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Price Regulation in Property-Liability Insurance:
A Contingent-Claims Approach

NEIL A. DOHERTY and JAMES R. GARVEN*

ABSTRACT

A discrete-time option-pricing model is used to derive the “fair” rate of return for the
property-liability insurance firm. The rationale for the use of this model is that the
financial claims of shareholders, policyholders, and tax authorities can be modeled as
European options written on the income generated by the insurer’s asset portfolio. This
portfolio consists mostly of traded financial assets and is therefore relatively easy to
value. By setting the value of the shareholders’ option equal to the initial surplus, an
implicit solution for the fair insurance price may be derived. Unlike previous insurance
regulatory models, this approach addresses the ruin probability of the insurer, as well
as nonlinear tax effects.

IN RECENT YEARS, THE “fair”-rate-of-return-on-equity criterion has been used in
the regulation of property-liability insurance premiums. As with utility regula-
tion, the “fair” rate of return usually is interpreted as that which would prevail
under competitive conditions, and in some cases the Sharpe [28]-Lintner [18]-
Mossin [21] capital asset pricing model (CAPM) has been used to derive the
equilibrium relationship (cf. Hill [15], Fairley [9]). But discontent with this
model has led to questioning of its use. In addition to doubt over testability of
the CAPM (cf. Roll [23]), this model leaves unexplained some significant pricing
anomalies such as the earnings yield and size effects (cf. Reinganum [22]).
Applications of the CAPM to insurance regulation have encountered three major
problems. First, there are peculiar difficulties in estimating underwriting betas
either through the use of market or accounting data (cf. Fairley [9], Hill [15],
Cummins and Harrington [5]). Second, the models do not address the effect of
insolvency on the return to shareholders despite the attention given to this
prospect by regulators and actuaries. Third, the applications either ignore cor-
porate taxation or assume it is proportional over the entire range of corporate
income. Tax shields, which are especially important to insurance firms, are
known to result in significant nonlinearities in the tax schedule.

In connection with utility regulation, Bower, Bower, and Logue [3] have
recently noted the irony that, at the time the CAPM is gaining acceptance by
regulators, its preeminent role in the explanation of security returns is being
challenged by the arbitrage pricing theory (APT). This paradox obviously applies
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to insurance regulation as well. Does, then, the APT offer a more attractive
alternative for insurance regulation? The answer is that it is too early to say. An
analytic solution for the fair rate of return on underwriting has been derived by
Kraus and Ross [17] in an APT framework, and attempts at the empirical
application of the APT to insurance regulation have already been made by Urritia
[30]. But, as in the case of the CAPM, doubts have also been raised in the finance
literature over the testability of the APT (cf. Shanken [27]; Dhrymes, Friend,
and Gultekin [7]; Dybvig and Ross [8]). Furthermore, it is not yet clear that the
APT explains the well-known pricing anomalies left unanswered by the CAPM.
In applying the APT to insurance regulation, the estimation problems associated
with calculating underwriting betas (or factor loadings) remain, due to the
inadequacy of market data and the unknown sampling errors that are sure to
arise from using accounting data. Moreover, Kraus and Ross’s insightful analysis
does not address the possibilities of insolvency or tax shield redundancy, nor is
it clear how such effects might be encompassed by their model.

We offer an alternative approach to insurance price regulation. The liabilities
of the insurer to policyholders, shareholders, and the tax authorities are viewed
as contingent claims written on the income generated by the insurer’s asset
portfolio. If the market value of the asset portfolio is observable, implicit values
for these claims may be derived by means of risk-neutral valuation relationships
(cf. Brennan [4], Rubinstein [25], Stapleton and Subrahmanyam [29]). Thus,
option-pricing techniques may be used to derive the competitive price of the
insurance contract as well as the “fair” rates of return on underwriting and on
shareholders’ equity. The advantages of this approach are that it addresses the
possibility of insolvency and the nonlinear tax effects that may arise from the
redundancy of tax shields. Although some estimation of risk premiums is required,
the menu of possible option-pricing models that can be used permits some choice
in the selection of an underlying process for pricing capital assets. In fact, we
will limit our presentation to discrete-time models, noting that the advantages
of such an approach to valuation are particularly useful in valuing discrete
insurance contracts and tax liabilities.

