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Exam 2 is coming !Exam 2 is coming !

 Tues., March 21, 12:30 to 1:55 pm, in this room.
 Covering 5 chapters (27-31)
 18 multiple-choice questions (just as before)

 15 conceptual/numerical problems, 1 point each
 3 questions are numerical (like homework problems) - 2 pts.
 I will pass out formula5 sheets at the exam. Please familiarize yourself with it.

Any constants needed will be given. (Only the equations up to “AC Circuits” will
come into play.)

 Personalized exams
 I will enter the grade on your Mastering Physics account (“Exam 2”).

 Recovery points
 Set 2 on  sPH2435-04 opens March 22 (Weds., noon) and closes March 24 (Fri.,

11:59 pm). Use the “old interface”.
 You need a 4-digit CAPA ID to access it. Will get this from on-class exam.
 You must try to recover everything, not just the ones you missed. You must get a

higher grade on the recovery exam to get any points added to your class score.
 What can I bring to the exam?

 Pencil
 eraser
 calculator
 That’s all (no cell phones for example)
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Exam 2 coverageExam 2 coverage

 Chapter 27: Magnetic Field and Forces
  Magnets
  Magnetic Force

 Chapter 28: Sources of Magnetic Field
 Biot-Savart Law
 Ampere’s law

 Chapter 29: Electromagnetic Induction
 Induced EMF and applications
 General form of Faraday’s Law

 Chapter 30: Inductance
 Mutual and Self-inductance
 Energy storage and DC Circuits

 Chapter 31: Alternating Current
 AC Circuits
 Resonance and Transformers

7 lectures (including 
this one)
6 homework sets
6 quizzes
1 exam

About 1/3 of the work
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Chapter 27: Magnetic Field andChapter 27: Magnetic Field and
ForcesForces

 Magnets and Magnetic Fields
 Magnetic Force (Lorentz Force)
 force on a moving charge
 force on a current in a wire
 torque on a current loop
 mass spectrometer
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MagnetismMagnetism
 Natural magnets were observed by Greeks more than 2500

years ago in “Magnesia” (northern Greece)
 certain type of stone (lodestone) exert forces on similar

stones
 Small lodestone suspended with a string aligns itself in

a north-south direction due to EarthEarth’’s magnetic field!s magnetic field!

Direction of Magnetic FieldDirection of Magnetic Field

in to

page

out of

pagehead

tail
Drawing vectors in
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The Magnetic ForceThe Magnetic Force
 What happens if you put a charged particle in a magnetic field?

   it experiences a  magnetic force  magnetic force!  (Lorentz force)

Fmagnetic  =  q v B sinθ

 Direction is “sideways”
 force is perpendicular to both v and B!

 BvqF
!!!

!=

 Vector cross product

 Magnitude depends on
 Charge q

 Velocity v

 Field B

 Angle between v and B

B

Fmag

v
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Direction of the Magnetic ForceDirection of the Magnetic Force

v

F

B

  Use the right-hand rule:
 point your fingers along

the direction of velocity
 curl your fingers towards

the magnetic field vector
 your thumb will then

point in the direction of
the force

 BvqF
!!!

!=

  Reverse direction if it’s a negative charge!
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Radius of Circular OrbitRadius of Circular Orbit
magnetic force:

centripetal force:

⇒

⇒

x  x  x  x  x  x
x  x  x  x  x  x
x  x  x  x  x  x

v

F

B

qFv

R

x  x  x  x  x  x
x  x  x  x  x  x
x  x  x  x  x  x

This is an important result:
It relates atomic quantities (m
and q) to quantities we can
measure (R, v, B)  in a lab.
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Magnetic Force on a Current-Carrying WireMagnetic Force on a Current-Carrying Wire

BlIF
!!!

!=

The right-hand-rule
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Torque on a Current LoopTorque on a Current Loop

 The potential energy is

BU

!!
!"= µ

B

!!!
!= µ"

 Then the torque can be written as
a vector cross product

ANI
!"

=µ

• Define magnetic dipole moment
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Mass SpectrometerMass Spectrometer

 Bending in a magnetic field

  Velocity selector
    q E  =  q v B
    v  =  E / B

 Only those particles with
v can pass through.

