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Neural-Network Control of Nonaffine Nonlinear
System With Zero Dynamics by State and

Output Feedback
Shuzhi Sam Ge, Senior Member, IEEE,and Jin Zhang

Abstract—This paper focuses on adaptive control of non-
affine nonlinear systems with zero dynamics using multilayer
neural networks. Through neural network approximation,
state feedback control is firstly investigated for nonaffine
single-input–single-output (SISO) systems. By using a high gain
observer to reconstruct the system states, an extension is made
to output feedback neural-network control of nonaffine systems,
whose states and time derivatives of the output are unavailable.
It is shown that output tracking errors converge to adjustable
neighborhoods of the origin for both state feedback and output
feedback control.

Index Terms—High-gain observer, neural networks, nonaffine
system, output feedback control, zero dynamics.

I. INTRODUCTION

I N RECENT YEARS, control system design for complex
nonlinear systems has attracted much attention. Many re-

markable results in this area have been obtained, including feed-
back linearization techniques [1], adaptive backstepping design
[2], neural-network (NN) control [3], [4] and fuzzy logic con-
trol [5]. Most of these researches are conducted for systems in
affine form. Based on differential geometry theory which is a
very useful analytical tool for nonlinear control system design,
several adaptive schemes have been developed in dealing with
the problem of parametric uncertainties [6], [7] for affine non-
linear systems. But there are some practical systems, such as
chemical reactions [8], their input variables cannot be expressed
in an affine form. Because the input does not appear linearly,
which makes the direct feedback linearization difficult, control
system design for nonaffine nonlinear systems are not an easy
task.

Zero dynamics exist in many practical systems, including
isothermal continuous stirred tank reactors (CSTR) [9], field-
controlled dc motors [10], controlled van der Pol equation [11],
aircraft trajectory tracking control [12], and others. It is nec-
essary to investigate their influence on control system design.
Zero dynamics play an important role in the areas of modeling,
analysis, and control of linear and nonlinear systems. For linear
systems, internal dynamics are defined to be the states that are
not observable after a Lie derivative coordinate transformation
[13]. By keeping the system output at zero, we obtain the zero
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dynamics. The stability of the internal dynamics is simply de-
termined by the locations of the zeros, and the stability of zero
dynamics implies the global stability of the internal dynamics.
For nonlinear systems, intuitions for linear systems are used to
define zero dynamics of nonlinear system. They are defined to
be the internal dynamics of the systems when the system output
is kept at zero. However, unlike the linear case, no results on the
global stability or even large range stability can be drawn for
the internal dynamics of nonlinear systems and only local sta-
bility is guaranteed for the internal dynamics even if the zero dy-
namics are globally exponentially stable. The zero dynamics of
nonlinear system are an intrinsic feature of a nonlinear system,
which do not depend on the choice of the control law or the de-
sired trajectories when they are represented in a normal form
where the control input does not explicitly appear in the in-
ternal dynamics [11], [13]. But sometimes it is difficult to ob-
tain the normal form because of the difficulty in constructing
the transformation functions. With control inputappears in
the internal dynamics, different forms may exist [1]. It is not
difficult to arrive at similar conclusions and properties as those
in a normal form. Much research work has been carried out for
systems with zero dynamics [14]–[18].

