# **Chapter 25** Currents, Resistance, and Electromotive Force

- Electric current
- Resistance and Resistivity
  - Ohm's Law
- Electric motive force
  - **Battery**
  - Simple circuits
  - Energy and power in circuits







## **Electric Current**



### **Electric Current**

• The presence of electric field leads to a force on a free charge:  $\vec{F} = q\vec{E}$ 

The motion of charges leads to an electric current:



SI unit: Coulomb/second = Ampere
1 A = 1 C/s

The same current can be produced by motion of positive charge or negative charge.



#### **Current: microscopic view** Current can be related to the drift velocity of moving charges:

$$I = \frac{dQ}{dt} = n \mid q \mid v_d A$$

n is the number of free charges per unit volume.

**Define current density:** 

$$J = \frac{I}{A} = n \mid q \mid v_d$$



$$\vec{J} = nq\vec{v}_d$$

#### Example 25.1: how fast is the electron drifting ?

- An 18-gauge copper wire of 1.02 mm in diameter carries a current of 1.67 A. Determine
  - Current density in the wire
  - Drift velocity of free electrons

(Assume that one electron per Cu atom is free to move.)

a)  $A = \pi r^2 = 8.17 \times 10^{-7} m^2$  $J = I / A = 1.67/8.17 \times 10^{-7} = 2.04 \times 10^6 A/m^2$ 

b) The mass of one Cu atom is 63.5 u. The mass density of Cu is 8.9 x 10<sup>3</sup> kg/m<sup>3</sup>. So the number density of electrons is

$$n = \frac{8.9 \times 10^3}{63.5 \times 1.6605 \times 10^{-27}} = 8.4 \times 10^{28} / \text{m}^3$$

$$v_d = \frac{J}{ne} = \frac{2.04 \times 10^6}{8.4 \times 10^{28} \times 1.6 \times 10^{-19}} = 1.5 \times 10^{-4} \,\mathrm{m/s} = 0.15 \,\mathrm{mm/s}$$

### More current ...

- So in the wire, electrons move (drift) very slowly: on the order of 0.1 mm/s. Thus, to move 1 meter they need about 3 hours !
- Question: If the electrons move so slowly through the wire, why does the light go on right away when we flip a switch?





Because the electric field inside the wire travels much faster

Electric field travels at the speed of light!

### ConcepTest 25.1

If you have a battery, a light bulb, and only one wire, which is the correct way to light the bulb?

### **Electric currents**

- (1) case 1
- (2) case 2
- (3) case 3
- (4) all are correct
- (5) none are correct



## Resistance and Resistivity



#### Resistivity

• The electric field is directly proportional to the current density in the wire.

- ρ is called resistivity
  - a measure of how much resistance there is for a charge in a material

$$\vec{E} = \rho \vec{J}$$

#### SI unit: V.m/A = Ω. m

#### Table 25.1 Resistivities at Room Temperature (20°C)

|            | Substance                        | $\rho(\Omega \cdot m)$ | Substance              | $\rho(\Omega \cdot m)$ |
|------------|----------------------------------|------------------------|------------------------|------------------------|
| Conductors | Semiconductors                   |                        |                        |                        |
| Metals:    | Silver                           | $1.47 \times 10^{-8}$  | Pure carbon (graphite) | $3.5 \times 10^{-5}$   |
|            | Copper                           | $1.72 \times 10^{-8}$  | Pure germanium         | 0.60                   |
|            | Gold                             | $2.44 \times 10^{-8}$  | Pure silicon           | 2300                   |
|            | Aluminum                         | $2.75 \times 10^{-8}$  | Insulators             |                        |
|            | Tungsten                         | $5.25 \times 10^{-8}$  | Amber                  | $5 \times 10^{14}$     |
|            | Steel                            | $20 	imes 10^{-8}$     | Glass                  | $10^{10} - 10^{14}$    |
|            | Lead                             | $22 \times 10^{-8}$    | Lucite                 | $>10^{13}$             |
|            | Mercury                          | $95 \times 10^{-8}$    | Mica                   | $10^{11} - 10^{15}$    |
| Alloys:    | Manganin (Cu 84%, Mn 12%, Ni 4%) | $44 \times 10^{-8}$    | Quartz (fused)         | $75 \times 10^{16}$    |
|            | Constantan (Cu 60%, Ni 40%)      | $49 \times 10^{-8}$    | Sulfur                 | $10^{15}$              |
|            | Nichrome                         | $100 \times 10^{-8}$   | Teflon                 | $>10^{13}$             |
|            |                                  |                        | Wood                   | $10^8 - 10^{11}$       |

#### Copyright $\textcircled{\sc 0}$ 2004 Pearson Education, Inc., publishing as Addison Wesley.

- A perfect conductor has zero resistivity. A perfect insulator has infinite resistivity
- The reciprocal of resistivity (1/ρ) is called conductivity.

#### **Temperature dependence of Resistivity**

• The resistivity of a material depends on *temperature*.