€ 

qvB'= mv2 /r

ErqBBm /'=



Phys 2435: Chap. 27-31, Pg 11

Chapter 28: Sources of MagneticChapter 28: Sources of Magnetic
FieldField

 Biot-Savart Law
 moving charge
 a straight wire
 force between parallel wires
 current loops

 Ampere’s Law
 straight wire
 solenoid
 toroidal solenoid
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Biot-SavartBiot-Savart Law -  Law - Moving ChargeMoving Charge

2

0
ˆ

4 r

rvq
B

!
=

!
!

"

µ

µ0=4πx10-7 T.m/A  is
called permeability of free
space

2

0
sin

4 r

qv
B

!

"

µ
=

€ 

where  ˆ r  is the unit vector from the source point 
to the field point.
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Biot-SavartBiot-Savart Law -  Law - CurentCurent Segment Segment

2

0
ˆ

4 r

rlId
Bd

!
=

!
!

"

µ

  Question: how to find B field (both direction and
magnitude) due to a current segment ?

!
"

=
2

0
ˆ

4 r

rlId
B

!
!

#

µ

The total magnetic field
is an integral over the
entire wire:

2

0
ˆ

4 r

rvq
B

!
=

!
!

"

µ
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Example: straight wireExample: straight wire
  Set up the coordinate system

as shown. The field at point P
due to a small segment:

 The direction is the same from
any segment, so the total is

For a long wire (a ∞):
x

I
B

!

µ

2

0=

2
0 sin

4 r
dyIdB

φ
π

µ=

( ) 22
0

2/322
0 2

24 axx
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xdyIB

a

a +
=

+
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− π
µ
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Force Between Two Parallel Current-Carrying WiresForce Between Two Parallel Current-Carrying Wires

 Field at wire 2
due to wire 1:

 Force on
wire 2:

 Force per unit length:

d
B π

µ=
2

1
1

I0

L
d

LBF π
µ==
2

21
122

III 0

dL
F

π
µ=
2

212 II0
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Example: a current loopExample: a current loop
  Set up the coordinate

system as shown. For
a point on the axis

  By symmetry, total B⊥
is zero, so total B=B||

2
0

4 r
dlIdB π

µ=

3

2
0

3
0

24
cos

r
aIdl

r
aI

r
adBdBdBB x

µ
π

µθ ===== ∫∫∫∫
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AmpereAmpere’’s Laws Law

  Ampere’s Law:
The line integral of the magnetic
field around any closed loop is
equal to µ0 times the total
current enclosed by the loop

 
0! ="
enclosed
IldB µ

!!

  Question: Is there a general relation between a
current in a wire of any shape and the magnetic
field around it?
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Example: a long straight wireExample: a long straight wire
  Consider a circular path of radius r around the wire.
 The plane of the path is perpendicular to the wire.

  By symmetry, the B field has
the same magnitude at every
point along the path, with a
direction tangential to the
circle by the right-hand-rule.

)2(0 rBdlBldBI πµ ∫ ∫ ==⋅=

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Example: SolenoidExample: Solenoid
  Consider a rectangular path as shown

  By symmetry, the only
non-zero contribution
comes from the
segment cd:

Where n = N / l is the number loops per unit length

∫ ∫ =⋅=⋅
d

c

BlldBldB


NIBl 0µ=
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Example: Example: ToroidalToroidal Solenoid Solenoid
  Inside:
    consider path 1

  Outside: consider path 2
 The net current passing through is zero

NIrB 0)2( µπ =

0)2( =rB π
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Chapter 29: ElectromagneticChapter 29: Electromagnetic
InductionInduction

 Magnetic Flux
 Induced EMF

 Faraday’s law
 Lenz’s law

 Motional EMF
 Applications of Induction

 generators
 motors

 Counter EMF
 Faraday Law (general form)
 Displacement Current and

Maxwell Equations
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Magnetic FluxMagnetic Flux
 Consider the B field lines

that pass through a surface
 define a quantity called

the magnetic flux Φ

Φ  ≡  B A cosθ

where θ  is angle between magnetic field B
and the normal to the plane.
 units of magnetic flux are  T.m2  =  Weber (Wb)

 Scalar product
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FaradayFaraday’’s Law of Inductions Law of Induction
LenzLenz’’s Laws Law

induced
 emf

rate of change
of flux with time

 minus sign comes from Lenz’s Law:

 The induced emf gives rise to a current whose
magnetic field opposes the original change in flux.

