
Phys 2435: Chap. 27-31, Pg 1

Exam 2 is coming !Exam 2 is coming !

 Tues., March 21, 12:30 to 1:55 pm, in this room.
 Covering 5 chapters (27-31)
 18 multiple-choice questions (just as before)

 15 conceptual/numerical problems, 1 point each
 3 questions are numerical (like homework problems) - 2 pts.
 I will pass out formula5 sheets at the exam. Please familiarize yourself with it.

Any constants needed will be given. (Only the equations up to “AC Circuits” will
come into play.)

 Personalized exams
 I will enter the grade on your Mastering Physics account (“Exam 2”).

 Recovery points
 Set 2 on  sPH2435-04 opens March 22 (Weds., noon) and closes March 24 (Fri.,

11:59 pm). Use the “old interface”.
 You need a 4-digit CAPA ID to access it. Will get this from on-class exam.
 You must try to recover everything, not just the ones you missed. You must get a

higher grade on the recovery exam to get any points added to your class score.
 What can I bring to the exam?

 Pencil
 eraser
 calculator
 That’s all (no cell phones for example)
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Exam 2 coverageExam 2 coverage

 Chapter 27: Magnetic Field and Forces
  Magnets
  Magnetic Force

 Chapter 28: Sources of Magnetic Field
 Biot-Savart Law
 Ampere’s law

 Chapter 29: Electromagnetic Induction
 Induced EMF and applications
 General form of Faraday’s Law

 Chapter 30: Inductance
 Mutual and Self-inductance
 Energy storage and DC Circuits

 Chapter 31: Alternating Current
 AC Circuits
 Resonance and Transformers

7 lectures (including 
this one)
6 homework sets
6 quizzes
1 exam

About 1/3 of the work
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Chapter 27: Magnetic Field andChapter 27: Magnetic Field and
ForcesForces

 Magnets and Magnetic Fields
 Magnetic Force (Lorentz Force)
 force on a moving charge
 force on a current in a wire
 torque on a current loop
 mass spectrometer
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MagnetismMagnetism
 Natural magnets were observed by Greeks more than 2500

years ago in “Magnesia” (northern Greece)
 certain type of stone (lodestone) exert forces on similar

stones
 Small lodestone suspended with a string aligns itself in

a north-south direction due to EarthEarth’’s magnetic field!s magnetic field!

Direction of Magnetic FieldDirection of Magnetic Field

in to

page

out of

pagehead

tail
Drawing vectors in
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The Magnetic ForceThe Magnetic Force
 What happens if you put a charged particle in a magnetic field?

   it experiences a  magnetic force  magnetic force!  (Lorentz force)

Fmagnetic  =  q v B sinθ

 Direction is “sideways”
 force is perpendicular to both v and B!

 BvqF
!!!

!=

 Vector cross product

 Magnitude depends on
 Charge q

 Velocity v

 Field B

 Angle between v and B

B

Fmag

v
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Direction of the Magnetic ForceDirection of the Magnetic Force

v

F

B

  Use the right-hand rule:
 point your fingers along

the direction of velocity
 curl your fingers towards

the magnetic field vector
 your thumb will then

point in the direction of
the force

 BvqF
!!!

!=

  Reverse direction if it’s a negative charge!
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Radius of Circular OrbitRadius of Circular Orbit
magnetic force:

centripetal force:

⇒

⇒

x  x  x  x  x  x
x  x  x  x  x  x
x  x  x  x  x  x

v

F

B

qFv

R

x  x  x  x  x  x
x  x  x  x  x  x
x  x  x  x  x  x

This is an important result:
It relates atomic quantities (m
and q) to quantities we can
measure (R, v, B)  in a lab.
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Magnetic Force on a Current-Carrying WireMagnetic Force on a Current-Carrying Wire

BlIF
!!!

!=

The right-hand-rule
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Torque on a Current LoopTorque on a Current Loop

 The potential energy is

BU

!!
!"= µ

B

!!!
!= µ"

 Then the torque can be written as
a vector cross product

ANI
!"

=µ

• Define magnetic dipole moment
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Mass SpectrometerMass Spectrometer

 Bending in a magnetic field

  Velocity selector
    q E  =  q v B
    v  =  E / B

 Only those particles with
v can pass through.

€ 

qvB'= mv2 /r

ErqBBm /'=
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Chapter 28: Sources of MagneticChapter 28: Sources of Magnetic
FieldField

 Biot-Savart Law
 moving charge
 a straight wire
 force between parallel wires
 current loops

 Ampere’s Law
 straight wire
 solenoid
 toroidal solenoid
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Biot-SavartBiot-Savart Law -  Law - Moving ChargeMoving Charge

2

0
ˆ

4 r

rvq
B

!
=

!
!

