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Abstract—This paper presents an approach for finite-time
control of a distributed-parameter system: a flexible beam con-
nected to a translational mass. A quasi-tracking variable is
introduced, and a terminal sliding mode controller is developed
to achieve finite-time convergence of the quasi-tracking variable
to a properly pre-defined trajectory. This subsequently provides
a set of boundary conditions to explicitly solve the correspond-
ing boundary-value problem and prove finite-time regulation.
End-point tracking control is also investigated. It is shown that
the error between the end point of the beam and the pre-defined
trajectory, though does not decay to zero, is always bounded by
a small time-varying bound. A method to reduce the error
bound is also given. The approach does not invoke any model
truncation procedure, hence the problem of observation/control
spillovers, which exists in the conventional truncated-model-
based controller design methods, is essentially avoided. Satisfac-
tory simulation results are provided to demonstrate the effec-
tiveness of the presented approach. © 1998 Elsevier Science Ltd.
All rights reserved.

1. Introduction

During the past two decades or so, modelling and control
of mechanical systems with built-in distributed flexibility
have been receiving increasing attention, due to the requirement
for high accuracy and efficiency arising from modern industrial
manufacturing and aerospace applications. Some well-known
examples of such systems include flexible link robots and flexible
structures in space, etc. These systems, whose dynamics
are governed by partial differential equations (PDEs), are
of distributed-parameter type and hence possess an infinite
dimensionality.

Generally, a mechanical system with distributed flexibility is
approximately modelled as a finite-dimensional system by
modal analysis or finite element approach. Based on a model
with finite dimensions, some well-developed controller design
approaches are then applicable (Yeung and Chen, 1989; Young,
1993; Nathan and Singh, 1989), and among others. The most
well-known problem existing in the truncated-model-based con-
trollers is the control/observation spillovers, which may worsen
the performance or even destroy the stability of the control
system. In recent years, an alternative controller design ap-
proach has been investigated. The method directly utilizes the
PDEs of the system and avoids the undesirable model trunc-
ation. Some design examples can be found in Luo (1993}, Luo
et al. (1995) and Ge et al. (1996).

*Received 10 September 1996; revised 22 July 1997; received
in final form 5 January 1998. This paper was not presented at
any IFAC meeting. This paper was recommended for publica-
tion in revised form by Associate Editor H. Logemann under the
direction of Editor Roberto Tempo. Corresponding author
Shuzhi S. Ge. Tel. + 657726821; Fax + 65779 1103; E-mail
clegss@ee.nus.sg.

tCentre for Intelligent Control, Department of Electrical
Engineering, National University of Singapore, 10 Kent Ridge
Crescent, Singapore 119260.

881

In normal industrial applications, exponential stability or
asymptotic stability are regarded good enough, but in some
special conditions such as in astronaut assistance, finite-time
control of robotic systems is an essential requirement. Finite-
time rigid robot control has been investigated (Venkataraman
and Gulati, 1992, 1993; Man et al., 1994) using the terminal
sliding mode technique. Although conventional sliding mode
control has been employed (Young, 1993, Yeung and Chen,
1989; Nathan and Singh, 1989) for flexible robots and structures,
their controllers are based on finite-dimensional truncated mod-
els. Currently, there is no general theory on solving PDEs with
discontinuous terms. This is one of the difficulties in applying
sliding mode control to distributed-parameter systems, as dis-
cussed in Hung et al. (1993).