The remainder of the paper is organized in the following manner: In Section
I, we provide a generalized single-period valuation model of the claims held by
the property-liability insurer’s policyholders and shareholders and the tax au-
thorities. In Section II, we offer two special cases of the first section’s more
general formulation that require restrictions on investor preferences and on the
probability distributions that underlie insurance company investment returns
and claims costs. In Section III, we present numerical simulations of our model.
Section IV concludes.

I. Basic Valuation Relationships for a Property-Liability Insurer

Consider a single-period model of the insurance firm in which investors contribute
paid-in equity of Sy and policyholders pay premiums of P,. For convenience,
premiums will be defined as net of production and marketing expenses. Therefore,
the opening cash flow is given as

Y0=SQ+P0. (1)
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The claims of policyholders and the government are discharged at the end of
the period, leaving a residual claim for shareholders. Allowing for investment
income at a rate 7;, we obtain an expression for terminal cash flow Y;:

Y1=So+P0+(So+kP0)I~'i. (2)

The term k is the funds-generating coefficient. This represents an adjustment to
compensate for the difference between the period of our model (say one year)
and the average delay between receipt of premiums and payment of policyholder
claims.’

The value Y, is allocated to various claimholders in a set of payoffs having the
characteristics of call options. The payoffs to policyholders, H;, and government,
T, are given in the next two equations:®

H, = max(min[L, Y], 0) 3)
Tl = maX[T(a(Yl - YO) + PO - E)y 0]7 (4)

where the variable L represents the insurer’s end-of-period claims costs and 7 is
the corporate tax rate. The effective tax rate on the insurer’s investment income
is considerably less than 7 in view of the insurer’s holding of tax-exempt
securities, the somewhat lower capital-gains rate, and the 85-percent shield of
dividend income for corporations. The effective tax rate on investment income,
therefore, is denoted 67.* Since these claims either directly or indirectly involve
the valuation of call options, the appropriate expressions for the values of these

! Depending upon the type of risk being insured, the time lag between the receipt of the premium
and payment of the claim can vary considerably. For example, most casualty insurance lines are
characterized by claim delays of less than one year, whereas most liability lines have claim delays of
more than one year. Consequently, for every dollar of premiums written, lines of insurance with
longer claim delays generate more investable funds than insurance lines with shorter claim delays.
Therefore, the “funds-generating coefficient” can be interpreted as the average amount of investable
funds per dollar of annual premiums. This type of adjustment is also used in the papers by Hill [15],
Fairley [9], Biger and Kahane [1], and Hill and Modigliani [16].

2 We view shareholders as holding a long position in a call option on the pretax terminal value of
the insurer’s asset portfolio and a short position in a call option on the taxable income derived from
that portfolio. Consequently, policyholders hold a long position in the pretax terminal value of the
insurer’s asset portfolio and a short position in the call option written on that portfolio, while the
government holds a!long position in the call option written against the insurer’s taxable income.
Similar characterizations have been used for modeling nonfinancial firms (e.g., cf. Black and Scholes
[2], Galai and Masulis [13], Galai [12], Majd and Myers [19]).

3 Since our purpose in this section of the paper is to provide as general a formulation of the
problem as possible, we initially place explicit lower bounds of zero on both H; and 71, so as to allow
for limited liability. In other words, should a poorly endowed state of nature be revealed at the end
of the contracting period, the worst possible outcome for policyholders is one in which they receive
no settlement on their claims. Similarly, our restriction on the cash flow associated with the
government’s tax claim ensures that it does not provide tax rebates to unprofitable firms; viz., at
worst, the government does not receive any tax revenues. Subsequently, when we build a model in
which we assume that both 7; and L are normally distributed random variables, this lower bound will
still need to be observed. However, in the lognormal formulation, this bound will obviously be
redundant.