Recently, NNs have been made particularly attractive and
promising for applications to modeling and control of nonlinear
systems, owing to its universal approximation abilities, learning
and adaptation, parallel distributed abilities. The feasibility of
applying NNs to model unknown functions in dynamic systems
has been demonstrated in several studies [19], [20]. From these
works, it has been shown that for stable and efficient online
control using the backpropagation (BP) learning algorithm, the
identification must be sufficiently accurate before control action
could be initiated. In practical control applications, it is desir-
able to have systematic methods of ensuring the stability, ro-
bustness, and performance properties of the overall system. Re-
cently, several good NN control approaches have been proposed
based on Lyapunov analysis [3], [4], [21], [22]. One main ad-
vantage of these schemes is that the adaptive laws are derived
based on Lyapunov synthesis, therefore, guarantee the stability
of the closed-loop systems. However, they can only be applied
to relatively simple classes of nonlinear plants in affine forms
[3], [4]. For NN control system design of general nonlinear sys-
tems, several researchers have suggested to use NNs as emula-
tors of inverse systems. The main idea is that for a system with
a finite relative degree, the mapping between a system input and
the system output is one-to-one, thus allowing the construction
of a “left-inverse” of the nonlinear system using NN. Using the
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implicit function theory, the NN control methods proposed in
[20], [23] have been used to emulate the “inverse controller”
to achieve the desired control objectives, though no rigorous
proof was given in [23]. Based on this idea, adaptive control with
rigorous analysis has been investigated for nonaffine nonlinear
system by using multilayer NNs in [24], [25] and was applied
in [8]. None of the above works considered the zero dynamics,
though it plays an important role in nonlinear system control.

In this paper, we are interested in how to control the
single-input–single-output (SISO) nonaffine nonlinear system
with zero dynamics using multilayer NNs. The problem is not
only academically challenging but also of practical interest.
Academically, it is very much involved and tedious to extend
the results in [24], [25] for nonaffine nonlinear SISO system
to nonaffine nonlinear system with zero dynamics. In practice,
there are indeed systems that have zero dynamics which include
certain types of CSTR systems [9], field-controlled dc motor
systems [10] and others. In this paper, based on the implicit
function theorem, multilayer NNs are used to approximate
the implicit desired feedback control. For the system’s zero
dynamics, we first assume that the zero dynamics are min-
imum-phase, i.e., zero dynamics are exponentially stable, then
under the Lipschitz condition assumption, by using converse
Lyapunov theorem, we can show that the system’s internal
states do remain in a compact set.

The main contributions of this paper are: 1) the proof of the
existence of implicit desired feedback control based on implicit
function theorem; 2) state feedback control for nonaffine non-
linear system using NNs; and 3) observer-based NN output con-
trol for nonaffine nonlinear system. It should be noted that, al-
though the control schemes are developed for nonaffine systems
with zero dynamics, they also can be applied to affine system
without zero dynamics, affine system with zero dynamics and
nonaffine system without zero dynamics, assuming all the as-
sumptions are satisfied. There is no doubt these kinds of sys-
tems cover a wide class of practical processes.

This paper is organized as follows. In Section II, by using
Lie derivative, the general form of the SISO nonaffine system is
transformed into a normal form in the new coordinates. Then the
existence of implicit desired feedback control (IDFC) is proved
under some mild assumptions. The state feedback control and
the output feedback control are presented in Sections III and
IV, respectively. A practical CSTR process simulation shows the
effectiveness of the proposed control methods.

II. PROBLEM STATEMENT

Consider SISO nonaffine system

(1)

where is the state vector, is the input, and
is the output. The mapping is a partially
unknown smooth vector field and is a partially
unknown smooth function, the degree of uncertainties will be
explained later. The control objective is to design a controller
such that the system outputfollows the desired trajectory .
The main difficulty of this control problem is that the system

input does not appear linearly, which makes the direct feed-
back linearization difficult/impossible.

A. System Transform via Lie Derivative

Let denote the Lie derivative of the function with
respect to the vector field as

Higher order Lie derivatives can be defined recursively as
, .

Let and be two compact sets such that
and . System (1) is said to have a strong relative

degree in if there exists a positive integer
such that

(2)

for all [26].
Assumption 2.1:System (1) possesses a strong relative de-

gree , .
Define , . Under Assumption

2.1, it was shown in [1], [6] that there exist other functions
, which are independent of, such that the

mapping

(3)

has a Jacobian matrix which is nonsingular for all .
Therefore, is a diffeomorphism on . By setting

system (1) can be transformed into a normal form in the new
coordinate as follows:

(4)

where

with the compact set being defined as

Define the smooth function

(5)

According to Assumption 2.1, it can be shown that

which implies that the smooth function is strictly either pos-
itive or negative for all .
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Assumption 2.2:There exists a smooth function and a
positive constant , such that holds
for all .