"

µ

µ0=4πx10-7 T.m/A  is
called permeability of free
space

2

0
sin

4 r

qv
B

!

"

µ
=

€ 

where  ˆ r  is the unit vector from the source point 
to the field point.
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Biot-SavartBiot-Savart Law -  Law - CurentCurent Segment Segment

2

0
ˆ

4 r

rlId
Bd

!
=

!
!

"

µ

  Question: how to find B field (both direction and
magnitude) due to a current segment ?

!
"

=
2

0
ˆ

4 r

rlId
B

!
!

#

µ

The total magnetic field
is an integral over the
entire wire:

2

0
ˆ

4 r

rvq
B

!
=

!
!

"

µ
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Example: straight wireExample: straight wire
  Set up the coordinate system

as shown. The field at point P
due to a small segment:

 The direction is the same from
any segment, so the total is

For a long wire (a ∞):
x

I
B

!

µ

2

0=

2
0 sin

4 r
dyIdB

φ
π

µ=

( ) 22
0

2/322
0 2

24 axx
aI

yx
xdyIB

a

a +
=

+
= ∫

+

− π
µ

π
µ
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Force Between Two Parallel Current-Carrying WiresForce Between Two Parallel Current-Carrying Wires

 Field at wire 2
due to wire 1:

 Force on
wire 2:

 Force per unit length:

d
B π

µ=
2

1
1

I0

L
d

LBF π
µ==
2

21
122

III 0

dL
F

π
µ=
2

212 II0
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Example: a current loopExample: a current loop
  Set up the coordinate

system as shown. For
a point on the axis

  By symmetry, total B⊥
is zero, so total B=B||

2
0

4 r
dlIdB π

µ=

3

2
0

3
0

24
cos

r
aIdl

r
aI

r
adBdBdBB x

µ
π

µθ ===== ∫∫∫∫
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AmpereAmpere’’s Laws Law

  Ampere’s Law:
The line integral of the magnetic
field around any closed loop is
equal to µ0 times the total
current enclosed by the loop

 
0! ="
enclosed
IldB µ

!!

  Question: Is there a general relation between a
current in a wire of any shape and the magnetic
field around it?
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Example: a long straight wireExample: a long straight wire
  Consider a circular path of radius r around the wire.
 The plane of the path is perpendicular to the wire.

  By symmetry, the B field has
the same magnitude at every
point along the path, with a
direction tangential to the
circle by the right-hand-rule.

)2(0 rBdlBldBI πµ ∫ ∫ ==⋅=
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Example: SolenoidExample: Solenoid
  Consider a rectangular path as shown

  By symmetry, the only
non-zero contribution
comes from the
segment cd:

Where n = N / l is the number loops per unit length

∫ ∫ =⋅=⋅
d

c

BlldBldB


NIBl 0µ=
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Example: Example: ToroidalToroidal Solenoid Solenoid
  Inside:
    consider path 1

  Outside: consider path 2
 The net current passing through is zero

NIrB 0)2( µπ =

0)2( =rB π
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Chapter 29: ElectromagneticChapter 29: Electromagnetic
InductionInduction

 Magnetic Flux
 Induced EMF

 Faraday’s law
 Lenz’s law

 Motional EMF
 Applications of Induction

 generators
 motors

 Counter EMF
 Faraday Law (general form)
 Displacement Current and

Maxwell Equations
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Magnetic FluxMagnetic Flux
 Consider the B field lines

that pass through a surface
 define a quantity called

the magnetic flux Φ

Φ  ≡  B A cosθ

where θ  is angle between magnetic field B
and the normal to the plane.
 units of magnetic flux are  T.m2  =  Weber (Wb)

 Scalar product



Phys 2435: Chap. 27-31, Pg 23

FaradayFaraday’’s Law of Inductions Law of Induction
LenzLenz’’s Laws Law

induced
 emf

rate of change
of flux with time

 minus sign comes from Lenz’s Law:

 The induced emf gives rise to a current whose
magnetic field opposes the original change in flux.