In this paper, we present a quasi-tracking;pproach, incor-
porated with the terminal sliding mode technique, to achieve
finite-time control of a translational mass-beam system,
which is a distributed-parameter system. The system actually
represents a class of SCARA/Cartesian flexible robots, which
can be found widely used in automatic manufacturing assembly
and some other applications (Lue et al, 1995). Firstly, a
quasi-tracking variable is introduced. A PDEs-based terminal
sliding mode controller is then developed to achieve finite-
time convergence of the quasi-tracking variable to a properly
pre-defined trajectory. The approach is named “quasi-tracking”
because the convergence of the quasi-tracking variable
does not imply the tracking convergence of either mass motion
or end-point motion. In the regulation case, by imposing
some constraints to the pre-defined trajectory, it can be
shown that the finite-time convergence of the quasi-tracking
behaviour provides a set of boundary conditions, under which
the corresponding boundary-value problem of the system has
only trivial solution. In other words, the eigen-functions of
the flexible system are all zero. This is the case only when
the system is at the equilibrium position, therefdre finite-
time regulation is achieved. In the end-point tracking case,
some of the constraints on the pre-defined trajectory are
removed. It is shown that the error between the end point
of the beam and the pre-defined trajectory, though does
not decay to zero, is always bounded by a time-varying
bound. The error bound can be arbitrarily reduced, of
course, at the price of unboundedly increasing the control
effort.

2. Dynamic equations of the system

The translational mass-beam system is demonstrated
in Fig. 1. System motion is restricted in the horizontal plane
and the effect of gravity is neglected. In Fig. 1, frame X-Y
is the fixed inertia frame, frame x-y is the local reference
frame moving with the mass, and system parameters and vari-
ables are defined as: L, the length of the beam; EI, the
uniform flexural rigidity of the beam; p, the uniform mass per
unit length of the beam; M,, the translational mass; f(t), the
control force applied to the mass; d(¢), the position of the mass;
and y(x, t), the elastic deflection measured from the undeformed
beam.

The deflection of the flexible beam is assumed to be small, and
p(x, t):= d(t) + y(x, t)is used to represent the position of a point
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Fig. 1. The translational mass—beam system.

on the beam. We assume the longitude and torsion deformations
of the beam are neglected. The total kinetic energy of the system
is then given by

1 32, P L 22
Eg = Myd*(®) +5 | p*(x, 1) dx O]
2 2],
and the total potential energy E,, is
EI [t
E=— _[ 0 (x, n)?dx, 2
o

where the dots and primes denote the derivatives with respect to
time and space variable x, respectively. Substituting equations
(1) and (2) into the extended Hamilton’s Principle

j 8B, — E, + f(Od@) dt =0, )

we arrive at, by recalling the global variable p(x, #), the following
dynamic equations and boundary conditions:

Myd(®) =f(1) + EIy" (0, 1), @
ppx, 1) = — EIp"(x, 1), O]
p0.)=4d@®, pO)=0, (6)
P'(L,)=0, p"(L =0 0

It is noted that equation (5) is now in the same form as the
Euler-Bernoulli beam equation, and the first boundary condi-
tion in equation (6) is not homogeneous. To solve equation (5),
we need to construct another boundary condition, which can be
achieved by using the terminal sliding mode technique as shown
next.

3. Quasi-tracking approach
Firstly, we introduce a quasi-tracking variable

n =d(t) + 4p(L, 1), ®

where A is a scalar to be determined later. The variable n will be
controlled to track signal (1 + A)r(t), with r(t) being a pre-
defined trajectory satisfying some constraints for regulation and
end-point tracking control design. The quasi-tracking error can
be defined as

w=ng—(1+r(®), )
=(1+2) [d@®) — r(O] + Ay(L, 1), (10)
= [d(t) — r(@)] + A[p(L, ©) — r(1)], (1

From equations (10) and (11), one observes that, due to the
existence of the end-point deflection y(L, 2}, w — 0 implies nei-
ther [d(t) — r()] =0 nor [p(L,t) —r()] =0, ie. neither the

mass nor the end point of the beam will converge to r(t) . This is
the reason that “quasi-tracking” is used to describe this ap-
proach. In the following two sub-sections, we shall show that by
incorporation with the terminal sliding mode technique, finite-
time regulation and bounded end-point tracking can be
achieved.