Remark 2.1:From (5), we know that can be viewed as the
control gain of the normal system (4). Assumption 2.2 means
that the plant input gain is bounded by a positive function of

, which does not pose a strong restriction upon the class of
systems. In the following design procedure we only need the
existence of Assumption 2.2, and function is not required
to be knowna priori.

Assumption 2.3:There is a positive design constantsatis-
fying , .

From now on, without losing generality, we shall assume
.

B. Implicit Desired Feedback Control

Define vectors , and as

(6)

and a filtered tracking error as

(7)

where is an appropriately chosen co-
efficient vector so that as , (i.e.,

is Hurwitz).
Lemma 2.1:Define and functions

and . Then,
the following equations and inequalities hold:

(8)

(9)

(10)

(11)

(12)

(13)

(14)

where

...
...

...
...

... (15)

with constants , , , ,

, and .
Proof: Considering (4) and (6), (8) and (9) are apparent.

From linear system theory, (10) can be established easily.
Considering (9), we can prove inequality (11) as follows:

Noting the above equation and that

we have (12) as follows:

(16)

From (6) and (7), we know that . Thus, we
have (13) as

Combining (11) and (13), we arrive at inequality below

(17)

with , and
being positive constants. Q.E.D

From (4)–(7), the time derivative of the filtered tracking error
can be written as

(18)

Assumption 2.4:The desired trajectory vector is contin-
uous and available, with being a known bound.

Adding and subtracting to the right-hand side of
(18), we obtain

(19)

with . Since
and , , we can obtain that

, and the following lemma.
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Lemma 2.2:Assume that is con-
tinuously differentiable , and there exists
a positive constant such that ,

. Then there exists a continuous (smooth)
function such that . For the case

, . The re-
sult still holds.

Proof: See [25].
Corollary 2.1: If partial derivative

, where is a positive constant. Then, there exists a contin-
uous (smooth) function such that

holds.

C. Zero Dynamics

If system (4) is controlled by the input, the state vector is
completely unobservable from the output, then the subsystem

(20)

is addressed as thezero dynamics[1], [27].
Assumption 2.5:System (4) is hyperbolically minimum-

phase, i.e., zero dynamics (20) is exponentially stable. In ad-
dition, assume that the control inputis designed as a func-
tion of the states and the reference signal satisfying
Assumption 2.4, and the function is Lipschitz in , i.e.,
there exists Lipschitz constants and for such
that

(21)
where .

Under Assumption 2.5, by the converse theorem of Lyapunov
[28], there exists a Lyapunov function which satisfies

(22)

(23)

(24)

where , , , and are positive constants.
Lemma 2.3:For the internal dynamics of

system (4), if Assumptions 2.4 and 2.5 are satisfied, then there
exist positive constants , , and , such that

(25)

Proof: According to Assumption 2.5, there exists a Lya-
punov function . Differentiating along (4) yields

(26)

Noting (21)–(24), (26) can be written as

(27)

Noting (14) in Lemma 2.1, we have

(28)

Therefore, , whenever

(29)

By letting , and
, we conclude that there exists a positive con-

stant , such that (25) holds. Q.E.D.

III. STATE FEEDBACK CONTROL

A. Existence of IDFC Control

Lemma 3.1:For system (1), satisfying Assumptions 2.1 and
2.2, there exists a compact subset and a continuous
input (which is trajectory-dependent) such that
for all , the error (19) can be expressed as

(30)

Subsequently, (30) leads to
asymptotically.

Proof: Considering (19), under Assumptions 2.1–2.2, we
know that there exists a desired satisfying

from Corollary 2.1.
Since , the continuous function

is also a function of and . If the IDFC input is chosen as

(31)

where and compact set

then

(32)

Under the action of , (19) and (32) imply that (30)
holds. As , (30) is asymptotically stable, i.e.,

. Because is
Hurwitz, we have asymptotically.