49 is a factor of proportionality defined over the interval [0, 1]. This parameter is functionally
related to the composition of the insurer’s investment portfolio. For example, if the investment
portfolio is comprised of strictly tax-exempt securities, then § = 0. Conversely, if only fully taxable
claims such as corporate bonds and U.S. Treasury securities are chosen, then 6 = 1.
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claims are given as follows:

H, = V(Yl) - C(Yﬁ I:) (5)
To = 7C[0(Yy — Yo) + Po; L], (6)

where

V(-) = the valuation operator;
R;=1 + r;, where r; is the riskless interest rate;’
C[A; B] = the current market value of a European call option written on an
asset with a terminal value of A and exercise price of B.

The market value of the residual claim of the shareholders, Ve, is simply the
difference between the market value of the asset portfolio, V(Y;), and the sum
of the values of the policyholders’ and government’s claims, viz.,

V.= V(Y1) — [Ho + To]
= C[Yy; I:] - TC[B(Y/'] = Yo) + Py; f,]
= C1 - TCz. (7)

The regulatory problem may now be couched in straightforward terms. Insur-
ance prices must be set such that a “fair” return is delivered to shareholders.
This will be achieved if the current market value of the equity claim V, is equal
to the initial equity investment S,. Noting that Y, and Y, are functions of Py,
we can state the fair rate of return as that implied by a value of P# that satisfies
the following equation:

V. = C[Y1(P¥); L] — 7C[6(Y,(P¥) — Yo(P})) + P§; L]
=Ct - 1C}
= So. (8)

The solution of equation (8) for P§ requires the use of an appropriate option-
pricing framework, which we present next. Since the payoffs on these call options
depend upon the outcomes of the two random variables # and L, our analysis
requires the valuation of options with stochastic exercise prices.

II. Implicit Solutions for the Fair Rate of Return

In this section of the paper, we present two special cases of the previous section’s
more general formulation. Specifically, we derive pricing relationships based

® Since we only consider corporate income taxation, the riskless rate of interest is simply the
before-tax rate of interest on riskless bonds (e.g., T-bills). However, in the presence of personal and
corporate taxes, it is not entirely clear whether the riskless rate of interest is the before-tax rate of
interest on riskless bonds or the certainty-equivalent municipal bond rate. If investors are able to
“launder” all of their personal taxes a la Miller and Scholes [20], then r; will continue to be defined
as the before-tax rate of interest on riskless bonds. However, if investors are not able to launder taxes
on investment income, then the certainty-equivalent municipal bond rate is the appropriate rate. For
a lucid discussion of these points, see Hamada and Scholes [14].
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upon the discrete-time, risk-neutral-valuation framework pioneered by Rubin-
stein [25]. In both cases, we make use of Rubinstein’s [24] representative investor
device; viz., we assume that the conditions for aggregation are met so that
securities are priced as if all investors have the same characteristics as a
representative investor. In addition to the aggregation assumption, we shall
assume for the first model that a) the wealth of the representative investor, the
rate of return on the insurer’s asset portfolio, and the aggregate value of the
insurer’s claims costs are jointly normally distributed and b) the utility function
of the representative investor exhibits constant absolute risk aversion (CARA).
The derivation of the second model similarly requires the use of the representative
investor device but replaces the distributional and preference assumptions with
joint lognormality and constant relative risk aversion (CRRA). Brennan [4] has
shown that CARA (CRRA) is a necessary and sufficient condition for pricing
bivariate contingent claims in discrete time when the price of the underlying
asset is normally (lognormally) distributed, while Stapleton and Subrahmanyam
[29] have shown that the Brennan results can also be extended to the pricing of
multivariate contingent claims such as are being considered here.

Although we could have chosen alternative sets of distributional assumptions,
we find it convenient to work with joint-normal and lognormal variates for two
reasons. The primary advantage of assuming joint normality is that we are able
to derive models of insurance pricing that are directly comparable to the existing
set of CAPM’s and APT-based models. Thus, when we perform our simulation
experiments, we are able to determine the relative importance of default risk and
tax-shield redundancy in the determination of “fair” insurance prices. As we
stated earlier, such effects typically have not been addressed in the CAPM’s and
APT-based models. Unfortunately, the assumption that investors’ utility func-
tions exhibit constant absolute risk aversion is rather restrictive.® Furthermore,
actual claims-cost distributions are probably better described by skewed proba-
bility distributions such as the lognormal than by symmetric probability distri-
butions such as the normal. In view of these considerations, we also offer a model
of insurance pricing based upon joint lognormality and constant relative risk
aversion.