t
N B

Δ
ΔΦ−=ε
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Motional EMFMotional EMF
 Consider a conducting rod moving on metal rails in

an uniform magnetic field:

x

x  x  x  x  x  x  x  x  x
x  x  x  x  x  x  x  x  x
x  x  x  x  x  x  x  x  x
x  x  x  x  x  x  x  x  x

v L

 Current will flow counter-clockwise in this “circuit”

t
xBL

t
BLx

t
BA

t
B

Δ
Δ=

Δ
Δ=

Δ
Δ=

Δ
ΔΦ=ε )()(

BLv=ε
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Electric GeneratorsElectric Generators

 this leads to an alternating emf   (AC generator)

 Flux is changing in a sinusoidal manner:
 Φ  =  B A cos θ  =  B A cos (ω t)

 This is how most of our electricity is generated !!
 water or steam turns blades of a turbine which rotates a loop

)sin()cos( tNBA
dt

tdNBA
dt
dN B ωωωε ==Φ=
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     Motors

electrical ⇒ mechanical energy

AC current + B field → rotation

mechanical ⇒ electrical energy

rotation + B field → AC current

Generators
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Counter EMF in a motorCounter EMF in a motor
 The armture windings of dc motor have a resistance of 5.0 Ω. The motor

is connected to a 120-V line, and when the motor reaches full speed
against its normal load, the counter emf is 108 V. Calculate
 the current into the motor when it is just starting up
 the current when it reaches full speed.
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FaradayFaraday’’s Law (general form)s Law (general form)

! "= dlE#
dt

d
B

!
"=#

!
"

#=$
dt

d
dlE

B

The integral is taken around
the loop through which the
magnetic flux is changing.

 A changing magnetic flux produces an electric field.

It’s a non-conservative field, because 0!"= # dlE$
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MaxwellMaxwell’’s Displacement Currents Displacement Current

 Can we understand why we must have a “displacement current”?

• Consider applying Ampere’s Law
to the current shown in the
diagram.

• If the surface is chosen as 1,
2 or 4, the enclosed current = I

• If the surface is chosen as 3,
the enclosed current = 0! (ie
there is no current between
the plates of the capacitor)

Big Idea:  The added term is non-zero in this case, since the current I
causes the charge Q on the capacitor to change in time which causes
the Electric field in the region between the plates to change in time.  The
“displacement current” ID = ε0 (dφE/dt) in the region between the plates =
the real current I in the wire.

circuit
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MaxwellMaxwell’’s Displacement Currents Displacement Current

 The Electric Field E between the plates of the capacitor is determined by the
charge Q on the plate of area A: E = Q/(Aε0)

 What we want is a term that relates E to I without involving A.  The answer:  the
time derivative of the electric flux!!

Therefore, if we want ID = I, we need to identify:

 In order to have               for surface 2 to be equal to              for surface 3, we want
the displacement current  in the region between the plates to be equal  to the
current in the wire.

Recall flux:
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MaxwellMaxwell’’s Equationss Equations

Gauss’s law for electric field:
electric charges produce
electric fields.0

!

Q
AdE ="#
!!

0=!" AdB
!!

dt

d
ldE

B
!

"=#$
!!

dt

d
IldB

E
!

+="# 000
$µµ

!!

J. C. Maxwell (1831 - 1879)J. C. Maxwell (1831 - 1879)

Gauss’s law for magnetic field: 
but there’re no magnetic charges. 

Faraday’s law: changing B produces E. 

Ampere’s law as modified by Maxwell:
electric current or changing E
produces B.

All of electromagnetism is contained in this set of four equations.
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Chapter 30: InductanceChapter 30: Inductance

 Mutual Inductance
 Self-inductance
 Energy Stored in a Magnetic Field
 LR Circuits (DC)
 LC Circuits (DC)
 LRC Circuits (DC)
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Mutual InductanceMutual Inductance

1

212

21

I

N
M

!
=

The magnetic flux in coil 2 created by coil
1 is proportional to I1. Define

The SI unit for M is henry (H). 1 H = 1 V.s/A = 1 Ω.s

dt

dI
M

1

212
!="Faraday’s law:

M21 is called the mutual inductance. It depends only on the
geometric factors, NOT on the currents.

MMM ==
2112

dt

dI
M

2

121
!="

The reverse situation is
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Example: Solenoid and coilExample: Solenoid and coil
The magnetic field inside the solenoid is

1

1

0
I

l

N
B µ=

Hence the mutual inductance is

The magnetic flux through the coil is

AI
l

N
BA

1

1

021
µ==!

1

212

I

N
M

!
=

l

ANN
M

21

0
µ=
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Self-InductanceSelf-Inductance

I

N
L

B
!