It should be noticed that the above result is obtained under the
condition of , . We will specify the initial
states such that this condition is satisfied. It follows from (30)

that . Because ,
we have . Define the following compact set:

(33)

Then, for all , we have ,
. This completes the proof. Q.E.D
Remark 3.1: In Lemma 3.1, we suppose that is large

enough such that . If the region of is not large
enough, some restrictions should be imposed upon the desired
trajectory and design parameter.

Remark 3.2: It is shown from Lemma 3.1 that the magnitude
of the desired signal affects the size of the allowed initial

state region . This is reasonable because if the reference
is very large and out of the region , the compact set
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will become an empty set and the tracking problem cannot be
solved.

Lemma 3.1 only assumes the existence of IDFC; it does
not provide a method to construct it. In this paper, multilayer
NNs shall be introduced to construct for achieving tracking
control.

B. Control Structure Based on Multilayer Neural Networks

Because the IDFC input defined in (31) is a continuous
function on the compact set , there exists an integer(the
number of hidden neurons) and ideal constant weight matrices

and , such that

(34)

where and represents the approximation
error. The following assumption is made for this function
approximation.

Assumption 3.1:On the compact set , the ideal NN
weights , and the NN approximation error are bounded
by

(35)

with , and being positive constants.
The ideal constant weights and are defined as

(36)
where . The mag-

nitude of depends on the choices of the numberand the
constraint set . In general, the larger the weight numberand
the constraint set are, the smaller the approximation error
will be.

Let us consider the robust MNN controller of the form

(37)

where

(38)

(39)

with and being positive design parameters,and being
the estimation of the ideal neural weights and , respec-
tively. The first part in the controller is introduced
to approximate the IDFC input to realize tracking control.
The second part is a bounding control term, which is intro-
duced to limit the upper bounds of the system states.

Lemma 2.2:The first part in controller
(37) is introduced to approximate the IDFC input to realize
tracking control, its approximation error can be expressed as

(40)

where , and
are defined to be the neural weights estimation error,

with

(41)

and the residual term is bounded by

(42)

Proof: See [25].
Since the function in (4) is nonaffine in the input ,

which is difficult to be dealt with directly. By using the mean
value theory in [29], there exists a( ) such that

(43)

where

(44)

with . Considering (32) and (43), we can
write the error (19) as

(45)

Since (Assumption 2.2), the following equation holds:

(46)

Noticing Lemma 3.2, substituting (34), (37), and (40) into (46),
we obtain the closed-loop error equation

(47)

which shall be used in stability analysis.

C. Robust Weight Updating Algorithms and Stability Analysis

To updating the MNN weights, the following algorithms are
used:

(48)

(49)

where , , and
are constant design parameters. Because and

, and , are constant vectors, it is easy to
obtain that

and

The first terms of the right-hand sides of (48) and (49) are
the modified backpropagation algorithms and the last terms
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Fig. 1. Control system structure.

of them correspond to a combination of-modification [30]
and -modification [31], which are introduced to improve the
robustness in the presence of the NN approximation error. It
should be noted that, (48) and (49) are special classes of several
adaptive laws proposed in [25]. The above learning algorithms
have a nice property as stated below.

Lemma 3.3:The updated learning algorithms (48) and (49)
guarantee that , for bounded initial weights

and .
Proof: Choose the Lyapunov function candidate

. Using the
property , the time derivative of

along (48) and (49) is

Since , we have

Because every element of is not larger than one, we know
that with being the NN hidden-layer node number.
Therefore, once or .
Because, and are positive constants, we conclude that

, . Q.E.D.
The state feedback control structure is shown in Fig. 1. If the

high-gain observer in the dashed box is switched in, we have the
output feedback control as will be discussed in Section IV.

Theorem 3.1:For system (1) with Assumptions 2.1–2.5 and
3.1 being satisfied, let the controller be given by (37) and the NN
weights be updated by (48) and (49). Then, there exist compact
sets and , and positive constants, , , , , and

such that if

1) all initial states , ;
2) , , , , , and

, then the trajectory of the system remains
in the compact set and the tracking error converges to
a neighborhood of the origin which depends on (, ,

, , ).