A. Case 1: Joint Normality and Constant Absolute Risk Aversion

Before we value the two call options described in the previous section, we will
first determine the level of premium income P, and rate of return on underwriting
E(#,) that would obtain in a competitive, default-free setting in which all tax
shields are fully utilized. Under our joint normal and CARA assumptions, we can
express the value of equity as the discounted value of the certainty-equivalent

In a study of Federal Reserve data on consumer financial characteristics, Friend and Blume [10]
discovered that the percentage of wealth typically invested in risky assets remains virtually unchanged
over very different wealth levels. This finding implies that consumers’ utility functions exhibit
constant relative risk aversion and, consequently, decreasing absolute risk aversion. The same authors
[11] also used IRS data to replicate portfolios with power utility functions. As in the study using Fed
data, the empirics in the IRS study suggest that the typical investor’s utility function exhibits
decreasing absolute risk aversion and constant relative risk aversion.



1036 The Journal of Finance

terminal cash flow, viz.,

= Rj'E(Y.), 9)
where
. ~~e = random cash flow accruing to shareholders at the end of the period;
[(lf ) = “risk-neutral” normal density function;’
E(Y,) =the certainty- equivalent expectation of Y.

=E(Y.) = X cov(Y., Fn);
X\ = the market price of risk
= [E(Fm) — 17)/om;
cov(-) = the covariance operator.

The certainty-equivalent expectation of terminal cash flow accruing to share-
holders, E(Y,), is given by equation (10):

E(Y.) = So + (1 — 6r)EF)(So + kPo) + (1 — 7)(P, — E(L)), (10)
where

E(F;) = the certainty-equivalent expectation of rate of return on the insurer’s
investment portfolio
=E(F;) — X cov(Fy, ) =1y
E@)= certainty-equivalent expectation of total claims costs
=E(L) — X cov(L, 7).

By substituting the right-hand side of equation (10) into equation (9), setting
So equal to V., and simplifying, we derive the following analytic expressions for

" As shown by Brennan [4] and Stapleton and Subrahmanyam [29], a “risk-neutral” density
function is a density function with the location parameter chosen so that the mean of the distribution
is its certainty equivalent. In the case of a multivariate risk-neutral density function, the same result
holds for the location parameters of the marginal distributions.

8 In view of the problems associated with accurately estimating cov(Z, r,,.), an alternative expression
for E(L) can be derived by assuming that the relationship between L and 7, can be adequately
accounted for by the common relationship I has with 7, via its relationship to 7;, viz.,

cov(L, 7)e2,

cov(L, Frn) = o7 )

Y 2 R Y
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premium income and the rate of return on underwriting:

E(L)

T (1-ER)’ an

Po

where
E(F.) = [Po — E(E)]/Po

B (1 - 67)

1= re + X cov(Fy, Fin). (11a)

07
kry + (Ve/Po) a-n

Hill and Modigliani derive a comparable expression for E (7,) using the Sharpe-
Lintner-Mossin CAPM, and a similar relationship is derived by Fairley.

Next, we value the call options described in equation (7). The value of the first
call option, C;, may be written as the discounted certainty-equivalent expectation
of the terminal before-tax value of equity, viz.,

Cl = C[Yh I:]

= Rf_l J: J: max[(Yl - E), O]f(Yl, I~,) dY1 df/, (12)

where f(Y:, L) is the bivariate risk-neutral density function governing the
realization of the normal variates Y, and L. Examining equation (12), it is obvious
that, if the terminal before-tax value of equity is positive, shareholders will own
a valuable claim. However, if equity assumes a negative value, shareholders will
exercise their “limited-liability option” by declaring bankruptcy.