=

The total magnetic flux in the coil is
proportional to the current I. Define

The SI unit for L is also henry (H). 1 H =1 Ω.s.

dt

dI
L!="Use Faraday’s law:

L is called self-inductance. It depends only on the geometric
factors, NOT on the current. Such coil is called an inductor.
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Example: Solenoid inductanceExample: Solenoid inductance
The magnetic field inside the solenoid is

I
l

N
B

0
µ=

Hence the self-inductance is

The total magnetic flux through the coil is

IA
l

N
BA

B 0
µ==!

or 
I

N
L

B
!

=

l

AN
L

2

0
µ=

For N=100, l=5 cm, A=0.3 cm2,  L=4π
x10-7x1002x0.3x10-4/0.05=7.5 µH.

If filled with an iron core (µ=4000 µ0 ),  L= 30 mH.
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Voltage across an inductorVoltage across an inductor
 Inductor does not oppose current that flows

through it. It opposes the change in the current.
 It’s a current stabilizer in the circuit.
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Energy Stored in a Magnetic FieldEnergy Stored in a Magnetic Field

When an inductor is carrying a current
which is changing at a rate dI/dt, the
energy is being supplied to the inductor at
a rate

dt

dI
LIIP == !

The work needed to increase the current
from 0 to I is

By energy conservation, the energy
stored in the inductor is

2

0
2

1
LILIdIPdtW

I

=== ! !

2

2

1
LIU =
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Energy Stored in a Magnetic FieldEnergy Stored in a Magnetic Field

Question: Where exactly does the energy
reside?

Answer: It resides in the magnetic field.

Or energy density

2

2

1
LIU =

l

AN
L

2

0 Using µ= I
l

N
B

0
 and µ=

Al
B

N

Bl
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0

2
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2

0

2

1
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1

µµ
µ =!!

"

#
$$
%

&
!!
"

#
$$
%

&
=

0

2

2

1

µ

B
u =

The conclusion is valid for any region of
space where a magnetic field exists.

2

2

1
CVU =

2

0

2

1
Eu !=Compare with the electric case:
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LR CircuitsLR Circuits

0 :rule loop 0 =!!
dt

dI
LIRV

Solve differential equation:

Where τ=L/R is called the
time constant.

( )  1)( /0 !t

R

V
etI
"

"=
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LR CircuitsLR Circuits

0 :rule loop =!!
dt

dI
LIR

Solve differential equation

Summary: there is always some reaction
time when a LR circuit is turned on or off.
The situation is similar to RC circuits,
except here the time constant is
proportional to 1/R, not R.

!/0)( t

R

V
etI
"

= time constant τ=L/R
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LC CircuitsLC Circuits
The capacitor is charged to Q0.
At t=0, the circuit is closed.
What will happen?

0
C

 :rule loop =!
dt

dI
L

Q

Solve differential equation   )tos()( 0 !" += cQtQ

Using I=-dQ/dt, one gets

0
2

2

=+
LC

Q

dt

Qd

  /1 LC=!
where
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LC CircuitsLC Circuits

Charge oscillates! So does the
current and voltage.

The total energy is conserved.

  )tos()( 0 !" += cQtQ

)(cos
22

1 2
2

0

2

!" +== t
C

Q

C

Q
UE

)(sin
22

1 2
2

02 !" +== t
C

Q
LIUB

What about  energy?

  )t(sin)( 0 !"" +#== Q
dt

dQ
tI
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LRC CircuitsLRC Circuits

+ -

Damped oscillations! 3 scenarios.

A) Under-damped if R2<4L/C.

C) Over-damped if R2>4L/C.
B) Critical damping if R2=4L/C.

L

CR

LC
T

4
1

22

2

!

=
"

=
#

$

#

)cos()( 2
0 !" +#=

$

teQtQ
t
L

R

For under-damping:
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Summary of Various Direct Current CircuitsSummary of Various Direct Current Circuits

RC circuit, time constant  τ = RC

LR circuit, time constant  τ = L/R

LC circuit, oscillation period

LRC circuit, damped oscillation period

 (transient)

 (transient)

 (oscillator)

 (damped oscillator)

LCT π2=

L
CRLCT

4
1/2

2

−= π
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Chapter 31: Alternating CurrentChapter 31: Alternating Current

 AC Circuits (using phasors)
 AC Circuit, R only
 AC Circuit, L only
 AC Circuit, C only
 AC Circuit with LRC

 Resonance
 Transformers
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RMS current and voltageRMS current and voltage

2
iI

rms
=

2
)2cos1(

2

1 2

0

2

0

22 I
tdt

T

I
dti

T
i
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=+== !! "

tIi !cos=
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I
I
rms

=

2

V
V
rms

=

root-mean-square:
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AC Circuit Containing only ResistanceAC Circuit Containing only Resistance

tIi !cos=The AC source is given as

The resistor voltage is in phase with the current.