3.1. Finite-time regulation. The control objective is to regulate
the system to the equilibrium position d(t) = 0, y(x,?) = 0. We
make the following assumption:

Al. At the initial operation moment ¢ = 0, the system is such
that d(0) = dy # 0 and d(0) = y(x, 0) = ¥(x, 0) = 0 hold,
i.e. initially the mass stops at d(0) = do, and the beam is at
rest.

Moreover, we assume the pre-defined trajectory r(t) satisfies
the following constraints:

C1. #{t) is bounded;
C2. H0) = 0 and r(0) == dy; and
C3. r()=0fort> T for a given T > 0.

Assumption A1 covers a large class of initial conditions of the
system, and constraints C1-C3 are all easily achievable. The
reasons we impose the constraints on () will become clear later
in Remarks 1-3.

Corresponding to the quasi-tracking error w, we define the
sliding variable

5= W+ kwitt/z, (12)

where k > 0 is a control parameter, and
qng:=2+1, j=12,., (13)
q; < g2 < 2q,. (14)

Selecting the Lyapunov function to be V = My s?/2 and using
equation (4) with the controller f(t) being defined as

fo= - Szn(S)[bl 7 0] + bz |APL, 1) — (1 + A)F()

+kﬂw«mz-1wa+s], 15)
q2

where by > El, b, > My, and & > 0, we have

V = s[Ela, + Mya;] — |si[bi]ay] + balas| + €],
where

ay = y"(0,1), a3 =Ap(L,1) — (1 + {0 + k%i walz= 1y,
2

Since sEla; <|slbyla;| and sMya, <|[slbala;l, we have
V < —¢ls|, which implies that the system motion will reach
the sliding mode 3 =0 in a finite time smaller than M,|s(0))/e
(Slotine and Li, 1991), and then remain on the sliding mode.
Moreover, from equation (12), it is easy to show (Man et al.,
1994; Venkataraman and Gulati, 1992, 1993) that the quasi-
tracking error w converges along s = 0 to zero in a finite time
which is given by

92
Tw e R a——
kig: — q1)

where t; is the finite time instant at which s reaches zero. In the
literature (Man et al., 1994; Venkataraman and Gulati, 1992,
1993), such an s = 0 is named as terminal sliding mode. In the
terminal sliding mode s = 0, substitution of w = — kw®/92 into
the controller (15) yields

wiTaa(e,),

A(L, 1) — (1 + ) A1)

f@= - S@(S)[bxly”'(‘), B+ by

_ O 2 200e-1
92

+ e]. (16)

For the control system, we have the following remarks:
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Remark 1. Due to assumption Al and constraint C2, we actual-
ly have s(0) = 0 and thus s = 0, i.e. the system is always kept on
the terminal sliding mode. Consequently, the controller given
by equation (16) is used in the entire control process. Invoking
equation (14) and constraint C1, it is easy to check that f(t) in
equation (16) is always bounded. Moreover, since s = 0, we have
t, = 0, and thus T, = 0 because w(0) = 0 due to assumption Al
and constraint C2. Therefore, w = 0 also holds.

Remark 2. Without assumption A1 and constraint C2, s(0) = 0
cannot be guaranteed. When s(0) # 0, controller (15) is to be
used to drive the system to the terminal sliding mode s = 0 in
a finite time smaller than M, s(0)|/s, as shown above. However,
during this finite-time interval, it is possible at some time in-
stants that w = 0 though s # 0. If this happens, the term w%/92 ™!
in equation (15) goes to infinity because q;/q; — 1 < 0. There-
fore, assumption A1 and constraints C1-C2 are all necessary to
obtain a bounded control.

Remark 3. Due to constraint C3 and w = 0 shown in Remark 1,
it can be concluded that the quasi-tracking variable #, from
equation (9), will converge to zero in finite time T.