Next, we simplify equation (12) by defining a normal variate X = Y; — L, with
certainty-equivalent expectation E(X) = E(Y;) — E(L) = Sy + (So + kPo)rs +
P, — E(L), and variance o2 = (So + kPy)%s? + o} — 2(So + kPo)cov(L, ;). This
transformation allows us to rewrite our option value as the solution to

C, = Rj! f Xf(X) dX. (13)

Since X is normally distributesl, equation (13) may be rewritten in terms of the
standard normal variate Z = (X — E(X))/o,; hence,

o

Cl = Rf_l (2#)_1/2 f

[EX) + 0.3]e7¥" ds. (14)
—-E(X)/o,

Using the properties of the truncated normal distfib}ltion and of the standard
normal variate, together with the expressions for E(X) and o,, the value of the
call can be written in the following form:

C: = RPN (EX)N[E(X)/o.] + o.n[EX)/s.]), (15)
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where

N [E (X )/o.] = the standard normal distribution evaluated at £ X) /0432
n[E(X)/s.] = the standard normal density evaluated at E(X)/o,.

The value of the second call option, C,, may be written as the discounted
certainty-equivalent expectation of the insurer’s terminal taxable income, viz.,

Ce = Cl0(Y: = Yo) + Po; L]

= R;? f f max[0(Y, — Yo) + Po — L, 017 (Y1, L) dY, df.. (16)

Examining equation (16), it is obvious that, if the terminal value of taxable
income is positive, the government will own a valuable claim. However, if taxable
income assumes a negative value, shareholders will exercise their “tax-exemption
option.” Thus, our model allows certain states of nature to arise in which
shareholders’ claims are less valuable due to the redundancy of tax shields related
to the realization of investment losses, underwriting losses, or both.

Next, we simplify equation (16) by defining a normal variate W = §(Y; — Yj)
+ P — L, with certamty -equivalent expectatlon E(W) =0(S, + kPo)r; + Py —
E(L), and variance o2 = (So + kPo)%0%6% + o3 — 2(S, + kP,)6 cov(L, 7;). This
transformation allows us to rewrite our option value as the solution to

Cs =R,‘IJ; WFH(W) dW. (17)

Using identical analysis to that shown above, the value of the second call option
is derived as

C: = R (E(W)NIE(W)/6,) + o,n[E(W)/s,)), (18)
where

N [E(W) /o, ] = the standard normal distribution evaluated at E(W)/ 0,3
n[E(W)/o,)] = the standard normal density evaluated at £ (W)/ow.

Substituting the right-hand sides of equations (15) and (18) into equation (7),
we obtain an analytic expression for the market value of equity:

V=R (EX)N[E(X)/o.]— E(W)N[E(W)/5,]
+0.n[E(X)/o.] - r0,n[E(W)/a,]). (19)

®The term N[E(X)/s,] may be interpreted as the pretax certainty-equivalent terminal value of
one dollar invested in the firm, provided the firm remains solvent. Because N [E X )/a.] is in effect a
“risk-neutral” cumulative distribution function, it understates the solvency probability by the amount
of risk-bearing costs borne per dollar of income generated in solvent states of nature, viz., by the
difference N[E(X )/o:] — N [E(X)/0s]).
19 The term N| [E(W)/a.,,] may be interpreted as the certainty-equivalent terminal value of one
dollar of taxable income, provided that tax shields are fully utilized. Because N[E(W)/o,] is in effect
“risk-neutral” cumulative distribution function, it understates the probability of taxation by the
amount of risk-bearing costs borne per dollar of taxable income generated in taxable states of nature,
viz., by the difference N[E(W)/a,] — N[E(W)/0.].
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An implicit solution for the value of P§ that satisfies the fair-return criterion
implied by equation (8) may be obtained by employing an appropriate algorithm.