So the voltage across
the resistor is tVtIRiRv

RR
!! coscos ===

The power dissipated in the resistor
is p=iv, or at an average rate

R

V
RIP

rms

rms

2

2
==
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AC Circuit Containing only InductorAC Circuit Containing only Inductor

The AC source is given

So the voltage across
the inductor is )90cos(sin 0

+=!== tVtIL
dt

di
Lv

LL
"""

Define reactance of inductor XL=ωL, then VL = I XL.
Its unit is Ohm.

The inductor voltage leads the current by 90 degrees.

tIi !cos=
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AC Circuit Containing only CapacitorAC Circuit Containing only Capacitor

The voltage across the capacitor is Cqv /=

Define reactance of capacitor XC=1/ωC, then VC = I XC. Its unit
is Ohm.

)90cos(sin 0

0

!=== " t
I

t
I

idtq

t

#
#

#
#

)90cos( 0
!= t

C

I
v
C

"
"

The capacitor voltage lags the current by 90 degrees.

tIi !cos=
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AC-driven LRC Circuit in SeriesAC-driven LRC Circuit in Series
(Graphical Method)(Graphical Method)

The goal is to cast the total
voltage at any time into the form

)cos( !" +=++= tVvvvv
CLR

22

22

22

)(

)()(

)(

CL

CL

CLR

XXRI

IXIXIR

VVVV

!+=

!+=

!+=

where φ is the phase angle with
which v leads i.

The impedance

From the
triangle:

The phase difference

tIi !cos=

Z

R
c

R

XX

XXRZIZV

CL

CL

=
!

=

!+==

"" osor   tan

)( with 22
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The Impedance TriangleThe Impedance Triangle

General results, valid for any 
combination of L, R, C in series.
For example, if LR circuit, set XC=0.Z

R
c

R

XX

C
X

LX

XXRZ

CL

C

L

CL

=
!

=

=

=

!+=

""

#

#

osor   tan

1

)( 22

0 R, Zso 0,X 0,X :only CL ==== !R

0

C 09 ,X Zso 0,X 0,R :only +==== !
L

L

0

L 09 ,X Zso 0,X 0,R :only !==== "
C

C

Check special cases:
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Frequency DependenceFrequency Dependence

Z

R
c

R

XX

C
X

LX

XXRZ

IZV
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=

=

=
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=

+=

=
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The Power FactorThe Power Factor

RIP
rms

2
=

 The power is only dissipated in the resistor, so 
the average power is

!cosZR =

!!! cos
2

1
coscos

2
IVVIZIP

rmsrmsrms
===

 The factor cosφ is called the power factor.

But

For example:
For a pure resistor (φ=0) , cosφ=1.
For a pure inductor (φ=900) or capacitor (φ=-900), cosφ=0.
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Resonance in AC CircuitResonance in AC Circuit

 For fixed R,C,L the current  I will be a maximum at the resonant frequency  ω0
which makes the impedance Z purely resistive.

So the frequency at which this condition is satisfied is given
from:

⇒

• Note that this resonant frequency is identical to the natural
frequency of the LC circuit by itself!

• At this frequency, the current and the driving voltage are in
phase!

Recall:

Z is minimum when:

( )22
CL XXR

V
Z
VI

−+
==

X XL C=

ω
ωo

o
L

C
= 1 ωo LC

= 1
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Resonance in AC CircuitResonance in AC Circuit
At resonance, I and V are in phase. V, I
and P are at their maximum.

(V=100 V, L=2.0 H, C=0.5 µF)
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TransformersTransformers
Transformers change alternating (AC) voltage to a bigger or
smaller value

Input AC voltage Vp
in the primary
produces a flux

Changing flux
in secondary
induces emf Vs

Same ΔΦ /Δt !!

Transformer equation: p

s
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TransformersTransformers
 Nothing comes for free, however!

 voltage increase comes at the cost of current
 output power cannot exceed input power
 power in  =  power out (assume no heat loss)

If voltage increases, then current decreases
If voltage decreases, then current increases

sspp VIVI =