Proof: The proof contains two steps. First, we assume that
holds for all time so that the transformation from

system (1) to the normal form (4) and the NN approximation in
Assumption 3.1 are valid. With this assumption, we can prove
that the tracking error converges to a small neighborhood of the
origin. Later, we will show that for a proper reference signal

and suitably chosen design parameters, do remain
in the compact set if the system starts from a bounded initial
set.

Step 1:Consider the Lyapunov function candidate

(50)

Differentiating (50) along (47)–(49), we have
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Noticing Assumption 2.3, we obtain

Considering (42), Lemma 3.2 and the following inequalities:

(51)

(52)

we obtain

(53)

Further, noticing the following inequalities:

we have

(54)

where

(55)

(56)

Considering , inequality (54) can
be further written as

(57)

where constant

(58)

Now define

(59)

(60)

(61)

Since , , , , and , are positive constants, we know
that , and are compact sets. Equation (57) shows
that once the errors are outside the compact set
in (61). According to the standard Lyapunov theorem [32], we
conclude that , , and are bounded. From (57) and (59),
it can be seen that is strictly negative as long as is outside
the compact set . Therefore, there exists a constantsuch
that for , the filtered tracking error converges to ,
that is to say, with .
Using Lemma 2.3, the internal dynamicwill converge to

(62)

Because converges to , is bounded as well.
Consequently, is bounded.

Noting (9) and with constants and
. Since , , from (12), we know that

(63)

Since is bounded, we know that
decays exponentially. Inequality (63)

implies that the tracking error will converge to a
neighborhood of the origin which depends on ( ).

In summary, under the assumption of , there ex-
ists a constant such that 1) for all , the tracking
error converges to a neighborhood of the origin which
depends on ( ); 2) the internal dynamics con-
verges to for all ; and 3) the parameter estimate errors

and are bounded by if .
Step 2:To complete the proof, we need to show that for a

proper choice of the tracking signal and control parame-
ters, the trajectory do remain in the compact set . From

and , we can see that .
Therefore
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It follows from (63) and the fact that will converge to
, we know that ,

, with , and
. Hence

(64)

We now provide the conditions which guarantees ,
. Define the compact set

(65)

the positive constant

(66)

the positive constants shown in (67)–(71) at the bottom of the
page. In summary, for all initial state , the desired
signal , if control parameters , , , and

are chosen such that , , ,
and , then the system statewill stay in for all

time. Furthermore, because the NN weights have been proven
bounded for any bounded and (see Lemma 3.3), we

conclude that all signals of the closed-loop system are bounded.
This completes the proof. Q.E.D.

Remark 3.3:Compared with the existing exact linearization
techniques and NN control methods, the proposed robust adap-
tive NN controller clearly has some intrinsic advantages. For
example, there is no need to search for an explicit controller
to cancel the nonlinearities of the system exactly. In fact, even
though the functions and in system (1) are known,
it is in general not possible to get an explicit controller for feed-
back linearization. In addition, the requirements of an off-line
training phase and the persistent excitation condition are not
needed any more.

Remark 3.4: It is shown in (55) and (56) that smaller and
might be obtained by choosing a smaller and , which

may lead to a smaller tracking error. Nevertheless, from (60) it
can be seen that smaller and may cause larger NN weight
errors. In this case the control signal,, may be increased and
out of region in which Assumptions 2.1, 2.2, and 2.5 hold. On
the other hand, if and are chosen to be very large, so are

and , which will lead to a large tracking error will happen.
Hence, the parameter and should be adjusted carefully in
practical implementations.

IV. OUTPUT FEEDBACK CONTROL

In Section III, the system states and the time derivatives of
the outputs are supposed to be available for feed-
back. This limits the application of the approach, because, in
many practical systems, only outputis measurable. In this
section, adaptive NN output feedback control is investigated for

(67)

(68)

(69)

(70)

and

(71)
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nonaffine nonlinear systems with internal dynamics by using a
high-gain observer to reconstruct the system states.

