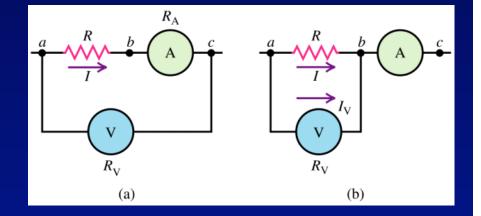

Chapter 26: Direct-Current Circuits (Part 2)

Electrical measuring instruments (con'd)
RC circuits
Electrical Safety

Electrical Measuring Instruments

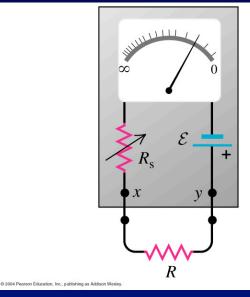


Example: Impact of Ammeter and Voltmeter on measurements

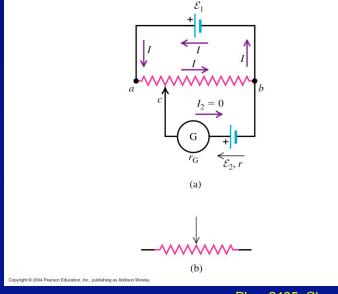
- Let's do the numbers.
 - Ammeter reading 0.1 A, resistance $R_A = 2.0 \Omega$.
 - Voltmeter reading 12.0 V, resistance $R_v = 10 k\Omega$

ldeal case (R_A=0, R_V=∞): R=V/I=12/0.1=120 Ω

Case (a): voltage across R is less than 12V. $R_a=(12-0.1*2.0)/0.1=118 \Omega$

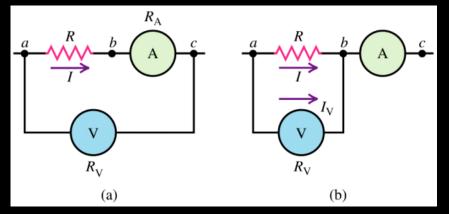

Case (b): Current in R is less than 0.1 A. $R_b=12/(0.1-12/10000)=121 \Omega$

Small difference, but must be taken into account in precision measurements.


Open between x and y, no deflection ($R=\infty$). Short between x and y: full-deflection (R=0). Any R in between is read directly.

A known voltage is balanced by sliding the contact c until the current through the unknown emf is zero: $\mathcal{E}_2 = IR_{cb}$

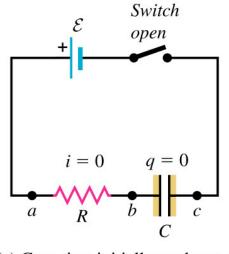
Ohmmeter


Potentiometer

ConcepTest 26.4

Ammeter and Voltmeter

In the two circuits to measure an unknown resistance by R=V/I, the readings on the A and the V-meters are the same. Taking the resistance of the A and V-meters into account, what can you say about the resistance actually measured in each case?


1) $R_a > R_b$ **2)** $R_a < R_b$ **3)** $R_a = R_b$

What happens if we add a capacitor in a DC circuit?

- Consider a charging circuit as shown.
- Charge will start to flow to the capacitor.
 - A current (recall i=dq/dt) flows in the circuit
- Voltage across the capacitor will increase
 - recall V=q/C
- The current decreases, eventually comes to a stop.
- Now the capacitor has maximum charge Q=CE
- Now everything is quiet.

Switch

(a) Capacitor initially uncharged

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

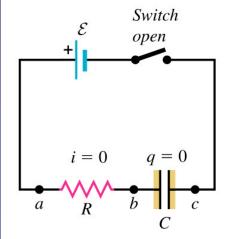
(b) Charging the capacitor

How to put it in more precise terms?

RC Circuit: charging

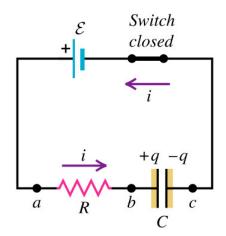
Apply loop rule:

$$\varepsilon - iR - \frac{q}{C} = 0$$


This is a differential equation for q (with the initial condition q=0 at t=0):

$$R\frac{dq}{dt} + \frac{q}{C} - \boldsymbol{\mathcal{E}} = 0$$

Solution:


$$q(t) = C \boldsymbol{\mathcal{E}} \left(1 - e^{-t/RC} \right)$$

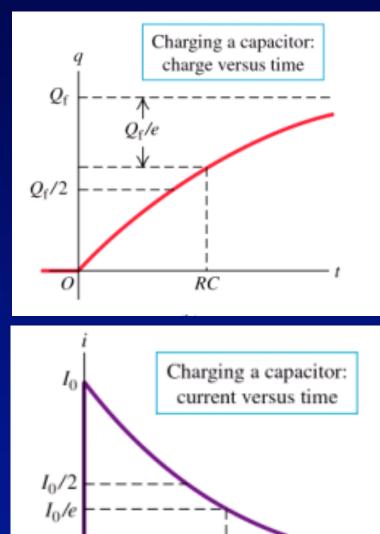
t/RC

(a) Capacitor initially uncharged

Convright @ 2004 Pearson Education. Inc. publishing as Addison Wesle

(b) Charging the capacitor

Conclusion: a) Exponential time dependence b) Time constant RC=T


Example: For R=10 k Ω and C=5 μ F, the time constant is 50 ms.

RC Circuit: charging

$$q(t) = C \boldsymbol{\mathcal{E}} \left(1 - e^{-t/RC} \right)$$

At t=RC, charge increases to 63% of its maximum value. (recall e=2.713)

0

RC

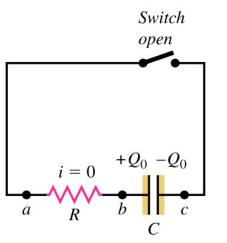
O

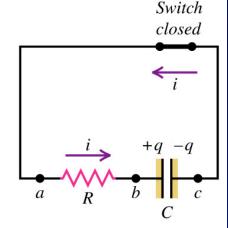
$$i(t) = \frac{aq}{dt} = \frac{c}{R} e^{-t/RC}$$

At t=RC, current decreases to 37% of its maximum value.

RC Circuit: discharging

Apply loop rule:


$$-iR - \frac{q}{C} = 0$$


This is a differential equation for q (with the initial condition $q=Q_0$ at t=0):

$$R\frac{dq}{dt} + \frac{q}{C} = 0$$

Solution:

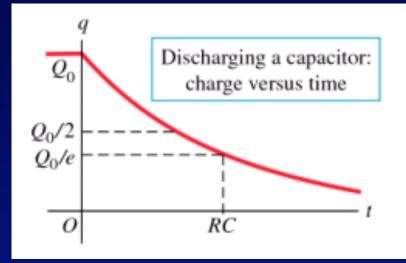
$$i(t) = \frac{dq}{dt} = -\frac{Q_0}{RC} e^{-t/RC}$$

(a) Capacitor initially charged

Copyright @ 2004 Pearson Education, Inc., publishing as Addison Wesley

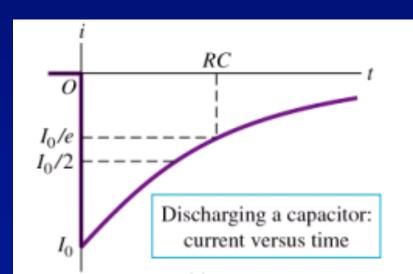
(b) Discharging the capacitor

Conclusion:

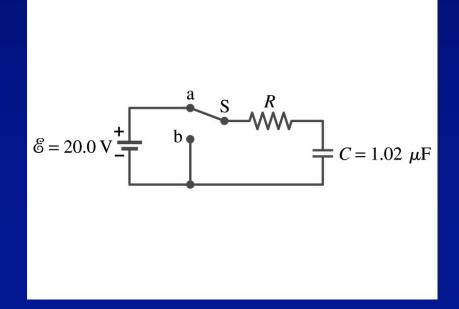

a) Same exponential time dependence

b) Same time constant RC=T

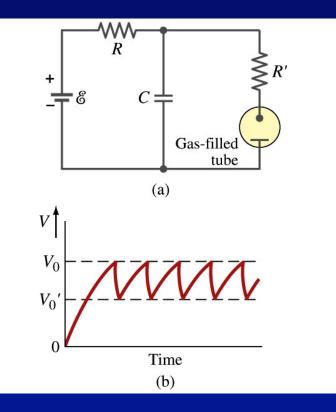
RC Circuit: discharging


$$q(t) = Q_0 e^{-t/RC}$$

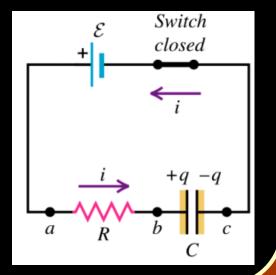
At t=RC, charge decreases to 37% of its maximum value.


$$i(t) = \frac{dq}{dt} = -\frac{Q_0}{RC}e^{-t/RC}$$

At t=RC, current increases to 37% of its maximum value.


