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Abstract For effective interaction between humans and
socially adept, intelligent service robots, a key capability
required by this class of sociable robots is the successful inter-
pretation of visual data. In addition to crucial techniques like
human face detection and recognition, an important next step
for enabling intelligence and empathy within social robots is
that of emotion recognition. In this paper, an automated and
interactive computer vision system is investigated for human
facial expression recognition and tracking based on the facial
structure features and movement information. Twenty facial
features are adopted since they are more informative and
prominent for reducing the ambiguity during classification.
An unsupervised learning algorithm, distributed locally lin-
ear embedding (DLLE), is introduced to recover the inherent
properties of scattered data lying on a manifold embedded in
high-dimensional input facial images. The selected person-
dependent facial expression images in a video are classified
using the DLLE. In addition, facial expression motion energy
is introduced to describe the facial muscle’s tension during
the expressions for person-independent tracking for person-
independent recognition. This method takes advantage of
the optical flow which tracks the feature points’ movement
information. Finally, experimental results show that our
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approach is able to separate different expressions success-
fully.
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1 Introduction

With the rapid advancement of both hardware and software
technologies, robots are no longer confined to industry, and
are entering and influencing the human social landscape in a
big way. This has led to recent efforts by researchers world-
wide in the area of social robotics [3,33,35]. Social robotics
is the study of robots that are able to interact and communi-
cate between themselves, with humans, and with the envi-
ronment, within the social and cultural structure attached
to its role [9,29,34]. As a class of social robots, intelligent
service robots focuses on the provision of personalized ser-
vices within the entertainment, games, healthcare industries,
amongst many others. Unlike industrial robots, these socia-
ble robots are specifically developed to interact with humans
socially and evoking emotions through those interactions.
It is crucial that social robots understand, perceive, respond
appropriately, and even adapt their behavior based on the cues
from human partners and augmented with their own under-
standing of the social environment they are situated within.

Intelligent service robots rely on effective utilization of
available sensors – such as sound and vision sensors
[11,12]—to gather information for decision making, plan-
ning, and ultimately empathetic interaction with humans.
This paper deals specifically on the visual capabilities of
intelligent social robots. Effective visual localization allows
these robots to focus their attention on pertinent objects/
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Fig. 1 Human robot interaction

elements within their environment, much like their human
counterparts. As a crucial component of a social robot’s sens-
ing suite, a large part of research on social robots has focused
on visual data analysis. It involves human/face detection and
the fusion of stereo and infrared vision on board social robots
with greater flexibility and robustness [10,14,20], for the pur-
poses of attention focusing and for synthesizing more com-
plex social interaction concepts, like comfort zones, into the
robots.

For empathetic interaction between humans and social
robots, the detection and recognition of faces are insuffi-
cient. It is vital to extract more information from visual data to
facilitate meaningful interactions reminiscent of that between
humans. The ability of emotional exchanges and interaction
is one of the most important and necessary factor in the deter-
mining the level and type of interactions that occur between
a robot and a human. The capacity to emote, and respond
to emotes, further improves the robots’ ability to engage in
fruitful interactions with the human user, and is the first step
in synthesizing the aspect of empathy within robots. A face
to face human robot interaction is depicted in Fig. 1.

The most expressive way that humans display emotions
is through facial expressions. Facial expression includes
much information about human emotion. It can provide sen-
sitive and meaningful cues about emotional response and
plays a major role in human interaction and nonverbal
communication.

Facial expression classification approaches could be
divided into two main categories: target oriented and ges-
ture oriented [4]. Target oriented approaches [27,28] attempt
to infer the human emotion and classify the facial expres-
sion from one single image containing one typical facial
expression. Gesture oriented methods [26,42] utilize tempo-
ral information from a sequence of facial expression motion
images. In particular, transitional approaches attempt to

compute the facial expressions from the facial neural con-
dition and expressions at the apex.

Facial expressions are for the most part extremely dyna-
mic. As such, the effective use of this dynamic informa-
tion can prove invaluable and critical to the recognition and
emotion interpretation process [17]. The temporal pattern of
different expressions is considered in the recognition fea-
ture vector presented in [6]. In the system using a 3D face
mesh based on the FACS model, the motion of the head and
facial expressions is estimated in model-based facial image
coding [31]. An algorithm for recovering rigid and non-
rigid motion of the face was derived based on two or more
frames. Independent component analysis, optical flow esti-
mation and Gabor wavelet representation methods have also
been used to achieve a 95.5% average recognition rate [5].
A method which relies on the overall pattern of a face which
is represented by a potential field, and activated by edges
in the image, has also been previously used for recognition
[23]. Another technique consists of a motion energy template
that uses a physics-based model to generate spatio-temporal
motion energy templates for each expression [7]. The motion
energy is converted from the muscular activations, and purely
spatial information is used in the recognition pattern.