B. Case 2: Joint Lognormality and Constant Relative Risk Aversion

Next, we consider the valuation of the options described in equation (7) under
the joint lognormal and CRRA assumptions. As in the joint-normal-with-CARA
case, we will first determine the level of premium income and rate of return on
underwriting that would obtain in a competitive, default-free setting in which all
tax shields are fully utilized. As shown by Rubinstein [25], the equilibrium price
of the jth risky security that trades in a discrete-time lognormal securities
market, V), must obey the following pricing relationship:

Vi = RE(Y])
= R,‘lE(Y'{ Jexp{—y cov[ln E;, In R,.]}, (20)
where

Y! = end-of-period cash flow paid to the holder of security j;
¥ = the representative investor’s relative risk aversion parameter
=E(n R, —InR 1

N var(ln R,,) 2’
,Bj =1+ ;‘j;

R,=1+ Fn.

Equation (20) allows us to specify the relationship between the certainty-equiv-
alent expectation of the insurance firm’s claims costs, E(L), and the expected
value of claims costs, E (L), as follows:

E(L) = E(L)exp{—y cov[In L, In R,.]}. (21)

Next, we incorporate equation (21) into our derivation of an analytic expression
for premium income and the competitive rate of return on underwriting in a
default-free setting in which all tax shields are fully utilized. By substituting the
right-hand side of equation (10) into equation (9), setting S, equal to V., and
simplifying, we derive the following expressions:

__EWd)
Po==EG) ®2)
where
. < (1—-07) or ) . N
E(F,)=1-{1+ kry— (V./P,) relexp{y cov[inL,InR,]}. (22a)
1-7) 1-17)

Next, we value the call options described in equation (7). The value of the first
call option, C;, may be written as

C = C[Yﬂ E]

= R;‘f f max[(Y; — L), 0)¢(Yy, L) dY: dL, (23)
0 0
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where g (Y1, L) is defined as the bivariate risk-neutral density function governing
the realization of the lognormal variates Y, and L. By defining a new random
variable U = Y, — L + P,, we can rewrite equation (23) as

C, = Rj* J; (U - Po)2(0) dU, (24)
0
where U is a lognormal variate with risk-neutral density g0
Changing the random variable U to the standardized normal variate Z and

simplifying yield
C,=VY f («/Z_r)'lexp<—aﬁ + Zg, — % 52) dz
—d,

- R/'P, f_ , (@?)-lexp<— 52> dz, (25

DO | =

where

V¥ = the contemporaneous value of the claim U

= V& — VE+ Rj'Po=So + Ri'Py(2 + kr,) — VE;
VE=R7'E(L)

= R;'E(L)exp{—y cov[ln L, In R,,1};
d¥=In(VY/Py) + In R, + 6%/2

Oy

d2U = d%] = Oy,
0. = the standard deviation of the natural logarithm of U
=[o2+ ¢} — 2 cov(ln ¥, In L)]*/?;
o, = the standard deviation of the natural logarithm of Yi;
o, = the standard deviation of the natural logarithm of L.

Rewriting equation (25) in terms of cumulative standard normal distribution
functions yields an expression that is analogous to the familiar Black-Scholes
call-option formula:

C, = V{N(dY) — Ri'PoN(d?), (26)

where N(dY) is the standard normal distribution function evaluated at dV.*?
Next, we consider the valuation of the tax claim, C,. The value of this option
may be written as the discounted certainty-equivalent expectation of the insurer’s

' The solution procedure used here follows that of Stapleton and Subrahmanyam [29, pp. 223-

DA "MThA ~acrm e + +hat thaca as1tlhAase ct1evrvmnct com Carmtomantana 10 v D999 AfC +h it avtinla cavrmliace Kaws o sern 11,
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Table I
Model Parameterization: The Base Case
Initial Equity (So) 100.00
Funds-Generating Coefficient (k) 1.00
Standard Deviation of Investment Returns (o;) 0.20
Expected Claims Costs (E(L)) 200.00
Standard Deviation of Claims Costs (o1) 50.00
Correlation Between Investment Returns/Claims Costs (p;1) 0.00
Riskless Rate of Interest (r;) 0.07
Statutory Tax Rate (7) 0.46
Tax-Adjustment Parameter (6) 0.50
Beta of Investment Portfolio (8,) 0.338
Expected Return on the Market (E(f.)) 0.15
Standard Deviation of Market Return (o) 0.224

terminal taxable income, viz.,
C, = Cla(?l = Yo) + Py; I:]