Up to now, we have shown that n = 0 can be achieved in finite
time T. If we can further show that the system stops at d(t} = 0,
y(x, t) = 0 provided that n = 0, the regulation in finite time T is
then proven. Indeed, this is guaranteed by Theorem 1 below.

Theorem 1. For the closed-loop system described by equations
(4)—(7), the control (16), assumption A1, and constraints C1-C3
for trajectory r(t) being satisfied, if the scalar 4 is selected such
that 1 < 4 < 3.83, regulation can be achieved in finite time T.

Proof. From the discussion above, we know that the quasi-
tracking variable n converges to zero in finite time 7. Note that
n = 0 implies

Ap(L,t) = —d(1). 17
Combining equation (17) with the first boundary condition in
equation (6) yields p(0, t) = — Ap(L, t}, which, together with the

rest three boundary conditions, leads to the following set of four
boundary conditions

p(0, ) = — Ap(L, 1),

PiLy=0,

P01 =0, (18)
p"(L,)=0. (19)

Moreover, it is noted that equation (5) is a homogeneous equa-
tion. This allows us to invoke the variable separation method
(Kreyszig, 1993) to solve equation (5) under equation (18) and
equation (19). Consequently, p(x, t) is represented by

p(x, 1) = ®(x) Q(1). (20)

Equation (5) can then be written as

(pm EI 7

—_——= 9— . 21)

® p 1Y)
Since the left-hand side of equation (21) is only space-dependent
while the right-hand side is a purely time-varying function, it is
obvious that both sides must equal a constant. If we denote the

constant by K, we obtain two ordinary differential equations,
namely,

01 + KQ(®) =0, 22
" (x) = E’% K®(x). 23)
From equations (18) and (19), we have

0) = — AN(L),
(L) =0,

¥'(0) =0, (24)
®"(L)=0. (25)

Equation (23) and conditions (24) and (25) describe the corres-
ponding boundary-value problem, whose solutions are known
as the eigen-functions of the system. We now come to solve the
boundary-value problem with different K’s.

When K =0, the solution to equation (23) possesses the
general form of

B(x) = Cyx* + C3x* + C3x + C,,

Substituting it into equations (24) and (25) yields
C; = C; = C;3 = C4 = 0 provided that

A# -1, (26)
Therefore, we have ®(x) = 0.
When K <0, letting K = — »* with o being a non-zero
number, equation {23) can be rewritten as
ﬂ 4
¢ (x)= - (Z) O(x), @7
where
AN
(L T @)

The general solution to equation (27) is of the form
D(x) = C, e*sin(ax) + C, e** cos(ax)
+ C3e ™ “*sin(ax) + Cqe” " cos(ax) 29)

where a := ﬁﬁ/ZL # 0. By substituting equation (29) into
equations (24) and (25), and letting Z, = sin(aL) + cos(aL) and
Z, = cos{aL) — sin(aL), we obtain the following set of equa-
tions:

2e°Lsin(aL)Cy + (1 + 4e® cos(aL))C, + de ™ sin{aL)C,
+ (1 + Ze L cos(al)Cy = 0,
Ci+C+C3—Cy=0,
el cos(aL)Cy — e sinfal)C, — e L cos(al)Cs  (30)
+ e * sinfal)Cy = 0
Z,UCy — Z,6C, + Zye " Cy + ZyeLC, = 0.

from which we will solve for C; (i = 1,2, 3, 4). The determinant
of the coefficient matrix of equation (30), which is a function of a,
is given by

A = 4[cosh?(aL) + 24 cosh(aL) cos(al) + cos*(al)] (31)

From the basic knowledge of linear algebra, if A # 0, then
equation (30) has only trivial solution, ie. C,=C,; =
C3 = C4 = 0. Subsequently, to achieve @(x) =0, we need to
decide A such that A # 0 holds for any 4. Through some algebra
derivations, it was found that there does not exist any constant
A for which A < 0 always holds. Therefore, we consider the case
of A > 0. When cos(aL) >0, A > 0 can be guaranteed for any
a if there holds

cosh?(aL) + cos*{aL)
2 cosh(aL) cos(al)
Because cos(aL) > 0, we have
in cosh®(aL) + cos*(aL)
a 2cosh(al) cos(al)

