with l/}(k)
denoting thekth derivative ofy.

2) There exist positive constants and h;, which only de-
pending onY;,, e and);,i = 1,2, ..., n — 1 such that for
all t > t* we havelyy®)| < hy, k =2,3,...,n.

Proof. The proof can be found in [27]. For completeness,

it is given below.
1) From the last equation in (72), we have

2

T . . . < )
; = - AT — Ao — -+ — A1 — 1.

Using (72) and the above equation yields

7T . .. 3 - T - 3 ..
?Z—y:—ﬁ( n A Mot + Ao + - 4 Ap_1iy)

=—er.

Differentiating it and utilizing (72), Item 1) follows.
2) The derivatives of the vectar = [ T ]T
may be computed as follows:

2

. 1 .
wl)(t) == ATt/ {W(O) + A7 by (0) + €A™ 2by(0)
€
4eeea ej_lA_jby(j_l)(O)

1 ! ;
N _eAt/f/ ATy D (r)dr, i =1,2,...n
€ 0
(73)

where A is the matrix corresponding to the homo-

geneous part of (72) and independent gf and
b = [0 0

Y; > 0 such thafy?)| < Y;. Then, for anys > 0, we

1]". Since¢ belongs to the com-
pact set®., and « is bounded, there exist constants

1/eeA4/) ¥ eA/Vpy @) (7)dr in (73) is bounded by
D;Y; for eachy. Fixing an arbitrarily smalb*, then for
t > t*, we havey)\9)| < h; whereh; = B(D; + 6*)Y;
with B the norm of the vectof1 ); A1)
As D;, 6*, Y;, and B are independent of, the proof is
completed. Q.E.D

B. Adaptive Neural Control by Output Feedback
Having the observer (72), we define

S Ty T3 w, 1T
5’:[&’1,—,—2----7 pfl]
€ € €
~ ~ T .
ng_fd:[fl_y(i;?_ydv
T . Tp (p—1)

~ Y4
) . T
z= [fT,n és, 1 1} =Z+ €z
where
T

U= [—l/; —¢<3>,...7—1/;<ﬂ>}
€9 :[/\2 )\3....7)\p_1,1]\p
20 =1[0,97,0, e, ATT,0]"

Lemma 4.1 shows that)(*)| are bounded by the constants
hx, hencel, eq andz, are all bounded. LetV andV be the
estimates ofi/* and V*, respectively. The following lemma
presents the property of MNN’s when the input vectois
replaced by the estimation

Lemma 4.2: The NN estimation error can be expressed as

WTs (f/T%) —w*Ts (V*Tz)

=w* (S’o — S‘Qf/?%) +WTSVTz +d, (74
whereW = W - W* V = V -V* §, = S(VT3),
Sy = diag{841, 840, .., 8} with &, = /(0] 2) =

d[s(z4)]/dza|., =47z, 1 = 1,2,...,1, and the residual ternd,
is bounded by
So

\du| < U H%WTS*; S;VT%H) . (75)

+|

el
F

Proof: The proof can be obtained by following the similar
procedure in Lemma 3.2. It is omitted here.
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C. Controller Structure and Stability Analysis Proof: The proof contains two steps. We first assume that
(¢,m) € @, holds for all time, which ensures that NN approx-
imation (34), Assumptions 2.1, 2.2, and 2.3 are valid. In this
U = Upn + Uk + Up (76) case, we prove the tracking error converging tosam)¢neigh-
borhood of the origin. Later, for a proper choice of the reference
) . signaly,(¢) and controller parameters, we show ttfaty) do re-
Unn =WTS (VTg) (77)  main in the compact sét, for all time if the system starts from
Ky (1]2cs a2 a bounded initial set.
Up = — [? ( z S,V ZH + 1) Step 1:Consider the Lyapunov function candidate
+ Ey ([ttnn| + 1)} e (78) Vi= % brle2+ WIT'W +tr {VTF,glv}} (83)
with ¢, k,, k, > 0 being the constant design parameters. The Differentiating (83) along (82), we have
above controller contains three parts for different purposes. The . bl( ). 2 T oo 2
first partu,,, is introduced to approximate the IDFC inpuit Vi= by €5 + W (5 - S v )
for achieving adaptive tracking control. The second parts + WTS{,VTzeS
a priori control term based on a nominal model or past control
! . 1d (b)) »
experience to improve the control performance. If no knowledge +upes + [dy — eu(z)] €5 + = —2>¢
for the plants is availabley; can be simply set to zero. The ~ . ~ 2~ dt
. . . . . . Tpr—1 Tr—1
third partu, is a bounding control term, which is applied for + WD, W + tr {V L, V} :
limiting the upper bounds of the system states such that the NN
approximation (34) holds on the compact et
The MNN weight updating laws are taken as