t
N B

Δ
ΔΦ−=ε
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Motional EMFMotional EMF
 Consider a conducting rod moving on metal rails in

an uniform magnetic field:

x

x  x  x  x  x  x  x  x  x
x  x  x  x  x  x  x  x  x
x  x  x  x  x  x  x  x  x
x  x  x  x  x  x  x  x  x

v L

 Current will flow counter-clockwise in this “circuit”

t
xBL

t
BLx

t
BA

t
B

Δ
Δ=

Δ
Δ=

Δ
Δ=

Δ
ΔΦ=ε )()(

BLv=ε
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Electric GeneratorsElectric Generators

 this leads to an alternating emf   (AC generator)

 Flux is changing in a sinusoidal manner:
 Φ  =  B A cos θ  =  B A cos (ω t)

 This is how most of our electricity is generated !!
 water or steam turns blades of a turbine which rotates a loop

)sin()cos( tNBA
dt

tdNBA
dt
dN B ωωωε ==Φ=
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     Motors

electrical ⇒ mechanical energy

AC current + B field → rotation

mechanical ⇒ electrical energy

rotation + B field → AC current

Generators
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Counter EMF in a motorCounter EMF in a motor
 The armture windings of dc motor have a resistance of 5.0 Ω. The motor

is connected to a 120-V line, and when the motor reaches full speed
against its normal load, the counter emf is 108 V. Calculate
 the current into the motor when it is just starting up
 the current when it reaches full speed.
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FaradayFaraday’’s Law (general form)s Law (general form)

! "= dlE#
dt

d
B

!
"=#

!
"

#=$
dt

d
dlE

B

The integral is taken around
the loop through which the
magnetic flux is changing.

 A changing magnetic flux produces an electric field.

It’s a non-conservative field, because 0!"= # dlE$
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MaxwellMaxwell’’s Displacement Currents Displacement Current

 Can we understand why we must have a “displacement current”?

• Consider applying Ampere’s Law
to the current shown in the
diagram.

• If the surface is chosen as 1,
2 or 4, the enclosed current = I

• If the surface is chosen as 3,
the enclosed current = 0! (ie
there is no current between
the plates of the capacitor)

Big Idea:  The added term is non-zero in this case, since the current I
causes the charge Q on the capacitor to change in time which causes
the Electric field in the region between the plates to change in time.  The
“displacement current” ID = ε0 (dφE/dt) in the region between the plates =
the real current I in the wire.

circuit
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MaxwellMaxwell’’s Displacement Currents Displacement Current

 The Electric Field E between the plates of the capacitor is determined by the
charge Q on the plate of area A: E = Q/(Aε0)

 What we want is a term that relates E to I without involving A.  The answer:  the
time derivative of the electric flux!!

Therefore, if we want ID = I, we need to identify:

 In order to have               for surface 2 to be equal to              for surface 3, we want
the displacement current  in the region between the plates to be equal  to the
current in the wire.

Recall flux:
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MaxwellMaxwell’’s Equationss Equations

Gauss’s law for electric field:
electric charges produce
electric fields.0

!

Q
AdE ="#
!!

0=!" AdB
!!

dt

d
ldE

B
!

"=#$
!!

dt

d
IldB

E
!

+="# 000
$µµ

!!

J. C. Maxwell (1831 - 1879)J. C. Maxwell (1831 - 1879)

Gauss’s law for magnetic field: 
but there’re no magnetic charges. 

Faraday’s law: changing B produces E. 

Ampere’s law as modified by Maxwell:
electric current or changing E
produces B.

All of electromagnetism is contained in this set of four equations.
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Chapter 30: InductanceChapter 30: Inductance

 Mutual Inductance
 Self-inductance
 Energy Stored in a Magnetic Field
 LR Circuits (DC)
 LC Circuits (DC)
 LRC Circuits (DC)
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Mutual InductanceMutual Inductance

1

212

21

I

N
M

!
=

The magnetic flux in coil 2 created by coil
1 is proportional to I1. Define

The SI unit for M is henry (H). 1 H = 1 V.s/A = 1 Ω.s

dt

dI
M

1

212
!="Faraday’s law:

M21 is called the mutual inductance. It depends only on the
geometric factors, NOT on the currents.

MMM ==
2112

dt

dI
M

2

121
!="

The reverse situation is
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Example: Solenoid and coilExample: Solenoid and coil
The magnetic field inside the solenoid is

1

1

0
I

l

N
B µ=

Hence the mutual inductance is

The magnetic flux through the coil is

AI
l

N
BA

1

1

021
µ==!

1

212

I

N
M

!
=

l

ANN
M

21

0
µ=
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Self-InductanceSelf-Inductance

I

N
L

B
!