Thus, 4 should be 4 > — 1. When cos(aL) <0, A > 0 for any
a provided that

A>

cosh?(aL) + cos*(aL)
2cosh(aL)| cos(aL)| -

With the help of MATLAB™ (MathWorks, Inc), it can be
found that

. [ cosh?(aL) + cos?(aL) -3
a | 2cosh(aL)|cos(al)] | ~
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Therefore, when K < 0, the eigenfunctions of the system are all
zero provided that A satisfies

-1<1<383 (32)

The last choice for K is K > 0. Let K = @* with » being
a nonzero number. Recalling equation (28), equation (23) can be
similarly rewritten as

ﬂ 4
O™ (x) = (Z) O(x). (33)
The general solution to equation (33) is of the form

Bx Bx . Px . Bx
= = = fatad h =
P(x) = C, cos T + C,cosh 3 + Cjsin 3 + Cysin T

(34)
From equations (24) and (25), we have
(1 + Acos(B)C, + (1 + A cosh(B)C, + Asin(B)Cs
+ Asinh(B)C, =0
Ci+Ca=0, (3%)

C, cos(B) — C, cosh(f) + C, sin(f) — C,4 sinh(B) = 0,
C, sin(f) + C, sinh(f) — C, cos(f) + C,4 cosh(f) =0,

from which we solve for C; (i = 1, 2, 3, 4). Similarly, equation (35)
has only trivial solution provided that its determinant of the
coefficient matrix is not zero, i.e.,

A = 2[cos(B) cosh(B) + A cos(f) + 4 cosh(f) + 1] # 0.
Note that A can be rewritten as

A = 2[(1 + cos(A) (1 + cosh(B)) + (A — 1)cos(B) + cosh(B))]
(36)

Because cosh(f) > 1 in which the equality sign holds only at
B =0, we can achieve A > 0 for all § if A > 1. This leads to
®(x) = 0 when K > 0. Recalling equations (26) and equations
(32), one can see that to guarantee ®(x) = 0, A should satisfy the
following inequality:

1 <1<383 37

which is the same as the condition given in Theorem 1. Hence, if
inequality (37) holds, then n = 0 implies that the eigenfunctions
of the system are all identically zeros. This is the case only if the
system stops at the equilibrium position, i.e. p(x, #) = 0. There-
fore, regulation is achieved in finite time T. dJ

3.2. Bounded end-point tracking. Now, we investigate the end-
point tracking of the system with the controller given in equa-
tion (16). In this case, we remove constraint C3, but constraints
C1 and C2 are retained due to the reasons stated in Remarks 1
and 2. Moreover, inequality (37) needs no longer to be satisfied
for tracking control, because p(x, t) = 0 is not required. How-
ever, we shall assume that A # 0and — 1 hold, because (i) 1 =0
corresponds to the pure mass motion control, which is of no
interest here; and (if) 4 = —1 leads to s = — J(L, t) — ky®/%2(L,
t) and f(f) = 0, and is thus making no sense.

Let us go back to check the quasi-tracking error w given in
equations (9)-(11), and keep in mind that w =0 still holds.
Firstly, we consider equation (10). Since equation (16) is a stable
controller, the end-point of the beam must be vibrating around
zero and y(L, t) is bounded. Therefore, the tracking error be-
tween the mass motion d(t) and the trajectory r(t) is also
bounded. Then, from equation (11), we can conclude that the
end-point tracking error p(L, t} — r(t) is bounded as well. In-
deed, we have Theorem 2 below.