The output feedback controller is designed as follows:

where

Noting WT S/ VT% = tr{VTZWTS'}, é, = e, + eeo, (79),
(80), we obtam

W= L[ (8- 5075) e+ b, 1 W] 79) = |Bpnny Dol e, e,
. U
V=—1, FWTSe+6,(1+|e]) V 80 P S

[T o, 1t e V] (80) — (1 Jeal) (50 W W + b,tr {71V })

wherel', = '’ > 0,T, =TI'Y > 0,6, > 0ands, > 0
are constant design parameters. The above learning algorithms

have a nice property as stated below. inceb,
. . > 0 and|b,/(2b,)| < ¢ (Assumption 2.3
Lemma 4.3: The updated learning algorithms (79) and (8 e know that|b7, |/|(2b/2< ) ! b:( )1/(51;)/ (Usmg ZIF/)VTW >)

uarantee thal (¢ , V(t) € L. for bounded initial weights |+ . N2 .
%/(0) andV’(0). 010 TS W2 — w2 and2tr {VTV} > V|3 — |V*]|%, we have

~eeo [WTSQVT,% + W7 (s - S;VT,%)} . (84)

. i i i 2
Proof..The proof can bg obta_lned by following the similar Vi < upe. — ; )WH Tk
procedure in Lemma 3.3. It is omitted here.
Considering (43)—(46), the error system can be written as S, . w2
" “2 e (HVHF V) el (il + el
€y = — ! es + by, (u—u"). (81)
g ~ AR T A
Applying (34), (74), and (76), we obtain +¢eo HVHF WESH|
- _ bi(z), 4 =T (& &1 YT 2
bitee = =2 biles b W (S, — ,V72) ] (] + |52 )]_
+WTS'VTZ +dy —eu(z), V2 € Q.. (82)

nsidering||W*|| < W, [V*|lF < v, (75) and (78), and

Based on (82), closed-loop stability results are summanzgI
e following inequalities:

in Theorem 4.1.

Theorem 4.1:For system (4) with Assumptions 2.1, 2.2, 2.3, ¢ |eol HVH QWTS,, 2 SWT S 2
2.4 and 2.5 being satisfied, high-gain observer (72), controllef '“° ° °llp
(76) and adaptive laws (79) and (80), there exist a compact set 2
o C ®,, and positive constants, c*, ¢y, 05, ky, €* ande”, HWH + 760
such that for any boundéd’ (0) and V' (0), if TR e

1) the initial statg£(0),7(0)) € ®o; € leol HWH ‘ SV 2 HWH + 760 SvE

2) the observer (72) is turned on at titfein advance;
3) ¢ < c* ks > kX ande < €
then all the signals in the closed-loop system are bounded, , | H%VVTS’; les| <
the system statéf,n) € ®,,Vé > 0, and the tracking error F
converges to a neighborhood of the origin which depends on
(ks, €).

we obtain (85), shown at the bottom of the next page. Since

kpe? || masll?2 €2
S —W Sl m
2 HZ ollp * 2k,

2 . ew?n
2k,

N

les] < o
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TABLE |
VARIABLES AND PARAMETERS OF THECSTR &STEMS
t=t g} dimensionless time
T =gt dimensionless composition of reactant A
f
Ty = C%’— dimensionless composition of reactant B
f
T3 = c%c_ dimensionless composition of product C
f
u= ggf dimensionless control input
¢ = ’f}ﬁ Dambkholer number of the first-order reaction A — B
k2VC .
%ﬂ Damkholer number of the first-order reaction A < B
k3VCy

c3 = —f— Damkholer number of the first-order reaction B — C

PPN, k 20 a2 2
wm‘S(’,VTZ _—;es ‘S,')VTZ +—€;€m
€ P
k,e2  ec?
< P-s !
lea]] fes] < i +—kp
bw o By o\ _kpe2 € (6w 5 2
A Tw Jv < s = w2 v 2
Ies'(zwm 2 'm) ST T\ e T,
w

(85) can be written as

Vi

< —k—p i—i— epe
>~ c 2 €€0€E;s
a2
: HzWng
F
— ks |65| (|€s| - E|60|) <|Unn| + 1)
<6 + — N +e<5w |e0|>
€ ce?
. 61) e ‘511 _l
+2< —i—kp+e Ieo|>v + 5
e (6w 5 b5 5\’
Tk (T”m* z“m)

1 2 1
+€2e%<26v ‘

S'vTz

2
+1

2
|

A EASE

+_

2 1
F by ’