This paper investigates the efficient treatment of raw data,
which is typically extremely high dimensional, for extract-
ing vital information and facilitate emotion recognition. In
addition, real-time response problems of emotion recogni-
tion techniques are examined in detail to remove reliance on
manual intervention and tuning of any sort. In particular, the
main contributions of this paper are:

(i) The introduction of the unsupervised learning method,
distributed locally linear embedding (DLLE), to
recover the inherent properties of scattered data lying
on a manifold embedded in high-dimensional input
data. High-dimensional facial expression images are
embedded into a low-dimensional space which retains
the intrinsic structures and main characteristics of a
facial expression motion. Associated with support vec-
tor machines (SVM), a high recognition accuracy algo-
rithm has been developed for static facial expression
recognition.

(ii) A complete definition of facial expression potential
energy and kinetic energy based on the facial fea-
tures’ movements is presented, and a facial expression
energy system is constructed to describe the muscles’
tension in facial expression for classification. By fur-
ther considering different expressions’ temporal tran-
sition characteristics, the actual occurrence of specific
expressions can be identified with higher accuracy.

The remainder of this paper is organized as follows: In
Sect. 2, an unsupervised learning algorithm is presented to
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discover the intrinsic structure of the input data by preserving
neighborhood relationship. In Sect. 3, the face detection and
facial features extraction methods are discussed. The facial
expression motion energy is proposed to describe the facial
muscle’s tension during the expressions for person indepen-
dent tracking. In Sects. 4 and 5, we present the experimental
results with our system and conclusion respectively.

2 Nonlinear dimension reduction (NDR) methods
for person dependent recognition

Images lie in a very high dimensional space, but a class of
images generated by latent variables lies on a manifold in this
space. For human face images, the latent variables may be the
illumination, identity, pose and facial deformations. In this
paper, we are interested in embedding the facial deforma-
tions of a person in a very low dimensional space, which
reflects the intrinsic structure of facial expressions. From
training video sequences of different people undergoing dif-
ferent expressions, a low dimensional manifold is learned,
with a subsequent probabilistic model used for tracking and
recognition. On the manifold of expression, similar expres-
sions are points in the local neighborhood, while different
expressions separate apart.

Typical nonlinear dimensionality reduction techniques
include Isomap by which the geodesic relationship among
the input data, and the calculated low dimension embed-
dings remain constant [36], and locally linearly embeddings
(LLE) by which the local intrinsic structures are maintained
in dimensionality reduction [32]. A methodology called
neighborhood linear embedding (NLE) [10] has been devel-
oped to discover the intrinsic property of the input data which
is an adaptive scheme without the trial and error process in
LLE. We modify the LLE algorithm and propose a new DLLE
to discover the inherent properties of the input data [13].

2.1 Estimation of distribution density function

In most cases, a prior knowledge of the distribution of the
samples in high dimension space is not available. However,
we can estimate a density function of the given data. Consider
a data set with N elements in m dimensional space, for each
sample xi , the approximated distribution density function p̂xi

around point xi can be calculated as:

p̂xi = ki
∑N

1 ki
(1)

where ki is number of the points within a hypersphere kernel
of fixed radius around point xi .

Let P̂ = { p̂x1, p̂x2 , . . . , p̂xN } denote the set of estimated
distribution density function, p̂max = max(P̂) and p̂min =
min(P̂).

2.2 Compute the neighbors of each data point

Suppose that a data set X = {x1, x2, . . . , xn}, xi ∈ R
m is

globally mapped to a data set Y = {y1, y2, . . . , yn}, yi ∈ R
l ,

m � l. For the given data set, each data point and its neigh-
bors lie on or close to a locally linear patch of the manifold.
The neighborhood set of xi , Si (i = 1, . . . , N ) can be con-
structed by making use of the neighborhood information.

Assumption 1 Suppose that the input data set X contains
sufficient data in R

m sampled from a smooth parameter space
�. Each data point xi and its neighbors e.g. x j , to lie on or
close to a roughly linear patch on the manifold. The range of
this linear patch is subject to the estimated sampling density
p̂ and mean distances d̄ from other points in the input space.

Based on above geometry conditions, the local geome-
try in the neighborhood of each data point can be recon-
structed from its neighbors by linear coefficients. At the
same time, the mutual reconstruction information depends
on the distance between the points. The larger the distance
between points, the little the mutual reconstruction informa-
tion between them.

Assumption 2 The parameter space � is a convex subset
of R

m . If xi and x j is a pair of points in R
m , φi and φ j is

the corresponding points in �, then all the points defined by
{(1 − t)φi + tφ j : t ∈ (0, 1)} lies in �.

In view of the above observations, the following procedure
is conducted making use of the neighbor information to con-
struct the reconstruction data set of xi , Si (i = 1, . . . , N ). To
better sample the near neighbor and the outer data points,
we propose an algorithm using an exponential format to
gradually enlarge the range to find the reconstruction sample
(Fig 2).