Theorem 2. For the closed-loop system described by equations
(4), (57, the control (16), assumption A1, constraints C1 and
C2 for trajectory r(t) to satisfy, and the parameter 10, — 1,
the tracking error between the end point of the beam p(L, ¢) and
the trajectory r(t) is always bounded by a time-varying bound,

ie.
Ip(L, 1) ~r@)] < 'yl—af-?

. (38)

Proof. Equation (10) implies

I(1+ ) [d(t) — @11 = Iw — (L, )] < [w]+[4p(L, 1]

(39
From equation (11), we have

JAlp(L, § — r(0]| = |w — [d(e) — r(D]] < [w] + [d(t) — r(}].
(40)

Noting that w = 0 due to Remark 1, and combining equations
(39) and (40), inequality {38} follows immediately. 0

Obviously, it is desirable to increase |1 + 4| and thus reduce
the error bound. However, this will increase the control effort as
well, according to equation (16).

3.3. Implementation issues. For practical implementation of the
controller in equation (16), we have the following remarks:
Remark 4. In equation (16), the term y”(0, t) represents the
shear force of the beam at the base, which can be approximated
using strain gauge feedback by a difference operator, as shown in
Luo et al. (1995).

Remark 5. The controller (16) requires the acceleration
measurement p(L, t), which can be achieved by attaching an
accelerometer at the tip of the beam. Usually, the accelerometer
signals are quite inaccurate. However, this is not a very serious
problem in our case due to the high-gain switching nature of the
controller. Indeed, the parameters uncertainties or the measure-
ment/estimation errors will not destroy the system’s stability if
¢ is chosen large enough.

Remark 6. To cope with the discontinuity of sliding mode con-
trollers, or the so-called chattering problem, several quasi-slid-
ing modes methods have been discussed in Hung et al. (1993).
For example, replacing the signum function by the saturation
function sat (¥} in Fig. 2 yields a continuous control. It should be
noted that these quasi-sliding modes methods are not able to
keep s at zero. In our simulations, the following controller is
used for comparison purpose

fo= - sat(ﬂ[b: [y, 1 + b2 | AP(L, ) — (1 + DF(r)

+ kAL i) 4 51. @1)
q2 N

which may run the risk of an unbounded control, according to
Remark 2.

sat (s)

sliding
variable
s

q cr e mwmaad

Fig. 2. Saturation function.



Brief Papers

r
PPN, | FE—
0 (7] T ¢
~4d /T i g
r. f
0 5773 T ¢
“2do/T|----------nmmee- : ::
r : !
d do-2d o t’/Tz
0 2d, (1+6/T2-20T )
dof2(------n-mm oo ‘
0 T T7

Fig. 3. The trajectory r(t) with bang—bang acceleration.

Remark 7. For the end-point tracking control, the use of sat(x)
will lead to a larger error bound, as shown below. When sat(*) is
used, s and subsequently w do not stay at zero, but are bounded
by a small number. We assume | w| < J. Inequalities (39) and
(40) become
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The error bound is then given by

Lol 8 s
IP(L;I)—’UHS‘I_*’/1 i +|llll+l|’
which is larger than the bound given in equation (38).

Remark 8. In proofs of Theorems 1 and 2, we have not invoked
any model tfuncation procedure, The controller in equation (16)
is thus PDEs-based. The problem of spillovers, from which the
conventional truncated-model-based methods suffer, is essen-
tially avoided.

4. Computer simulations
The system parameters are chosen as: L =10m, El =
20Nm? p = 0.1 kg/m and M, = 0.2 kg.

4.1. Regulation. Case 1. In this case, finite-time regulation is
considered. According to constraints C1--C3, we construct the
trajectory r(t) with bang-bang-type acceleration, as shown in
Fig. 3. Let dy =d(0) = 1.0m and T = 3.0s. Controller para-
metersare g, = 3,9, = 5,¢ = 0.5,k = 2.0and 4 = 1.01. Control-
lers with both sgn(x) and sat(*) are simulated. As pointed out in
Remark 6, the use of sat(«) may yield an unbounded control. The
results corresponding to sat(+), though are bounded in our
simulations, are presented here just for illustration and compari-
son purpose. For the sat(+), ¢ is chosen to be 0.01. System
performance is plotted in Fig. 4. The control efforts are given in
Fig. 5. Clearly, when sat(+) is used, the chattering of f(f) is
eliminated.