= R f f max[0(Y, — Yo) + Po — L, 013(Y,, L) d¥, df.  (27)
0 0

By defining a new random variable 7' = 6(Y; — Y,) + 2P, — L, we can rewrite
equation (27) as

C.= R | (0= Poach ar. 28)

Using analysis identical to that shown above, the value of the second call option
is derived as'®

C. = VIN(@{) — R;*P,N(d7), (29)
where

V{ = the contemporaneous value of the claim 7'
= R,‘_llo(S() + kP())rf + ZP())] - ()L,
df =In(V{/P,) + In R; + a?/2_

Ot

di =di - Ot;
o; = the standard deviation of the natural logarithm of T
= [63s, + 0% — 2 cov(In[0(Y; — Yo)], In L)]"2; 5
05y = the standard deviation of the natural logarithm of 6(Y; — Yj).

Substituting the right-hand sides of equations (26) and (29) into equation (7),
we obtain an analytic expression for the market value of equity:

V. = V{N(dY) = rViN(d{) — Ri'Po(N(dY) — 7N(d7)). (30)

13 The term N(dJ) that appears in equation (29) may be given the same interpretation as the
N[E(W)/o,] term from equation (18); viz., this term represents the certainty-equivalent terminal
value of one dollar of taxable income, provided that tax shields are fully utilized.
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PANEL A: VARY LEVEL OF INITIAL EQUITY
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PANEL B: VARY FUNDS GENERATING COEFF
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Figure 1. Plots of the Effects of Changes in Model Parameters upon the Equilibrium Rate of
Return on Underwriting for a Property-Liability Insurer
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PANEL C: VARY S.D. OF INVESTMENT RET.
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PANEL D: VARY S.D. OF CLAIMS COSTS
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‘Figure 1 (cont.). Plots of the Effects of Changes in Model Parameters upon the Equilibrium
Rate of Return on Underwriting for a Property-Liability Insurer.
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PANEL E: VARY RISKLESS RATE OF INTEREST
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PANEL F: VARY TAX PARAMETER THETA

0.03
0.02

0.01 —

-0.01 +
—0.02
—0.03
—0.04 +
—0.05
—0.06

—0.07

UNDERWRITING RATE OF RETURN

—0.08
—0.09 —

—0.1 -

-0.11

-0.12 . , . ’ . . ' .

0.2 0.4 0.6 0.8 1

o gt

THETA
] CAPM + OPM (NORMAL) < OPM (LOGNORMAL)

Figure 1 (cont.). Plots of the Effects of Changes in Model Parameters upon the Equilibrium
Rate of Return on Underwriting for a Property-Liability Insurer.
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An implicit solution for the value of P§ that satisfies the fair-return criterion

implied by equation (8) may be obtained by employing an appropriate algorithm.

Furthermore, the implicit solution P§ obtained from equations (19) and (30) may

be translated into fair underwriting profit rates E(7}) by the routine solution of
P¢ — E(L)

E(FE) = ~pr (31)

ITII. A Numerical Illustration

In this section we provide a numerical illustration that provides points of
comparison between the alternative option-based models developed here and the
regulatory CAPM. The option-based models were solved iteratively from equa-
tions (19) and (30), whereas the normal and lognormal CAPM’s were solved from
equations (11a) and (22a) after substituting for P, from equations (11) and (22).*
The solutions were derived from a set of parameters presented in Table I that
are intended as a crude representation of a short-tail (i.e., short settlement period
for losses) line of property-liability business. Table II and Figure 1 show the rates
of underwriting profit required to deliver a competitive rate of return on equity
over different ranges of values for the model parameters. Furthermore, we also
show the implied probabilities of insolvency and tax-shield redundancy for the
option-based models in Table II.