=

The total magnetic flux in the coil is
proportional to the current I. Define

The SI unit for L is also henry (H). 1 H =1 Ω.s.

dt

dI
L!="Use Faraday’s law:

L is called self-inductance. It depends only on the geometric
factors, NOT on the current. Such coil is called an inductor.
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Example: Solenoid inductanceExample: Solenoid inductance
The magnetic field inside the solenoid is

I
l

N
B

0
µ=

Hence the self-inductance is

The total magnetic flux through the coil is

IA
l

N
BA

B 0
µ==!

or 
I

N
L

B
!

=

l

AN
L

2

0
µ=

For N=100, l=5 cm, A=0.3 cm2,  L=4π
x10-7x1002x0.3x10-4/0.05=7.5 µH.

If filled with an iron core (µ=4000 µ0 ),  L= 30 mH.
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Voltage across an inductorVoltage across an inductor
 Inductor does not oppose current that flows

through it. It opposes the change in the current.
 It’s a current stabilizer in the circuit.
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Energy Stored in a Magnetic FieldEnergy Stored in a Magnetic Field

When an inductor is carrying a current
which is changing at a rate dI/dt, the
energy is being supplied to the inductor at
a rate

dt

dI
LIIP == !

The work needed to increase the current
from 0 to I is

By energy conservation, the energy
stored in the inductor is

2

0
2

1
LILIdIPdtW

I

=== ! !

2

2

1
LIU =
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Energy Stored in a Magnetic FieldEnergy Stored in a Magnetic Field

Question: Where exactly does the energy
reside?

Answer: It resides in the magnetic field.

Or energy density

2

2

1
LIU =

l

AN
L

2

0 Using µ= I
l

N
B

0
 and µ=

Al
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N

Bl
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U
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2
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1

µµ
µ =!!
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#
$$
%
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!!
"

#
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%

&
=

0

2

2

1

µ

B
u =

The conclusion is valid for any region of
space where a magnetic field exists.

2

2

1
CVU =

2

0

2

1
Eu !=Compare with the electric case:



Phys 2435: Chap. 27-31, Pg 40

LR CircuitsLR Circuits

0 :rule loop 0 =!!
dt

dI
LIRV

Solve differential equation:

Where τ=L/R is called the
time constant.

( )  1)( /0 !t

R

V
etI
"

"=
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LR CircuitsLR Circuits

0 :rule loop =!!
dt

dI
LIR

Solve differential equation

Summary: there is always some reaction
time when a LR circuit is turned on or off.
The situation is similar to RC circuits,
except here the time constant is
proportional to 1/R, not R.

!/0)( t

R

V
etI
"

= time constant τ=L/R
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LC CircuitsLC Circuits
The capacitor is charged to Q0.
At t=0, the circuit is closed.
What will happen?

0
C

 :rule loop =!
dt

dI
L

Q

Solve differential equation   )tos()( 0 !" += cQtQ

Using I=-dQ/dt, one gets

0
2

2

=+
LC

Q

dt

Qd

  /1 LC=!
where
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LC CircuitsLC Circuits

Charge oscillates! So does the
current and voltage.

The total energy is conserved.

  )tos()( 0 !" += cQtQ

)(cos
22

1 2
2

0

2

!" +== t
C

Q

C

Q
UE

)(sin
22

1 2
2

02 !" +== t
C

Q
LIUB

What about  energy?

  )t(sin)( 0 !"" +#== Q
dt

dQ
tI
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LRC CircuitsLRC Circuits

+ -

Damped oscillations! 3 scenarios.

A) Under-damped if R2<4L/C.

C) Over-damped if R2>4L/C.
B) Critical damping if R2=4L/C.

L

CR

LC
T

4
1

22

2

!

=
"

=
#

$

#

)cos()( 2
0 !" +#=

$

teQtQ
t
L

R

For under-damping:
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Summary of Various Direct Current CircuitsSummary of Various Direct Current Circuits

RC circuit, time constant  τ = RC

LR circuit, time constant  τ = L/R

LC circuit, oscillation period

LRC circuit, damped oscillation period

 (transient)

 (transient)

 (oscillator)

 (damped oscillator)

LCT π2=

L
CRLCT

4
1/2

2

−= π
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Chapter 31: Alternating CurrentChapter 31: Alternating Current

 AC Circuits (using phasors)
 AC Circuit, R only
 AC Circuit, L only
 AC Circuit, C only
 AC Circuit with LRC

 Resonance
 Transformers
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RMS current and voltageRMS current and voltage

2
iI

rms
=

2
)2cos1(

2

1 2

0

2

0

22 I
tdt

T

I
dti

T
i

TT

=+== !! "

tIi !cos=

2

I
I
rms

=

2

V
V
rms

=

root-mean-square:
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AC Circuit Containing only ResistanceAC Circuit Containing only Resistance

tIi !cos=The AC source is given as

The resistor voltage is in phase with the current.