A. High-Gain Observer

Since only the output is measurable and the rest of
the output derivatives are not available, we need to estimate

to implement the output feedback control. In the
following lemma, the high-gain observer used in [27] is pre-
sented, which will be used to estimate the output derivatives of
system (4).

Lemma 4.1:Suppose the system output and its first
derivatives are bounded, so that with positive con-
stants . Consider the following linear system:

(72)
where is any small positive constant and the parameters
to are chosen such that the polynomial

is Hurwitz. Then, we have the following.

1)

where with
denoting the th derivative of .

2) There exist positive constants and which only de-
pending on , and , such that for
all we have , .

Proof: The proof can be found in [27]. For completeness,
it is given below.

1) From the last equation in (72), we have

Using (72) and the above equation yields

Differentiating it and utilizing (72), Item 1) follows.
2) The derivatives of the vector

may be computed as follows:

(73)

where is the matrix corresponding to the homo-
geneous part of (72) and independent of, and

. Since belongs to the com-
pact set , and is bounded, there exist constants

such that . Then, for any , we

may find a constant such that for all the
first term

in (73) is bounded by for each . Further,
since , there exist constants , which
is independent of , such that the second term

in (73) is bounded by
for each . Fixing an arbitrarily small , then for
, we have where

with the norm of the vector .
As , , , and are independent of, the proof is
completed. Q.E.D

B. Adaptive Neural Control by Output Feedback

Having the observer (72), we define

where

Lemma 4.1 shows that are bounded by the constants
, hence , and are all bounded. Let and be the

estimates of and , respectively. The following lemma
presents the property of MNN’s when the input vectoris
replaced by the estimation.

Lemma 4.2:The NN estimation error can be expressed as

(74)

where , , ,
with

, , and the residual term
is bounded by

(75)

Proof: The proof can be obtained by following the similar
procedure in Lemma 3.2. It is omitted here.
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C. Controller Structure and Stability Analysis

The output feedback controller is designed as follows:

(76)

where

(77)

(78)

with , , being the constant design parameters. The
above controller contains three parts for different purposes. The
first part is introduced to approximate the IDFC input
for achieving adaptive tracking control. The second partis
a priori control term based on a nominal model or past control
experience to improve the control performance. If no knowledge
for the plants is available, can be simply set to zero. The
third part is a bounding control term, which is applied for
limiting the upper bounds of the system states such that the NN
approximation (34) holds on the compact set.

The MNN weight updating laws are taken as

(79)

(80)

where , , and
are constant design parameters. The above learning algorithms
have a nice property as stated below.

Lemma 4.3:The updated learning algorithms (79) and (80)
guarantee that , for bounded initial weights

and .
Proof: The proof can be obtained by following the similar

procedure in Lemma 3.3. It is omitted here.
Considering (43)–(46), the error system can be written as

(81)

Applying (34), (74), and (76), we obtain

(82)

Based on (82), closed-loop stability results are summarized
in Theorem 4.1.

Theorem 4.1:For system (4) with Assumptions 2.1, 2.2, 2.3,
2.4 and 2.5 being satisfied, high-gain observer (72), controller
(76) and adaptive laws (79) and (80), there exist a compact set

, and positive constants, , , , , and ,
such that for any bounded and , if

1) the initial state ;
2) the observer (72) is turned on at timein advance;
3) , and ;

then all the signals in the closed-loop system are bounded,
the system state , and the tracking error
converges to a neighborhood of the origin which depends on
( , ).

Proof: The proof contains two steps. We first assume that
holds for all time, which ensures that NN approx-

imation (34), Assumptions 2.1, 2.2, and 2.3 are valid. In this
case, we prove the tracking error converging to an ()-neigh-
borhood of the origin. Later, for a proper choice of the reference
signal and controller parameters, we show that () do re-
main in the compact set for all time if the system starts from
a bounded initial set.