#### Table 25.2 Temperature Coefficients of Resistivity (Approximate Values Near Room Temperature)

| Material          | α[(°C) <sup>-1</sup> ] | Material | $\alpha [(^{\circ}C)^{-1}]$ |
|-------------------|------------------------|----------|-----------------------------|
| Aluminum          | 0.0039                 | Lead     | 0.0043                      |
| Brass             | 0.0020                 | Manganin | 0.00000                     |
| Carbon (graphite) | -0.0005                | Mercury  | 0.00088                     |
| Constantan        | 0.00001                | Nichrome | 0.0004                      |
| Copper            | 0.00393                | Silver   | 0.0038                      |
| Iron              | 0.0050                 | Tungsten | 0.0045                      |



#### **Color Coding for Resistors**

#### Table 25.3 Color Codes for Resistors

| Value as Digit | Value as Multiplier                |
|----------------|------------------------------------|
| 0              | 1                                  |
| 1              | 10                                 |
| 2              | $10^{2}$                           |
| 3              | 10 <sup>3</sup>                    |
| 4              | $10^{4}$                           |
| 5              | 10 <sup>5</sup>                    |
| 6              | 10 <sup>6</sup>                    |
| 7              | 107                                |
| 8              | 10 <sup>8</sup>                    |
| 9              | 10 <sup>9</sup>                    |
|                | Value as Digit 0 1 2 3 4 5 6 7 8 9 |



Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

- first two bands are digits
- the 3<sup>rd</sup> band is power-of-ten multiplier
- the 4<sup>th</sup> band is the precision
  - no 4<sup>th</sup> band means 20% uncertainty, silver 10%, gold 5%
- What is resistance of the resistor shown in the picture?

yellow-violet-orange-silver means  $47 \times 10^3 \Omega$ , give or take  $470 \Omega$ .

### ConcepTest 25.2 Ohm's law

- You double the voltage across a certain conductor and you observe the current increases four times. What can you conclude?
- (1) Ohm's law is obeyed since the current increases when V increases
- (2) Ohm's law is not obeyed
- (3) This has nothing to do with Ohm's law

## **Electromotive Force**



#### **Electromotive Force (emf)**

- To sustain a current flow, there must be a source that can convert other forms of energy into electric potential energy
  - batteries
  - electric generators
  - solar cells
  - **>** ...



Source of emf connected to a complete circuit: electric-field force  $\vec{F_e}$ has a smaller magnitude than non-electrostatic force  $\vec{F_n}$ 

Phys 2435: Chap. 24, Pg 15

• The voltage such a source produces is called an emf, denoted by  $\succeq$ .

Terminal voltage:

$$V_{ab} = \mathcal{E}$$
 (perfect)

$$_{Ib} = \mathcal{E} - Ir$$
 (internal resistance)

#### **Simple Circuits**

#### Table 25.4 Symbols for Circuit Diagrams



Resistor



Source of emf (longer vertical line always represent the positive terminal, usually the terminal with higher potential)

Source of emf with internal resistance r (r can be placed on either side)

Voltmeter (measures potential difference between its terminals)

Ammeter (measures current through it)

Conductor with negligible resistance

## capacitor

Idealized Voltmeter: infinite resistance

Idealized Ammeter: zero resistance

Copyright @ 2004 Pearson Education, Inc., publishing as Addison Wesley.





#### **Energy and Power in Electric Circuits**

The work done to move charge dQ = I dt across a potential difference of V<sub>ab</sub> is dW = V<sub>ab</sub> dQ = V<sub>ab</sub> I dt. Therefore the power delivered is

$$P = IV_{ab}$$

For a pure resistor that obeys V=IR, one can write

$$V_a \qquad V_b$$
Circuit
element
$$a \qquad b$$

t @ 2004 Pearron Education Inc

$$P = IV_{ab} = I^2 R = \frac{V_{ab}^2}{R}$$

#### **Example: power counting in a circuit**



- Power of energy conversion in the battery is  $\mathcal{E}$  I= 12 x 2 = 24 W
- Power loss in the internal resistor is  $l^2 r = 4x^2 = 8 W$
- Power output of the battery is 24-8 = 16 W
- Power loss in the outside resistor is I<sup>2</sup> R = 4x4 = 16 W

### ConcepTest 25.3

#### The picture shows an open circuit. What's the reading on the Voltmeter and Ammeter? (1) Vat=12 V, I=0 A

(1) 
$$V_{ab} = 12$$
 V, I = 0 A  
(2)  $V_{ab} = 0$  V, I=6 A  
(3)  $V_{ab} = 12$  V, I=6 A  
(4)  $V_{ab} = 0$  V, I=0 A

(5) None of these



emf

### ConcepTest 25.4

For long wires, the resistance of power lines becomes significant. To transmit maximum power, is it better to transmit *high V, low I* or *high I, low V*?

#### **Power Lines**

- a) high V, low I
- b) low V, high I
- c) makes no difference