)

(86)
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rH)

It follows from —eege, < e2/4 + €2ef that

- k,e2
V< - 2=
L= 4&‘(

— ks Iesl(lesl—fleol)(lunn|+1)
((5 +k +66w |60|)

& 6512

1
+2<5 +k + €by Ieo|> kp
Ry L ’
ky g m
k, 1 2 (k1
<5+26v> 0F+<6+§w>
. 2
(1)
€
kpe?
) - (% -0)
GV

o) (5

Aol ]2 Ay AT
WTSs! S'vTz
F

2.2
+ €7¢eg

pr T n
o S,V z

2
|

amoa, |12
WS
F

(%
(% [sv)

S|65|(|65| —€leo]) (Junn| +1) (87)

o

P?‘

Now, let
[))P (5 €, 611; (5,,,k
{ 650 551 652 }
maxq 24/ ——, 24/ ——, 24 [ 7 €leq]
and define

O, = {es | |es| < Be, } (90)

amoa, |12
WTS!
F

9

Vl S — €5 (65 +660) [kl<

+ (1 +1és)) (%“’w +6—v >+|es| <vm

2 2

swTS S,

L
Ouw

1
2 2
+ € 60<25v

1
+ —

a a2
S'vTz

)+ 1)

S'vTz

TS
F

2
) : (85)

S'vTz
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Fig. 2. ¢, follows &4 (“- -") (state feedback).

Sinced., 6y, Um, Wm, kp, ks, €, ande are positive constants andUsing (34), (76)—(78), we have
eo ande; are bounded, it follows théft. . is also bounded, which

means tha®. is a compact set. From (87)~(90), it is shown bi(z) ,

thatV; is strictly negative as long as is outside the se®.. b= € €s

Therefore, the filtered errat, is bounded, and there exists a

constantl; > ¢* such that fort > T3, the filtered tracking + by, | —ks (|unn| + 1) (es + eeo)

errore, converges t®. which is a neighborhood of the origin
that depends ore(e, 0., 6y, kp).

The mapping ok, = [AT 1] £ can be expressed in state space
eqn (9). The solution fo¢ can be written ag(t) = ¢4*¢(0) +
fot eAt=Tpe_dr. It follows that

+ Uy — WS (V*TZ) — Eu(z)] €s

bu, k
— 2 Pe (es+ €ep)

R n 2 R 2 PPN
EWTS! F+‘So +‘S;VT2

16 < KollC(O) et .(

2
¢ +1>. (94)
+ko / e e (7)) dr. (91)

0

Since every element ¢f(V** z) is not larger than one, we know

Becausee,(t)| < .., Vt > Ty, from (12), we have that
AT v «T — < * «T — < )
MWK%W%MW+%T%JM] wets (vie) < weis (V)| < wavi - o9)
ko Therefore
o Be, VE2 T (92)
0

‘./bg_ bl(x)eg_buAks |unn|+1 |es|
Since e (t) is bounded, we know thakoe*’\ot[HC(O)H + €

eAOTl//\oeSnm(Tl)} decays exponentially. Inequality (92) _ [9|es| |+ wi VI a1
implies that the tracking erraf; = y — y,4 will converge to a 10 1 <|u I+ 1)
neighborhood of the origin which depends ene( ¢.,,, 6., k;). s

Step 2:To complete the proof, we need to show that for a bk
proper choice of the tracking signgi(¢) and control parame- - % les| (Jes| — €leal)
ters, the trajectory do remain in the compact sé. Consid- ) ) )
ering a positive functiolt, = ¢2 /2 and controller (76), the time . <HZWTS‘/’ n ‘ s+ ) g(/)f/ngH n 1)
derivative ofV}, along (81) is F

_ les|
RGN S RS (93) = b el ( ro — cleol) {fnnl + 1)
9



912

0.08 - -

0.06 -

0.04 -

0.02

-0.02

—0.04F - -

—0.06F -

—o0.08F--------

IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

150 : B P :
0
% é 1lo 1I5 2'0 2.5 3Io 3l5 410
Fig. 4. Internal dynamicg (state feedback).
since  (Jtnn| + win VI + 1))/ (ks(|tnn] + 1)) < It follows from  (91) and  (97) that

1/k8(wm\ﬂ+ lel] + 1), by, > 0andby(x)/e > 0, itis shown ||C()|| < ko [||((0)|| + e*OTT/)\oeSnm(TT)] +ko/MoRo(e, ks),
thatV, < 0 onceles| > Ry(e, ks) with

10
Ry (e, ks) = max{lOe leol, ok (wm\/i—i— lel] + 1) }

We know thatifles(0)| < Ro(e, ks), then there exists a constanwith &, =

T, > 0, such that

les(t)] < Ro (e, ks)

Frome, =
es — AT¢. Therefore

vt > T,.