For a given point xi , we can compute the distances from
all other points around it. According to the distribution den-
sity function around xi estimated before, we introduce αi to
describe the normalized density of the sample point xi and
is used to control the increment of the segment according to
the sample points density for neighbor selection. We first give
the definition of αi by normalizing p̂xi using the estimated
distribution density function computed by Eq. (1):

αi = β · p̂max − p̂xi

p̂max − p̂min
+ α0 (2)

where β is scaling constant, default value is set to 1.0, and
α0 is the constant to be set. The discussion of this definition
is given later.

According to the distances values from all other points to
xi , these points are rearranged in ascending order and stored
in Ri . Based on the estimated distribution density function,
Ri is separated into several segments, where Ri = Ri1 ∪
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Fig. 2 The neighbor selection process

Ri2 ∪ Ri3 · · · ∪ Rik · · · ∪ Ri K . The range of each segment is
given following an exponential format:
{

min(Rik) = �αk
i �

max(Rik) = �αk+1
i �

(3)

where k is the index of segment and �αk
i � denotes the least

upper bound integer when αk
i is not an integer. A suitable

range of αi is set from 1.0 to 2.0 by setting α0 = 1.0.
For each segment Rik , the mean distance from all points

in this segment to xi is calculated by:

dik =
∑

j ‖xi − x j‖2

max(Rik) − min(Rik)
, ∀ j ∈ Rik (4)

To overcome the information redundancy problem, using
the mean distance computed by Eq. (4), we find the most suit-
able point in Rik to represent the contribution of all points in
Rik by minimizing the following cost equation:

ε(d) = min‖dik − x j‖2, ∀ j ∈ Rik (5)

To determine the number of neighbors to be used for fur-
ther reconstruction and achieve adaptive neighbor selection,
we can compute the mean distance from all other samples
to xi

di = 1

N

N∑

j=1

‖xi − x j‖2, i �= j (6)

Starting with the Si computed above at given point xi ,
from the largest element in Si , remove the element one by
one until all elements in Si is less than the mean distance di

computed by Eq. (6). Then the neighbor set Si for point xi is
fixed.

2.3 Calculate the reconstruction weights

The reconstruction weight W is used to rebuild the given
point. To store the neighborhood relationship and reciprocal

contributions to each other, the sets Si (i = 1, 2, . . . , N ) are
converted to a weight matrix W = {wi j } (i, j = 1, 2, . . . , N ).
The construction weight W that best represents the given
point xi from its neighbor x j is computed by minimizing the
cost function given below:

ε(W ) =
N∑

i

∥
∥
∥
∥
∥
∥

xi −
Si(ni )∑

j=Si(1)

wi j x j

∥
∥
∥
∥
∥
∥

2

, i �= j (7)

where the reconstruction weight wi j represents the contribu-
tion of the j th data point to the i th point’s reconstruction.

2.4 Computative embedding of coordinates

Finally, we find the embedding of the original data set in
the low-dimensional space, e.g. l dimension. Because of
the invariance property of reconstruction weights wi j , the
weights reconstructing the i th data point in m dimensional
space should also reconstruct the i th data point in l dimen-
sional space. Similarly, this is done by trying to preserve
the geometric properties of the original space by selecting l
dimensional coordinates yi to minimize the embedding func-
tion given below:

�(Y ) =
N∑

i

∥
∥
∥
∥
∥
∥

yi −
Si(ni )∑

j=Si(1)

wi j y j

∥
∥
∥
∥
∥
∥

2

(8)

where wi j are the reconstruction weights computed in Sect.
2.3, yi and y j are the coordinates of the point xi and its
neighbor x j in the embedded space.

Based on the distances computed in low-dimensional
space, support vector machines (SVM) is selected in our sys-
tem as the classifier because of its rapid training speed and
good accuracy [39]. SVM, which is proposed by Vapnik,
is particularly a good tool to classify a set of points which
belong to two or more classes. It is based on statistical learn-
ing theory and attempts to maximize the margin to separate
different classes.

3 Facial expression energy for person independent
recognition

Human face detection is the first task performed in the face
recognition system which can ensure good results in the
recognition phase. For example, it can fix a range of inter-
ests, decrease the searching range and initial approximation
area for the feature selection [30]. However, face detection
from a single image is a challenging task because of the
high degree of spatial variability in scale, location and
pose. In our system, we assume and only consider the
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Fig. 3 Face detection

situation that there is only one face contained in one image.
The face should take up a significant area in the image.
Once the face is detected, facial feature extraction is con-
ducted which include: locate the position and shape of the
eyebrows, eyes, nose, mouth, and extract features related
to them in a still image of human face. Image analysis
techniques are utilized which can automatically extract
meaningful information from facial expression motion
without manual operation to construct feature vectors for
recognition.