Step 1:Consider the Lyapunov function candidate

(83)

Differentiating (83) along (82), we have

Noting , , (79),
(80), we obtain

(84)

Since and (Assumption 2.3),
we know that . Using

and , we have

Considering , , (75) and (78), and
the following inequalities:

we obtain (85), shown at the bottom of the next page. Since
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TABLE I
VARIABLES AND PARAMETERS OF THECSTR SYSTEMS

(85) can be written as

(86)

It follows from that

(87)

where

(88)

(89)

Now, let

and define

(90)

(85)
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Fig. 2. � follows � (“- -”) (state feedback).

Since , , , , , , , and are positive constants and
and are bounded, it follows that is also bounded, which

means that is a compact set. From (87)–(90), it is shown
that is strictly negative as long as is outside the set .
Therefore, the filtered error is bounded, and there exists a
constant such that for , the filtered tracking
error converges to which is a neighborhood of the origin
that depends on ( ).

The mapping of can be expressed in state space
eqn (9). The solution for can be written as

. It follows that

(91)

Because , , from (12), we have

(92)

Since is bounded, we know that

decays exponentially. Inequality (92)

implies that the tracking error will converge to a
neighborhood of the origin which depends on ( ).

Step 2:To complete the proof, we need to show that for a
proper choice of the tracking signal and control parame-
ters, the trajectory do remain in the compact set . Consid-
ering a positive function and controller (76), the time
derivative of along (81) is

(93)

Using (34), (76)–(78), we have

(94)

Since every element of is not larger than one, we know
that

(95)

Therefore



912 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 14, NO. 4, JULY 2003

Fig. 3. � follows � (“- -”) (state feedback).

Fig. 4. Internal dynamics� (state feedback).

Since
, and , it is shown

that once with

(96)
We know that if , then there exists a constant

, such that

(97)

From and , we can see that

. Therefore

It follows from (91) and (97) that
,

. Hence

(98)

with , and
. We now provide the condi-

tions which guarantees , . Define the compact set

(99)
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Fig. 5. u follow IDFC u (”- -”) (state feedback).

Fig. 6. NN weightk ^Wk (state feedback).

the positive constant

(100)

the positive constant

(101)

and

(102)

In summary, for all initial state , the desired signal
, if control parameters and are chosen such

that and , then the system statewill stay in
for all time. The boundedness ofguarantees that the ob-

server state is bounded (see Lemma 4.1). Since the NN weights
have been proven bounded for any bounded and
(see Lemma 4.3), we conclude that all signals of the closed-loop
system are bounded. This completes the proof. Q.E.D.

Remark 4.1: In the adaptive NN controller (76), two addi-
tional control terms, the bounding control termand the prior
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Fig. 7. NN weightk^V k (state feedback).

Fig. 8. � follows � (“- -”) (output feedback).

control term , are provided. The first one can be viewed as a
supervisory control, which is introduced for limiting the upper
bounds of the system variables such that holds. The
second one provides a chance that control engineers can use
conventional techniques to design an initial controller and then
add the adaptive NNs to work in parallel to achieve high tracking
accuracy. From (36), it can be seen that the closerand
is, the smaller the ideal weight and will be. Consid-
ering (88)–(90), one can see that smaller and will lead
to smaller output tracking error. Therefore, if is designed ad-
equately, the control performance can be improved. On the other
hand, even though is inadequate, the use of the above adap-
tive NN controller still results in a stable tracking.

Remark 4.2: In Theorem 4.1, it requires that the observer
(72) to be turned on at time in advance. This is because the
high-gain observer may exhibit a peaking phenomenon and the

estimated state errors might be very large in the initial transient
period. If the observer is turned on at timebefore the con-
troller is put into operation, Lemma 4.1 guarantees that the state
estimation is bounded by the constant which
only depends on , and and, therefore, the peaking of
the controller can be avoided. Another method to overcome the
peaking problem is to introduce an estimate saturation or con-
trol input saturation [33]–[35]. Thus, during the short transient
period when the state estimates exhibit peaking, the saturation
prevents the peaking from being transmitted to the plant.