The points of interest include the following. In general, the option-based
models provide higher rates of underwriting profit than the CAPM. The most
useful comparison is between the normal CAPM results and those produced
under the joint-normal-with-CARA option-pricing model. Since the distribu-
tional assumptions are comparable, the differences in fair underwriting profit are
explained by the attention paid in our option-pricing model to the probabilities
of insolvency and redundant tax shields. Another point of interest is between the
insolvency and tax shield redundancy probabilities produced by the two option
models. It is well known in the actuarial literature that estimates of the proba-
bility mass in the extreme tail of a fitted distribution are highly sensitive to the
function form used, a fact borne out by our simulation results. Both normal and
lognormal density tunctions have been used to describe the insurer’s aggregate
loss distribution (cf. Cummins and Nye [6]), as well as other distributions. Since
the probabilities of insolvency and tax-shield redundancy are at issue, some
prudent curve fitting should influence the choice of regulatory model.

IV. Conclusion

We have developed a contingent-claim model for estimating the fair rate of return
for the property-liability insurance firm. This model offers an alternative regu-
latory device to the CAPM’s and APT-based models. Such an alternative is

! Since the results obtained with the lognormal CAPM do not differ materially from the results
obtained with the normal CAPM, only the latter model’s results are presented here.
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considered to be useful in light of the unsettled academic score regarding the
appropriate asset-pricing paradigm. Moreover, the proposed option model ad-
dresses the ruin probability of the insurer as well as the nonlinear effects of
corporate taxation.

Our model specifically applies to the property-liability insurance firm. The
features of this particular institution that lend it to an option-pricing application
are that its output is a contingent financial claim and that this claim is written
on an underlying asset for which a reasonable market value can be provided.
With the possible exception of deposit banking, such conditions do not necessarily
prevail in other regulated industries.

We will conclude with some qualifying comments on the use of option-based
models for insurance price regulation. The first concerns tax nonlinearities.
Previous models either ignore taxes (e.g., Kraus and Ross) or assume that the
corporate income tax is strictly proportional to corporate income. In effect, the
proportional-tax assumption implies that unused tax shields can be sold or
carried back and forward at their face value. In contrast, our model makes the
opposite assumption that unused tax shields expire worthless. Perhaps a more
accurate assumption would be that unused tax shields can be sold or carried back
and forward at somewhat less than their face value. Thus, the tax function would
still be nonlinear but not as concave as supposed here. While we have not
addressed the intermediate approach, it clearly lends itself to the option-modeling
techniques developed here.’* Another problem is that it is not clear from current
regulatory practices just how unused tax shields should be treated. This uncer-
tainty gives some advantage to the present model since it is possible to generate
a proportional tax as a special case by simply assuming that the probability of
tax-shield redundancy is negligible.

A second qualification concerns the application of the regulatory model to
individual lines of business. Like most other regulatory models, it is designed to
solve the fair return for the firm as though it offered a single line of insurance.
The problem in providing simultaneous solutions for multiple lines is that
insurers hold common equity and assets and incur common expenses over several
lines of business. Thus, the firm, and not the line of business, is valued by the
market. In practice, some arbitrary allocations can be made across lines to
produce answers, and this indeed is what is usually done. However, the current
use of option-pricing models hints at some problems of additivity; e.g., it is well
known that an option on a portfolio does not have the same value as a portfolio
of options. These issues are not addressed here. Therefore, like previous models,
our approach strictly applies only for a single-line insurer.

15 By using a single-period model, we have implicitly assumed away the possibility of the insurer
making use of tax-loss carrybacks and carryforwards (CB-CF), which could be introduced in a
multiperiod framework. Although we cannot provide a formal demonstration of the effects of CB-CF
provisions on insurance pricing, the effects can nevertheless be inferred from our model. Since tax-
shield redundancy effectively increases the burden of the corporate tax on the insurer, this burden
will be passed on to policyholders via higher insurance prices and underwriting rates of return, ceteris
paribus. However, since the effect of CB-CF provisions is to reduce this tax burden, their existence
implies lower insurance prices and underwriting rates of return, ceteris paribus. The interested reader
is referred to the recent paper by Majd and Myers [19], which numerically simulates the valuation
effects of CB-CF provisions in a contingent-claims setting.
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