As we know, there is a maximal intensity of display a
particular expression for each person [30]. There is also a
maximal energy pattern for each person for their each facial
expression. Therefore, facial expression energy can be used
for classification by adjusting the general expression pattern
to a particular individual according to the individual’s suc-
cessful expression recognition results. In this paper, we firstly
give out a complete definition of facial expression potential
energy and kinetic energy based on the facial features’ move-
ments information. A facial expression energy system is built
up to describe the muscles’ tension in facial expression for
classification.

3.1 Face detection and feature extraction

3.1.1 Face detection

As indicated in many literatures, many different approaches
make use of the skin color as an important cue for reduc-
ing the searching space [19,30]. We know that although the
images are from different ethnicities, the skin distribution is
relatively clustered in a small particular area [24]. On this 2D
plane, the skin color area is comparatively more centralized
which could be described by a Gauss distribution.

Through the distance between two pixels and the center
we can obtain the information on how similar it is to skin
and calculate a distribution histogram similar to the original
image. The probabilities should be between 0 and 1, because
we normalize the three components (R, G, B) of each pixels
color at the beginning. The probability of each pixel is multi-
plied by 255 in order to create a gray-level image. This image
is also called a likelihood image. The computed likelihood
image is shown in Fig. 3b. After obtaining the likelihood of
skin, a binary image can be obtained by thresholding each
pixel as shown in Fig. 3c.
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Fig. 4 Feature points (FPs) and facial animation parameters units
(FAPUs) (from ISO/IEC IS 14496-2 Visual, 1999 [1])

3.1.2 Facial feature extraction

The positions of eyebrow, eyes, nose and mouth are deter-
mined by searching for minima in the topographic grey level
relief. The next step is to precisely find contour of the eyes
and mouth. Because the real images are always affected
by the lighting and noises, using some general local detec-
tion method such as corner detection is not robust and often
require expert supervision [15]. We make fully use of the pri-
ority knowledge of human face, describe the eyes and mouth
as piecewise polynomial, then use the deformable template
to obtain a more precise contour. Because the eyes’s color are
not accordant and the edge information is abundant, we do
edge detection first and followed by a closed operation. The
inner part of the eye become high-luminance while the outer
part of the eye become low-luminance. Figure 5 illustrates
the feature extraction results on different testers.

To efficiently analyzing and correctly classify different
facial expressions, it is crucial to properly determine which
feature points are used. The MPEG-4 defines a standard face
model using facial definition parameters (FDP) [1]. These
proposed parameters can be used directly to deform the face
model. The combinational manipulation of these parameters
can result in a set of possible facial expressions. The proposed
system uses a subset of facial animation parameters (FAPs)
for describing the facial expressions which is supported by
the MPEG-4 standard (Fig. 4a). The 21 visual features used in
our system are carefully selected from the FAPs. These fea-
tures are more prominent compared to other points defined
by FAPs. At the same time, the movements of these feature
points are significant, while an expression occur, which could
be detected for further recognition.

In order to define FAPs for arbitrary face models, MPEG-
4 defines FAP units (FAPUs) that serve to scale FAPs for
any face model. FAPUs are defined as fractions of distances
between marked key facial features (Fig. 4b). These features,
such as eye separation and mouth width, are defined on a
neutral face model. We choose the feature displacement and

velocity approach due to its suitability for a real time video
system, in which motion is inherent and which places a strict
upper bound on the computational complexity of methods
used in order to meet time constraints.

In order to measure facial related FAPs in real images
and video sequences, quantitive modeling of FAPs is imple-
mented using the features labeled as fi . The features set
employs FDP points that lie in the facial area and under some
constraints, can be automatically detected and tracked. It con-
sists of distance, d(pi , p j ), where pi and p j correspond to
FDP points, between these protuberant points. Some of the
points are constant during expressions and can be used as
the reference points. Distances between reference points are
used for normalization [38].

3.2 Facial expression energy

The facial expression energy is generated by computing the
detailed facial feature physical movements data to a set of
biologically motion energy. This method takes advantage of
the optical flow which tracks the feature points’ movements
information [7]. For each expression, we use the facial fea-
ture movements information to compute the typical pattern
of motion energy. These patterns are subsequently used for
expression recognition.

3.2.1 Physical model of facial muscle

Muscles are a kind of soft tissues that possess contractile
properties. Facial surface deformation during an expression
is triggered by the contractions of the synthetic facial mus-
cles. Muscle generates maximal concentric tension beyond
its physiological range-at a length 1.2 times its resting length.
Beyond this length, active tension decreases due to insuffi-
cient sarcomere overlap. To simulate muscle forces and the
dynamics of muscle contraction, mass-spring model is typ-
ically utilized [18,25,37]. Waters and Frisbie [41] proposed
a two-dimensional mass-spring model of the mouth with the
muscles represented as bands. The facial mass-spring model
used is similar as in [8]. Each node in the model is regarded
as a particle with mass. The connection between two nodes
is modeled by a spring. The node in the model can move to
the position until it arrives at equilibrium point.