V. SIMULATION STUDY

In this section, a practical isothermal continuous stirred tank
reactor is simulated to illustrate the proposed state feedback and
output feedback controllers.
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Fig. 9. � follows � (“- -”) (output feedback).

Fig. 10. Internal dynamics� (output feedback).

In [8], we have showed the effectiveness of adaptive NN con-
trol for a class of nonaffine nonlinear systems without zero dy-
namics both theoretically and numerically. Though it is easy
for us to cook up a nonaffine nonlinear system with zero dy-
namics, it is more meaningful to work on physical models of
real systems. Owing to the difficulty in finding a practical non-
affine nonlinear system with zero dynamics, an affine nonlinear
system with zero dynamics is used here to verify the effec-
tiveness of the proposed controller. The reasons are as follows:
1) for this affine CSTR model, the IDFC controller can be com-
puted, thus, we can verify the effectiveness of the proposed con-
trollers; 2) although this is an affine system, it is also a special
kind of nonaffine system; and 3) it is a practical physical system.

Consider a class of multicomponent reaction
taken place in a CSTR [9]. The output of the process is the

concentration of and the manipulated variable is the molar
feed flow rate of , . A mass balance gives the modeling
equations
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Fig. 11. u follow IDFC u (”- -”) (output feedback).

Fig. 12. NN weightk ^Wk (output feedback).

With the dimensionless variables given in Table I, we can obtain
the dimensionless state–space model description

It is easy to check that the relative degree of this system is 2.
By define diffeomorphism

and a temporary variable the
system can be transformed into

(103)

where
and .

Assuming the Damkholer numbers are chosen as follows:
, and . Furthermore, considering

the operation range of and , Assumption 2.2 holds. Thus,
the existence of the IDFC controller is guaranteed, which is also
verified in the simulations.
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Fig. 13. NN weightk^V k (output feedback).

The control objective is to make the concentrationtrack the
set-point step change signal . In order to
obtain a smooth reference signal, a linear reference model is
used to shape the discontinuous reference signal for providing
the desired signals . The following reference model is to be
implemented:

where the natural frequency rad/min and the damping
ratio .

State Feedback Control:The closed-loop system structure is
shown in Fig. 1. When all the system states are available, the
proposed state feedback control method is applicable. Control
input is , with

where , and
. and are tuned by update laws in (48) and (49).

Simulation parameters are chosen as follows: neural number
; ; ; ; ;

; ; ; ;
; . System initial status are and

.
Simulation results are shown in Figs. 2–7. We can see that

the output trajectory follows the step changes of reference
signal. Meanwhile, the derivative of outputalso follows the
reference signal . Internal dynamics and NN weights are all
bounded. It should be noted that the control input follows the
ideal IDFC control trajectory, which verifies the existence of
the IDFC controller.

Output Feedback Control:When system states are not avail-
able, the high gain observer can be used to reconstruct them.

In this part, the proposed high gain observer based output feed-
back control method is applied to the same CSTR system in state
feedback control. The closed-loop system structure is shown in
Fig. 1. Assume that state is unavailable.

The control input is with

where , and .

and are tuned by update laws in (79) and (80). It should be
noted that replaces (state feedback
control) here, because is not available. The high gain observer
is applied to estimate .

Simulation parameters are the same as those used in state
feedback control. For the high gain observer used, its param-
eter are chosen as follows: ; the initial observer states

; the initial system states
and .

Simulation results are shown in Fig. 8–13. We can see that
the output follows the desired trajectories. The control input
follows the IDFC. The internal dynamics and neural weights
are all bounded. But does not follow the desired signal
very well. Furthermore, oscillation appear in control and output
trajectories.

VI. CONCLUSION

In this paper, we have presented state feedback and
output feedback control scheme for a class of single-input-
single-output nonaffine system with zero dynamics. Its zero
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dynamics are assumed to be exponentially stable. Based on
implicit function theory, stable adaptive NN controllers are
developed for both state and output feedback control. The
proposed design guarantees the stability of the closed-loop
adaptive system and the convergence of the tracking errors.
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