(96)

(97)

[AT 1] € andé = [CT ép:|T, we can see that, = ®o:=

[€]| < @i+ [&®] < 1+ AN+ lea(o)

Vvt > T,.. Hence

el <|

£(

H|| + el

<Ea||CO)]| + ks Ro (€, ks) + ke + ¢,V > 0 (98)

ko(L + Al ke

= ko/Xo + 1 and

ke = kqee*T /Xoes. . (T,). We now provide the condi-
tions which guaranteese ®,, V¢ > 0. Define the compact set

{5(0) ‘ {§| €@ < ka,IIC(O)II}

C%JMW<&@@%(%
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Fig. 5. u follow IDFC u, (- -") (state feedback).

(o] 5 40

Fig. 6. NN weight||1/|| (state feedback).

the positive constant .
"= sup €| &€l < KallCO) + ko Lo (€, ks) + ke

e€ERt

cERT

S — {c\ {u lell <ElICO] + e +c. } }
+¢,€(0) € Dg,c <" ks >kl p C Pep. (102)

£(0) e%} - @5} (100)

In summary, for all initial stat€(0) € ®,, the desired signal
l€a|l < ¢ < ¢, if control parameters, ande are chosen such
the positive constant thatk, > k¥ ande < €*, then the system statewill stay in
@ for all time. The boundedness gfguarantees that the ob-
o s i i i server staté is bounded (see Lemma 4.1). Since the NN weights
he = kslél}g+{ks {ﬂ €l < FallC (O} + Ko o (0, K ) have been proven bounded for any boundi&¢0) and V(0)
(see Lemma 4.3), we conclude that all signals of the closed-loop
+ ke +¢,£(0) € g, c < c*} C ‘I’&} (101) system are bounded. This completes the proof. Q.E.D.
Remark 4.1:In the adaptive NN controller (76), two addi-
and tional control terms, the bounding control teapand the prior
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Fig. 8. ¢ follows &4 (- -") (output feedback).

control termuy, are provided. The first one can be viewed as @stimated state errors might be very large in the initial transient
supervisory control, which is introduced for limiting the uppeperiod. If the observer is turned on at tintebefore the con-
bounds of the system variables such that @, holds. The troller is putinto operation, Lemma 4.1 guarantees that the state
second one provides a chance that control engineers can estimationr;; /¢* —*) is bounded by the constatit;, which
conventional techniques to design an initial controller and themly depends orY;, € and ); and, therefore, the peaking of
add the adaptive NNs to work in parallel to achieve high trackirthe controller can be avoided. Another method to overcome the
accuracy. From (36), it can be seen that the clageandu* peaking problem is to introduce an estimate saturation or con-
is, the smaller the ideal weight* and V* will be. Consid- trol input saturation [33]-[35]. Thus, during the short transient
ering (88)—(90), one can see that smalliét andV™* will lead period when the state estimates exhibit peaking, the saturation
to smaller output tracking error. Thereforeyjf is designed ad- prevents the peaking from being transmitted to the plant.
equately, the control performance can be improved. On the other
hand, even thoughy is inadequate, the use of the above adap-
tive NN controller still results in a stable tracking.

Remark 4.2:1n Theorem 4.1, it requires that the observer In this section, a practical isothermal continuous stirred tank
(72) to be turned on at time' in advance. This is because theeactor is simulated to illustrate the proposed state feedback and
high-gain observer may exhibit a peaking phenomenon and th&put feedback controllers.

V. SIMULATION STUDY
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Fig. 9. &, follows &>, (- -") (output feedback).
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Fig. 10. Internal dynamics (output feedback).

In [8], we have showed the effectiveness of adaptive NN con-Consider a class of multicomponent reactidn= B —
trol for a class of nonaffine nonlinear systems without zero dy- taken place in a CSTR [9]. The output of the process is the
namics both theoretically and numerically. Though it is easyoncentration of”' and the manipulated variable is the molar
for us to cook up a nonaffine nonlinear system with zero dyeed flow rate of B, Ngr. A mass balance gives the modeling
namics, it is more meaningful to work on physical models afquations
real systems. Owing to the difficulty in finding a practical non-

affine nonlinear system with zero dynamics, an affine nonlinear dC 4 )
system with zero dynamics is used here to verify the effec- VW =F (CAf - CA) —VEk1Ca + Ve Cp
tiveness of the proposed controller. The reasons are as follows: dCp ) )