3.2.2 Emotion dynamics

One common limitation of the existing works is that the rec-
ognition is performed by using static cues from still face
images without considering the temporal behavior of facial
expressions. The psychological experiments by Bassili [2]
have suggested that facial expressions are more accurately
recognized from a dynamic image than from a single sta-
tic image. The temporal information often reveals informa-
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Fig. 5 Facial feature extraction results

Fig. 6 Smile expression motion starting from the neutral state passing into the emotional state

tion about the underlying emotional states. For this purpose,
our work concentrates on modeling the temporal behavior
of facial expressions from their dynamic appearances in an
image sequence.

The facial expression occur in three distinct phases which
can be interpreted as: the beginning of the expression, the
apex and the ending period [42]. Different facial expressions
have their unique spacial temporal patterns at these three
phases. Figure 6 shows a smile expression motion starting
from the neutral state passing into the emotional state and
end with a neutral state. Figure 7 shows the temporal curve
of one mouth point of smile expression.

3.2.3 Potential energy

Expression potential energy is the energy that is stored as
a result of deformation of a set of muscles [7]. It would
be released if a facial expression in a facial potential field
was allowed to go back from its current position to an equi-
librium position (such as the neutral position of the feature
points). The potential energy may be defined as the work
that must be done in the facial expression, the muscles’ force
so as to achieve that configuration. Equivalently, it is the
energy required to move the feature point from the equilib-
rium position to the given position. Considering the contrac-
tile properties of muscles, this definition is similar to the
elastic potential energy. It is defined as the work done by

Endi ngApexStarting

Time

Parameter
Value

Neutral Smiling Neutral

Fig. 7 The temporal curve of one mouth point in smile expression.
Three distinct phases: starting, apex and ending

the muscle’s elastic force. For example, the mouth corner
extended at the extreme position has greater facial potential
energy than the same corner extended a bit. To move the
mouth corner to the extreme position, work must be done,
with energy supplied. Assuming perfect efficiency (no energy
losses), the energy supplied to extend the mouth corner is
exactly the same as the increase of its facial potential energy.
The mouth corner’s potential energy can be released by relax-
ing the facial muscle when the expression is to the end. As the
facial expression fades out, its potential energy is converted
to kinetic energy.
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According to the feature movement information we
obtained, we can define potential energy E p at time t as:

E p(pi , t) = 1

2
ki fi (t)

2

= 1

2
ki (DiNeutral − Di (t))

2 (9)

– fi (t) is the distance between pi and p j at time t , expressed
in m.

– ki, j is the the muscle’s constant parameter (a measure of
the stiffness of the muscle) linking pi and p j , expressed
in N/m.

The nature of facial potential energy is that the equilib-
rium point can be set like the origin of a coordinate system.
That is not to say that it is insignificant; once the zero of
potential energy is set, then every value of potential energy
is measured with respect to that zero. Another way of say-
ing it is that it is the change in potential energy which has
physical significance. Typically, the neutral position of a fea-
ture point is considered to be an equilibrium position. The
potential energy is proportional to the distance from the neu-
tral position. Since the force required to stretch a muscle
changes with distance, the calculation of the work involves
an integral. Equation (9) can be further written as follows
with E p(pi ) = 0 at the neutral position:

E p(pi , t) = −
r∫

r=0

−ki r dr

= −
⎛

⎝

x∫

0

−ki x dx +
y∫

0

−ki y dy

⎞

⎠ (10)

Potential energy is energy which depends on mutual posi-
tions of feature points. The energy is defined as a work against
an elastic force of a muscle. When the face is at the neutral
state, all the facial features are located at its neutral state,
the potential energy is defined as zero. With the change of
displacements of the feature points, the potential energy will
change accordingly.

The potential energy can be viewed as description of the
muscle’s tension state. The facial potential energy is defined
with an up-bound. It means that there is a maximum value
when the feature point reach their extreme position. It is nat-
ural to understand because there is an extreme for the facial
muscles’s tension. When the muscle’s tension reach the apex,
the potential energy of the point associated with the muscle
will reach its up-bound. For each person, the facial muscle’s
extreme tension is different. The potential motion energy
varies accordingly.