Case 2. In this case, a more tough time-constraint for regula-
tion is considered by reducing T to 1.0s for the r(t) given in
Fig. 3. We set ¢ = 0.8 and ¢ = 0.03. Other parameters are kept
unchanged. System performance is given in Fig. 6, showing that

) finite-time regulation is still achieved for sgn(+), though the
|d(t) — r(®)] < |——{y(L, )| + —— difference between r(t) and p(L, t) has become visible due to the
1+4 fT+4 reduction in time-constraint T. Figure 7 shows the control
and signals, which are larger compared with that in Case 1. This is
Ip(L, ) — ()| < [d@ —r@l 6 expected since the regulation is required to be completed in
’ A [ 4] a shorter time interval.
using sgn(*)
1-5 1 —li 1 T l T T T 1
s : solid: r(t)
T | | | ~ dashed: p(L.t)
¥ S -
h : :
‘| : : : : : :
S i I i 1 b | 1 1 L
'0'50 0.5 1 1.5 2 25 3 35 4 45 5
Time (sec)
using sat(*)
1-5 T T T T l ’ T 77 (
d S S
R ~dashed: p(L1)
I : ‘. . ,
3 :
a : : : :
'5 L 1 L L. 1l 1 ) I
-0 0 0.5 1 1.6 2 25 3 35 4 45 5
Time (sec)

Fig. 4. Tip trajectory p(L, t) in Case 1.
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Control Force f(t) (N)

Control Force f(t) (N)

i

L

i
0 0.5 1 1.5 2 2.5 3

35 4 4.5 5

Time ’ (sec)

Fig. 5. Control force f(t) in Case 1.

using sgn(*)
= S ; T ! ; ’ ( T
E : : : :
)
K 1 i 1 1 1 l J S i
_0'50 0.5 1 15 2 25 3 3.5 4 4.5 5
Time (sec)
using sat(*)

.. daShed:p(L,t) ,,,,,, =

pL.)=dt)+y(L,}) and r(t)

1 1 A

0 0.5 1 1.5 2

2.5 3 3.5 4 45 5
Time (sec)

Fig. 6. Tip trajectory p(L, t) in Case 2.

4.2, End-point tracking. Case 3. In this case, we test the
bounded end-point tracking control of the system. The traject-
ory to follow is selected to be r(f) = 0.5 — 0.5 # cos(wt) with
w = 2n/2.5, which satisfies constraint C1 and C2. Similar re-
marks can be made for uses of sgn(+) and sat(+), and only the
results corresponding to sgn(*) are presented here for simplicity.

All system and control parameters, except 4 are the same
as those in Case 1. Firstly, A is set to be 0.5, then 1 =1.1
is used to obtain a smaller error bound. The tracking perfor-
mances and tracking errors are given in Fig. 8. It can be
observed that the larger A yields a smaller tracking error,
which verifies the theoretical analysis. Figure 9 shows that
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Fig. 8. End-point tracking performance in Case 3.

a larger control effort is needed to reduce the tracking
error.

5. Conclusion

A quasi-tracking approach has been presented for finite-time
control of a distributed-parameter system: a translational
mass—beam system. With the terminal sliding mode technique, it

has been shown that finite-time regulation can be achieved.
Moreover, the same approach also guarantees bounded end-
point tracking performance of the system. Furthermore, the
approach is PDEs-based, and does not suffer from the problem
of spillovers existing in truncated-model-based controllers. A set
of satisfactory simulation results are obtained and verify the
theoretical analysis.
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Fig. 9. Control force f(t) in Case 3.
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