Example: discharging RC circuit

- In the RC circuit shown, the battery has fully charged the capacitor. Then at t=0, the switch is thrown from a to b. The current is observed to decrease to ½ of its initial value in 40µs.
 - What is R?
 - What is Q, the charge on the capacitor, at t=0?
 - What is Q at t=60µs


Application of RC Circuits

- The time dependence and time constant τ=RC for charging and discharging provides a means to change voltage with a adjustable frequency: the sawtooth voltage
 - automobile turn signal
 - intermittent wiper
 - traffic flashing light
 - heart pacemaker
 - and more

ConcepTest 26.5 RC Circuits

- In charging a capacitor, how much total energy (in terms of E, R, C) is delivered by the battery?
 - (a) \mathbf{E}^2 / R (b) \mathbf{E}^2 / (2R) (c) $C\mathbf{E}^2$ (d) $C\mathbf{E}^2$ / 2

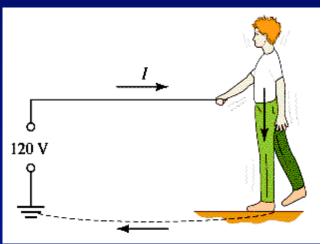
ConcepTest 26.6

• In the circuit shown, the switch is first thrown to position a to charge the capacitor, then to position b to discharge it. What is the relationship between the charging time constant (τ_1) and discharging time constant (τ_2) ?

RC Circuits 2R 2R 2R 2R R/2 R/2R/2

(a)
$$\tau_1 < \tau_2$$
 (b) $\tau_1 = \tau_2$ (c) $\tau_1 > \tau_2$

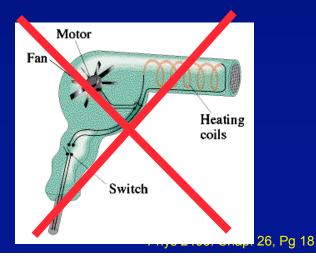
Electrical Safety



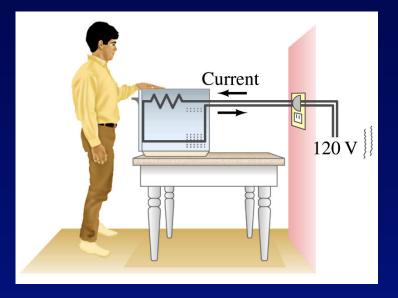
Injuries through Electricity

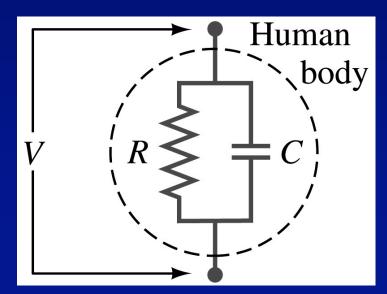
If we touch a charged conductor:
 potential difference between conductor and ground
 your body becomes a part of the circuit for current!

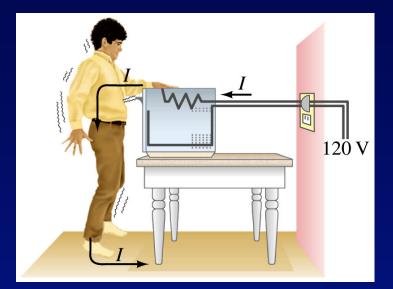
Extent of injury depends on current flow through your body

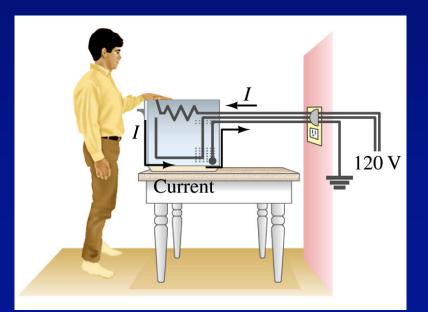


 $R = 0.5 \times 10^{6} \Omega \quad (for dry skin) \implies I = 0.24 mA$ $R = 0.5 \times 10^{4} \Omega \quad (for wet skin) \implies I = 24 mA$