Figure 8 shows the potential energy of two points: the
left mouth corner and the lower mouth. The black contour
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Fig. 8 The potential energy of mouth points
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Fig. 9 The 3D spatio-temporal potential motion energy mesh of the
smile expression

represents the mouth at its neutral position, the blue dash line
represents mouth’s extreme contour while the orange dash
line is mouth contour at some expression. For the left mouth
corner, we define a local coordinate that could be used for
the computation of potential energy. The extreme point of the
muscle tension is represented by E pi_ max. At this position,
this feature point E pi has the largest potential energy com-
puted along the X -axis and Y -axis. When this feature point
located between the neutral position and the extreme posi-
tion, as illustrated of E pi , its corresponding potential energy
can be computed following Eq. (10). The same rule can also
applied to the lower mouth point. According to the nature of
human month structure, the movement of this feature point
is mostly limited along the Y -axis.

Figure 9 shows the 3D spatio-temporal potential motion
energy mesh of the smile expression. At the neutral state, all
the facial features are located at their equilibrium positions.
Therefore, the potential energy is equal to zero. When one
facial expression reaches its apex state, its potential energy
reaches the largest value. When the expression is at the end-
ing state, the potential energy will decrease accordingly.
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For each facial expression pattern, there are great varie-
ties in the feature points’ movements. Therefore, the poten-
tial energy value varies spatially and temporally. When an
expression reaches its apex state, the potential value will also
reach its maximum. Therefore, the pattern can be classified
accordingly.

3.2.4 Kinetic energy

Kinetic energy is defined as a work of the force accelerating a
facial feature points. It is the energy that a feature point pos-
sesses as a result of facial motion. It is a description energy.

Our system not only considers the displacement of the fea-
ture points in one direction, but also takes the velocity into
account as movements pattern for analysis. The velocity of
each feature points is computed frame by frame. It is natural
that the feature points remain nearly static in the initial and
apex state. During the change of the facial expressions, the
related feature points’ movements are fast. By analyzing the
moving features’ velocity, we can find the cue of a certain
emotion.

According to the velocity obtained using Lucas and
Kanade (L-K) optical flow method [21], we can define kinetic
energy Ek as:

Ek(pi , t) = 1

2
wi‖vi‖2 (11)

where wi denote the i th feature point’s weight, and vi is the
velocity for point i .

For each facial expression pattern, it will occur from the
starting, translation and vanishing. At the neutral state, since
the face is static, the kinetic energy is nearly zero. When the
facial expression is at the starting state, the feature points are
moving fast, the kinetic energy will vary temporally–increase
first and decrease later. During this state, the muscle’s bio-
logical energy is converted to feature points’ kinetic energy.
The kinetic energy is converted to feature points’ potential
energy. When an expression reaches its apex state, the kinetic
energy will decrease to a stable state. If the facial muscle is
still then, the kinetic energy will decrease to zero. At this
time, the potential energy will reach to its apex. When the
expression is at the ending state, feature points will move
back to the neutral positions. Therefore, the kinetic energy
will increase first and decrease later again. By analyzing and
setting a set of rules, associated with the potential energy
value, the pattern can be classified accordingly.

At the same time, the feature points’ movement may tem-
porally differ a lot when an expression occur, e.g. when some-
one is angry, he may frown first and then extend his mouth.
Therefore, the kinetic energy for each feature points may not
reach the apex concurrently.

We use a normalized dot product similarity metric to com-
pare the differences between facial expressions. A simple

form of similarity metric is the dot product between two vec-
tors. We employ a normalized dot product as a similarity
metric. Let Xi be the i th feature of the facial expression vec-
tor for expression X . Let the normalized feature vector, be
defined as

X̄i = Xi
√∑m

j X2
j

(12)

where m is the number of elements in each expression vector.
The similarity between two facial expression vectors, X and
Y , for the normalized dot product is defined to be X̄ · Ȳ , the
dot product on the normalized feature vectors.

4 Experiments and results

In this section, we present the results of simulation using
the proposed static person dependent and dynamic person
independent facial expression recognition methods. In our
system, resolution of the acquired images is 320 × 240
pixels. Any captured images that are in other formats are
converted first before further processing. Our system is devel-
oped under Microsoft Visual Studio.NET 2003 using VC++.
The Intel’s Open Source Computer Vision Library (OpenCV)
is employed in our system [16]. The OpenCV Library is
developed mainly aimed at real-time computer vision. It pro-
vides a wide variety of tools for image interpretation. The
system is executed on a PC with Pentium IV 2.8G CPU and
512M RAM running Microsoft XP. Our experiments are car-
ried out under the following assumptions:

– There is only one face contained in one image. The face
takes up a significant area in the image.

– The image resolution should be sufficient large to facili-
tate feature extraction and tracking.

– The user’s face should be kept stationary during the time
when the initialization or re-initialization takes place.

– While tracking, the user should avoid much fast global
movement. Sudden, jerky face movements should also
be avoided.

The face tracking method does not require that the hand
gesture must be centered in the image. It is able to detect
frontal views of human faces under a range of lighting con-
ditions. It can also handle limited changes in scale, yaw, roll
and tilt.