1) for this affine CSTR model, the IDFC controller can be com- VW =—FCp+VkCp —VksCp + Npr
puted, thus, we can verify the effectiveness of the proposed con- dCc 9

trollers; 2) although this is an affine system, it is also a special ar FCc +VksCh

kind of nonaffine system; and 3) itis a practical physical system. y =Cc.
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With the dimensionless variables given in Table |, we can obtaamd a temporary variablg, = [(1 + ¢1)& + & — 1]/c2 the

the dimensionless state—space model description system can be transformed into
- oo & =6
r1 =1 —T1 —C1T1 T C2T .
. S’ ) §2 =fo (€1,€2) + g0 (&1,62) u
To = — T2+ C1X1 — CaXx5 — C3T5 + U .
- 2 n=-—n+csf
I3 = T3 + C3To y :fl (103)
y =h(z) = x1.

Wherefo(&,fz) = 20162\/%51 — (Cl + 1)52 — 262[1 =+ (Cg +
Wil fi andgo(€1,€2) = 2caV/Fr.

. . . . C
Itis gasy_to check that the relative degree of this system is é'Assuming the Damkholer numbers are chosen as follows:
By define diffeomorphism

c1 = 20, co = 0.1 andes = 10. Furthermore, considering
the operation range af; andzs, Assumption 2.2 holds. Thus,

&1 =11 the existence of the IDFC controller is guaranteed, which is also
& =1 — 21 — 121 + o1 verified in the simulations.
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Fig. 13. NN weight| V]| » (output feedback).

The control objective is to make the concentratidnack the In this part, the proposed high gain observer based output feed-
set-point step change signaj(t) = 0.1 £ 0.02. In order to back control method is applied to the same CSTR system in state
obtain a smooth reference signal, a linear reference modefasdback control. The closed-loop system structure is shown in
used to shape the discontinuous reference signal for providifig. 1. Assume that statg is unavailable.
the desired signalg;. The following reference model is to be The control input is: = wu,,,, + up + ug With

implemented: . .
i =W (V7%)

yals) _ w2
r(5) 52+ 20nwns + w2 B lk_p< g 3 ‘ Gors 2+1>
where the natural frequeneay, = 5.0 rad/min and the damping c F
ratio¢,, = 1.0
State Feedback ControlThe closed-loop system structure is + ks | Junn| +1
shown in Fig. 1. When all the system states are available, the L =0
proposed state feedback control method is applicable. Control"
input isu = ., + up, With wherez — [577]7657’/1]T:Z = [T 1]T andv;, = —ijj+ {AOT] g
tUnn =WTS (VTE) W andV are tuned by update laws in (79) and (80). It should be

) noted thatt = [¢1, &) replacest = [¢1, )7 (state feedback

+ 1) + ks |es @ es control) here, becausg is not available. The high gain observer
is applied to estimaté,.

Simulation parameters are the same as those used in state

wherez = [¢,n,e.,m]7, 2 = [, 1]7 andvyy = —j + e the :
h feedback control. For the high gain observer used, its param-
T
[OA ] €. W andV’ are tuned by update laws in (48) and (49). ‘eter are chosen as follows:= 0.01; the initial observer states

Simulation parameters are chosen as follows: neural num
I = 500; by(x) = 10;¢ = 0.1; Ay = 70; ¢ = 0.01; ky Ernldg 0] = ]06 [0,0; the initial system states; (0) = 0.12
5(0) =

P . T _ > _ . _ =) _ .
(ll'l’ﬁp ’_O'OF‘OL—W?)((()))S_stlgg]])inTtia(:’siZtu; :Sré ﬁ’ 0_120.a2;1)éi Simulation results are shown in Fig. 8-13. We can see that
f“’ _Od(') e = 009 o the output follows the desired trajectories. The control input
S o%lows the IDFC. The internal dynamics and neural weights

Simulation results are shown in Figs. 2—7. We can see th
the output trajectory follows the step changes of referenge. all bounded. Bug; does not follow the desired signgl,

signal. Meanwhile, the derivative of outpiitalso follows the veéry well. Furthermore, oscillation appear in control and output
. X . rajectories.
reference signaj,. Internal dynamics and NN weights are alf
bounded. It should be noted that the control input follows the
ideal IDFC control trajectory, which verifies the existence of
the IDFC controller. In this paper, we have presented state feedback and
Output Feedback ControlWhen system states are not availeutput feedback control scheme for a class of single-input-
able, the high gain observer can be used to reconstruct theingle-output nonaffine system with zero dynamics. Its zero

S'VTz

|

n ~ 112
up = — |:k—p (HZWTS,
€ F

VI. CONCLUSION
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