So the voltage across
the resistor is tVtIRiRv

RR
!! coscos ===

The power dissipated in the resistor
is p=iv, or at an average rate

R

V
RIP

rms

rms

2

2
==



Phys 2435: Chap. 27-31, Pg 49

AC Circuit Containing only InductorAC Circuit Containing only Inductor

The AC source is given

So the voltage across
the inductor is )90cos(sin 0

+=!== tVtIL
dt

di
Lv

LL
"""

Define reactance of inductor XL=ωL, then VL = I XL.
Its unit is Ohm.

The inductor voltage leads the current by 90 degrees.

tIi !cos=
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AC Circuit Containing only CapacitorAC Circuit Containing only Capacitor

The voltage across the capacitor is Cqv /=

Define reactance of capacitor XC=1/ωC, then VC = I XC. Its unit
is Ohm.

)90cos(sin 0

0

!=== " t
I

t
I

idtq

t

#
#

#
#

)90cos( 0
!= t

C

I
v
C

"
"

The capacitor voltage lags the current by 90 degrees.

tIi !cos=
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AC-driven LRC Circuit in SeriesAC-driven LRC Circuit in Series
(Graphical Method)(Graphical Method)

The goal is to cast the total
voltage at any time into the form

)cos( !" +=++= tVvvvv
CLR

22

22

22

)(

)()(

)(

CL

CL

CLR

XXRI

IXIXIR

VVVV

!+=

!+=

!+=

where φ is the phase angle with
which v leads i.

The impedance

From the
triangle:

The phase difference

tIi !cos=

Z

R
c

R

XX

XXRZIZV

CL

CL

=
!

=

!+==

"" osor   tan

)( with 22
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The Impedance TriangleThe Impedance Triangle

General results, valid for any 
combination of L, R, C in series.
For example, if LR circuit, set XC=0.Z

R
c

R

XX

C
X

LX

XXRZ

CL

C

L

CL

=
!

=

=

=

!+=

""

#

#

osor   tan

1

)( 22

0 R, Zso 0,X 0,X :only CL ==== !R

0

C 09 ,X Zso 0,X 0,R :only +==== !
L

L

0

L 09 ,X Zso 0,X 0,R :only !==== "
C

C

Check special cases:
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Frequency DependenceFrequency Dependence

Z

R
c

R

XX

C
X

LX

XXRZ

IZV

tVv

tIi

CL
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L

CL
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=

=

=

!+=

=

+=

=

""
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)cos(
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The Power FactorThe Power Factor

RIP
rms

2
=

 The power is only dissipated in the resistor, so 
the average power is

!cosZR =

!!! cos
2

1
coscos

2
IVVIZIP

rmsrmsrms
===

 The factor cosφ is called the power factor.

But

For example:
For a pure resistor (φ=0) , cosφ=1.
For a pure inductor (φ=900) or capacitor (φ=-900), cosφ=0.
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Resonance in AC CircuitResonance in AC Circuit

 For fixed R,C,L the current  I will be a maximum at the resonant frequency  ω0
which makes the impedance Z purely resistive.

So the frequency at which this condition is satisfied is given
from:

⇒

• Note that this resonant frequency is identical to the natural
frequency of the LC circuit by itself!

• At this frequency, the current and the driving voltage are in
phase!

Recall:

Z is minimum when:

( )22
CL XXR

V
Z
VI

−+
==

X XL C=

ω
ωo

o
L

C
= 1 ωo LC

= 1

0 so  ,1cos === φφ
Z
R
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Resonance in AC CircuitResonance in AC Circuit
At resonance, I and V are in phase. V, I
and P are at their maximum.

(V=100 V, L=2.0 H, C=0.5 µF)
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TransformersTransformers
Transformers change alternating (AC) voltage to a bigger or
smaller value

Input AC voltage Vp
in the primary
produces a flux

Changing flux
in secondary
induces emf Vs

Same ΔΦ /Δt !!

Transformer equation: p

s
ps N

NVV =
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TransformersTransformers
 Nothing comes for free, however!

 voltage increase comes at the cost of current
 output power cannot exceed input power
 power in  =  power out (assume no heat loss)

If voltage increases, then current decreases
If voltage decreases, then current increases

sspp VIVI =