4.1 Person dependent recognition

In this section, we make use of the similarity of facial expres-
sions appearance in low-dimensional embedding to classify
different emotions. This method is based on the observation
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Fig. 10 The first two
coordinates of DLLE of some
samples of the JAFFE database
[22]
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(arguments) that facial expression images define a mani-
fold in the high-dimensional image space, which can be fur-
ther used for facial expression analysis. On the manifold of
expression, similar expressions are points in the local neigh-
borhood, while different expressions separate apart. The sim-
ilarity of expressions depends greatly on the appearance of
the input images. Since different people have great varie-
ties in their appearances, the difference of facial appearance
will overcome the discrimination caused by different expres-
sions. It is a formidable task to group the same expression
among different people by several static input images. How-
ever, for a certain person, the difference caused by different
expressions can be used as the cues for classification.

As illustrated in Fig. 10, according to the DLLE algorithm,
neighborhood relationship and global distribution can be pre-
served in the low dimension data set. The distances between
the projected data points in low dimension space depend on
the similarity of the input images. Therefore, images of the
same expression are comparatively closer than images of dif-
ferent expressions in low dimension space. At this time, the
training samples of the same expressions are “half clustered”
and only a few of them may be apart from their corresponding
cluster. This makes it easier for the classifier to categorize dif-
ferent emotions. Seven different expressions are represented
by: anger, red star; disgust, blue star; fear, green star; hap-

piness, black star; neutral, red circle; sadness, blue circle;
surprise, green circle.

Static images taken at the expressions can also be emplo-
yed. Figure 11 shows the result of projecting our training data
(set of facial shapes) in a two dimensional space using DLLE,
NLE and LLE embedding. The facial expressions are roughly
clustered and the classifier works on a low-dimensional
facial expression space. For the purpose of visualization, we
can map the manifold onto its first two dimensional space.
Figure 11 compares the two dimensional embeddings
obtained by DLLE, NLE and LLE for 23 samples of one per-
son from seven expressions respectively. We can see from
Fig. 11a that for d = 2, the embedding of DLLE separates
the seven expressions well. Samples of the same gesture
clustered together while only a few different gesture sam-
ples are overlapped. Figure 11b shows that the embedding of
NLE can achieve similar result as DLLE. The LLE is very
sensitive to the selection of number of nearest neighbors.
The images of different expressions become mixed up easily
when we increase the number of nearest neighbors as shown
in Fig. 11c, d.

In Fig. 12, we compare the properties of the LLE, NLE,
PCA and DLLE after the sample images are mapped to 2D
dimension using the feedtum database [40]. Six different
expressions are represented by: anger, blue star; disgust, red
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Fig. 11 2D projection using
different Nonlinear Reduction
methods using samples from
JAFFE database [22]

−1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

−1.5 −1 −0.5 0 0.5 1 1.5 2
−3

−2.5

−2

−1.5

−1

−0.5

0

0.5

1

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2 2.5
−2

−1.5

−1

−0.5

0

0.5

1

1.5

−2 −1.5 −1 −0.5 0 0.5 1 1.5 2
−2.5

−2

−1.5

−1

−0.5

0

0.5

1

1.5

(a) (b)

(c) (d)

Fig. 12 2D projection using
different nonlinear reduction
methods
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Fig. 13 The SVM classification results according to the 2D embedding

star; fear, green star; happiness, green square; sadness, black
square; surprise, red circle. The projected low dimension data
should keep the separating features of the original images.
Images of the same expression should cluster together while
different should be apart. There are 120 samples of one per-
son from six expressions respectively (20 samples per expres-
sion). We can see from Fig. 12d that for d = 2, different
expressions’ embedding of LLE are separated. However, the
red and blue points are overlapped and not separatable in 2D
dimension. Figure 12b shows the embedding of NLE. It can
be seen that in general they are separated, but the boundary
between different groups are not clear. PCA achieves similar
result as NLE which is shown in Fig. 12c. The samples of the
same expression are not so centralized and the red and blue
star samples are mixed up. As illustrated in Fig. 12d, we can
see that DLLE can separate the six expressions well. Sam-
ples of the same expression cluster together while different
expression samples are clearly separated.

The reason is that LLE is an unsupervised learning
algorithm. It selects the nearest neighbors to reconstruct the
manifold in the low dimensional space. There are two types
of variations in the data set: the different kinds of facial
expressions and the varying intensity for every kind of facial
expression. Generally, LLE can catch the second type of var-
iation-an image sequence is mapped in a “line”, and LLE
can keep the sequences with different expressions distinc-
tive when there is only one sequence for each expression.
When the data set contains many image sequences for the
same kind of expression, it is very hard to catch the first kind
of variation using a small number of nearest neighbors. But
with the increased number of nearest neighbors, the images
of different expressions are more prone to be mixed up.