Injuries through Electricity


<u>Current</u>	<u>Effect</u>	Fatal?
1 mA	mild shock	no
5 mA	painful	no
10 mA	paralysis of motor muscles	no
20 mA	breathing stops	minutes
100 mA	heart stops	seconds
1000 mA	serious burns	instantly

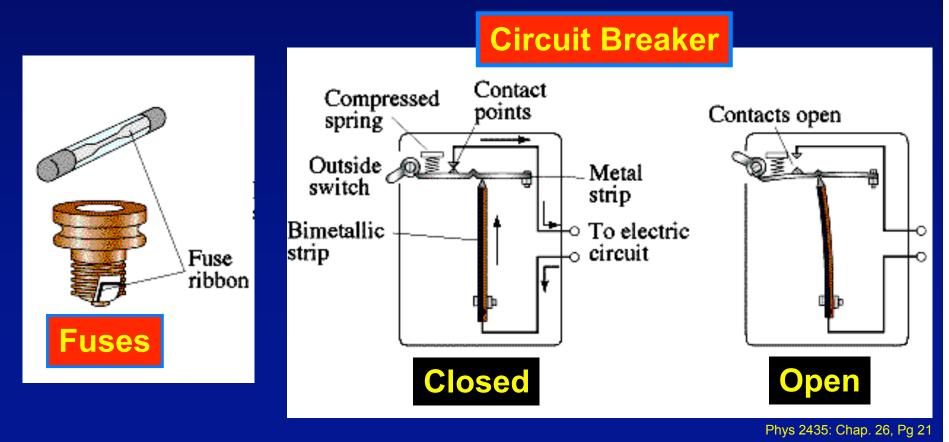

So don't dry your hair in the bathtub!



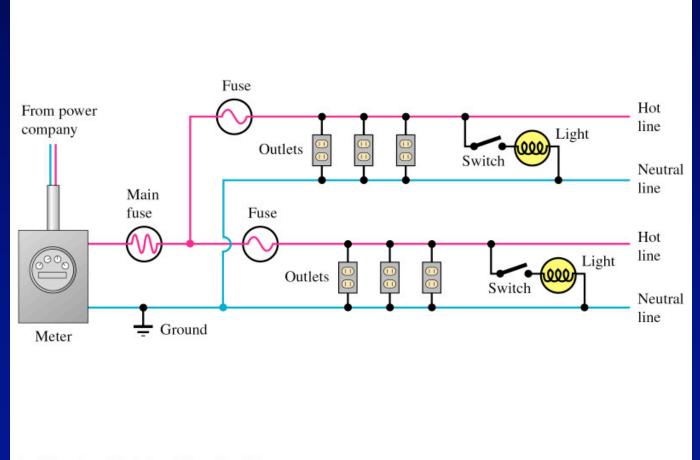
Grounding of Devices

Artificial Respiration

 A current of around 70 mA passing through the body for a second or more can cause the heart to beat irregularly (ventricular fibrillation)


If it lasts long, death results.

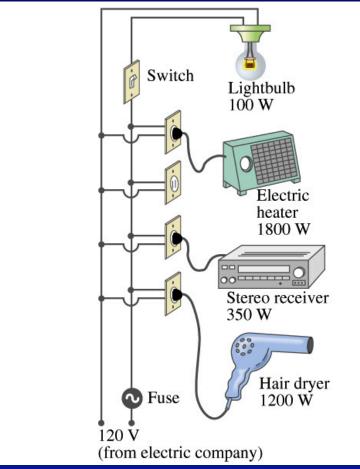
 A much larger current of about 1 A can bring the heart to a standstill. Upon release of the current, the heart returns to its normal rhythm. This shock may not be a bad thing.


Defibrillator: a device to restart the heart by applying a high voltage (therefore high current) shock.

Fuses and Breakers

- Too many devices in the circuit can require more current than the wires can handle -- overheating of wires is a fire hazard !
- If an electric circuit gets "overloaded" (too much current) fuses or circuit breakers interrupt the flow of current.

Power Distribution System



Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley.

Example: Will the fuse blow?

 The circuit shown is designed for a 20-A fuse. Determine the total current drawn by all the devices shown in the circuit.

I = P / V100/120=0.8 A 1800/120=15 A 350/120=2.9 A 1200/120=10 A The total is 28.7 A. So it blows if all the devices are used at the same time.