Figure 13 demonstrates the SVM classification results on
the 2D embedding of the original data Fig. 12d. The kernel
was chosen to be the polynomial. The polynomial mapping
is a popular method for non-linear modeling. The penalty
parameter is set 1,000 (C = 1, 000). Figures 13a–c illustrate
the SVC solution obtained using a degree 1, degree 3 and

degree 5 polynomial for the classification. The circled points
are the support vectors for each classes. It is clear that SVM
can correctly classify the embedding of sample data sets.

Tables 1 and 2 show the recognition results using DLLE
and SVM(one against one algorithm) for the training and
testing data. The database contains 480 images of 6 different
type of expressions for training. These samples are used for
training the SVM. Apart from the training samples, there are
another 120 samples of six expressions are employed to be
tested.

4.2 Person independent recognition

Although person dependent method can reach satisfactory
results, it is required a set of pre-captured expression samples.
If the robot has stored the someone’ expression images and its
computation speed is fast enough, it could recognize his/her
expressions at run time using the person dependent recogni-
tion method. Most of the existing methods are not conducted
in real-time [30,43]. A general method is needed which can
recognize facial expressions of different individuals without
the training sample images. By analysis of facial movements
pattern captured by optical flow tracker, a recognition system
based on facial expression motion energy is setup to recog-
nize expressions in real time.

Initially, a front view image of the tester’s neutral face is
captured. This image is processed to detect the tester’s face
region, extract the eyebrows, eyes, nose and mouth features
according to the methods described in Sect. 3.1. In fact, this
process is done in a flash. Our system is able to complete the
process by just clicking a button on the interface. The features
locations are then mapped to the real-time video according to
the video’s resolution. Once the initialization is completed,
the tester can express his emotion freely. The feature points
can be predicted and tracked frame by frame using Lucas-
Kanade optical flow method. The displacement and veloc-
ity of each feature points are recorded at each frame. By
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Table 1 Recognition results
using DLLE and SVM(1V1) for
training data

Emotion Happiness Sadness Fear Disgust Surprise Anger Rate (%)

Happiness 80 0 0 0 0 0 100

Sadness 0 80 0 0 0 0 100

Fear 0 0 80 0 0 0 100

Disgust 0 0 0 80 0 0 100

Surprise 0 0 6 0 73 1 91.25

Anger 0 0 0 0 1 79 98.75

Table 2 Recognition results
using DLLE and SVM(1V1) for
testing data

Emotion Happiness Sadness Fear Disgust Surprise Anger Rate (%)

Happiness 18 2 0 0 0 0 90

Sadness 0 20 0 0 0 0 100

Fear 0 0 19 0 1 0 95

Disgust 0 0 0 20 0 0 100

Surprise 0 0 0 0 20 0 100

Anger 0 0 0 0 1 19 95

Fig. 14 Real-time video tracking results in different environment

analyzing the dynamic movement pattern of feature points,
the expression potential energy and kinetic energy are com-
puted out in real-time. Once an expression occur, the detec-
tion system will make a judgement using the method
described in Sect. 3.2. The recognition result will be dis-
played at up-right corner of the video window. When one
expression is over, the tester can express his following emo-
tions or re-initialize the system if any tracker is lost.

Figure 14 shows the expression recognition results under
different environments. It can be seen from these figures that
the system can robustly recognize the human’s expression
regardless the background.

The results of real-time person independent expression
recognition are given in Fig. 15. Our system can reach 30
FPS (frame per second). The pictures are captured while the
expression occurs. The recognition results are displayed in
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Fig. 15 Real-time video
tracking results for other testers

real-time in red at the up-left corner of the window. From
these pictures, we can see that our proposed system can effec-
tively detect the facial expressions.

5 Conclusions and future directions

This paper investigated the emotion detection and recog-
nition aspect of visual sensing that forms a crucial part of
allowing empathetic interaction between intelligent service
robots and humans. Both person-dependent and person-inde-
pendent recognition approaches have been examined, and the
proposed methods can successfully recognize the static, off-
line captured facial expression images, track and identify
dynamic on-line facial expressions of real-time video from
camera. An unsupervised learning algorithm, DLLE, has
been introduced to discover the intrinsic structure of the high
dimensional data, and the discovered properties were used to
compute their corresponding low-dimensional embedding.
Associated with SVM, a high recognition accuracy algorithm
has been developed for static facial expression recognition.
Facial expression motion energy has also been introduced to
describe the facial muscle’s tension during the expressions
for person-independent tracking. Extensive simulations ver-
ify the effectiveness of the proposed approach.

One limitation of the current system is that it can detects
only one front view face looking at the robot. Multiple face

detection and feature extraction could be further improved.
Since the current system can deal with some degree of light-
ing and orientation variation, the resolution of the image
would be the main problem to concur for multi-person expres-
sion analysis. One direction to advance our current work is
to combine the human speech and make intelligent human
robot interface, and explore robotic human companion for
learning and information seeking.
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