Exam 2 is coming !

- Tues., March 21, 12:30 to 1:55 pm, in this room.
- Covering 5 chapters (27-31)
- 18 multiple-choice questions (just as before)
 - 15 conceptual/numerical problems, 1 point each
 - 3 questions are numerical (like homework problems) 2 pts.
 - I will pass out formula5 sheets at the exam. Please familiarize yourself with it. Any constants needed will be given. (Only the equations up to "AC Circuits" will come into play.)
 - Personalized exams
 - I will enter the grade on your Mastering Physics account ("Exam 2").
- Recovery points
 - Set 2 on sPH2435-04 opens March 22 (Weds., noon) and closes March 24 (Fri., 11:59 pm). Use the "old interface".
 - You need a 4-digit CAPA ID to access it. Will get this from on-class exam.
 - You must try to recover everything, not just the ones you missed. You must get a higher grade on the recovery exam to get any points added to your class score.
- What can I bring to the exam?
 - Pencil
 - eraser
 - calculator
 - That's all (no cell phones for example)

Exam 2 coverage

• Chapter 27: Magnetic Field and Forces

- Magnets
- Magnetic Force
- Chapter 28: Sources of Magnetic Field
 - Biot-Savart Law
 - Ampere's law
- Chapter 29: Electromagnetic Induction
 - Induced EMF and applications
 - General form of Faraday's Law
- Chapter 30: Inductance
 - Mutual and Self-inductance
 - Energy storage and DC Circuits
- Chapter 31: Alternating Current
 - AC Circuits
 - Resonance and Transformers

7 lectures (including this one)6 homework sets6 quizzes1 exam

About 1/3 of the work

Chapter 27: Magnetic Field and Forces

• Magnets and Magnetic Fields

- Magnetic Force (Lorentz Force)
 - force on a moving charge
 - force on a current in a wire
 - torque on a current loop
 - mass spectrometer

Magnetism

- Natural magnets were observed by Greeks more than 2500 years ago in "Magnesia" (northern Greece)
 - certain type of stone (lodestone) exert forces on similar stones
 - Small lodestone suspended with a string aligns itself in a north-south direction due to *Earth's magnetic field!*

Direction of Magnetic Field

The Magnetic Force

- What happens if you put a charged particle in a magnetic field?
 - it experiences a *magnetic force*! (Lorentz force)
- Magnitude depends on
 - Charge q
 - Velocity v
 - Field B
 - Angle between v and B
- Direction is "sideways"
 - force is perpendicular to both v and B!
- Vector cross product

Direction of the Magnetic Force

$$\vec{F} = q\vec{v} \times \vec{B}$$

 Use the right-hand rule:
 point your fingers along the direction of velocity

- curl your fingers towards the magnetic field vector
- your thumb will then point in the direction of the force

Reverse direction if it's a negative charge!

Magnetic Force on a Current-Carrying Wire

$$\vec{F} = I\vec{l} \times \vec{B}$$

The right-hand-rule

Torque on a Current Loop Define magnetic dipole moment NIA Ú $\vec{\mu}$ Then the torque can be written as a vector cross product $\mu = NIA$ $\vec{\tau} = \vec{\mu} \times B$ $(\perp \text{ to coil face})$ \mathbf{F}_1 The potential energy is Axis B $\boldsymbol{\infty}$ $-\vec{H}$ \mathbf{F}_{2}

 S_2

$$m = qBB'r/E$$

Chapter 28: Sources of Magnetic Field

- Biot-Savart Law
 - moving charge
 - a straight wire
 - force between parallel wires
 - current loops
- Ampere's Law
 - straight wire
 - solenoid
 - toroidal solenoid

Biot-Savart Law - Moving Charge

$$B = \frac{\mu_0}{4\pi} \frac{qv\sin\phi}{r^2}$$

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$

 $\mu_0 = 4\pi x 10^{-7}$ T.m/A is called permeability of free space

For these field points, \vec{r} and \vec{v} both lie in the tan-colored plane, and \vec{B} is perpendicular to this plane $\vec{B} = 0$ $\vec{B} = 0$

For these field points, \vec{r} and \vec{v} both lie in the orange-colored plane, and \vec{B} is perpendicular to this plane (a)

Copyright © 2004 Pearson Education, Inc., publishing as Addison Wesley

where \hat{r} is the unit vector from the source point

to the field point.

 \otimes

B

(b)

Biot-Savart Law - Curent Segment

 Question: how to find B field (both direction and magnitude) due to a current segment ?

$$\vec{B} = \frac{\mu_0}{4\pi} \frac{q\vec{v} \times \hat{r}}{r^2}$$
$$d\vec{B} = \frac{\mu_0}{4\pi} \frac{Id\vec{l} \times \hat{r}}{r^2}$$

The total magnetic field is an integral over the entire wire:

$$\vec{B} = \frac{\mu_0}{4\pi} \int \frac{Id\vec{l} \times \hat{r}}{r^2}$$

Example: straight wire

 Set up the coordinate system as shown. The field at point P due to a small segment:

$$dB = \frac{\mu_0 I}{4\pi} \frac{dy \sin \phi}{r^2}$$

The direction is the same from any segment, so the total is

$$B = \frac{\mu_0 I}{4\pi} \int_{-a}^{+a} \frac{x \, dy}{\left(x^2 + y^2\right)^{1/2}} = \frac{\mu_0 I}{2\pi} \frac{2a}{x\sqrt{x^2 + a^2}}$$

For a long wire $(a \rightarrow \infty)$:

Force Between Two Parallel Current-Carrying Wires

• Field at wire 2
due to wire 1:
$$B_{I} = \frac{\mu_{0}I_{I}}{2\pi d}$$

Force on wire 2:
$$F_2 =$$

$$\mathbf{F}_{2} = \mathbf{I}_{2} \mathbf{L} \mathbf{B}_{1} = \frac{\boldsymbol{\mu}_{0} \mathbf{I}_{1} \mathbf{I}_{2}}{2 \pi \mathbf{d}} \mathbf{L}$$

• Force per unit length:

$$\frac{F_2}{L} = \frac{\mu_0 I_1 I_2}{2\pi d}$$

Example: a current loop

 Set up the coordinate system as shown. For a point on the axis

$$dB = \frac{\mu_0 I}{4\pi} \frac{dl}{r^2}$$

By symmetry, total B_⊥
 is zero, so total B=B_{||}

$$B = \int dB_x = \int dB \cos \theta = \int dB \frac{a}{r} = \frac{\mu_0 I}{4\pi} \frac{a}{r^3} \int dl = \frac{\mu_0 I}{2} \frac{a^2}{r^3}$$

Ampere's Law

 Question: Is there a general relation between a current in a wire of any shape and the magnetic field around it?

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I_{enclosed}$$

 Ampere's Law: The line integral of the magnetic field around any closed loop is equal to μ₀ times the total current enclosed by the loop

Example: a long straight wire

- Consider a circular path of radius r around the wire.
 - The plane of the path is perpendicular to the wire.
- By symmetry, the B field has the same magnitude at every point along the path, with a direction tangential to the circle by the right-hand-rule.

$$\mu_0 I = \oint \vec{B} \cdot d\vec{l} = B \oint dl = B(2\pi r)$$
$$B = \frac{\mu_0 I}{2\pi r}$$

Example: Solenoid

- Consider a rectangular path as shown
- By symmetry, the only non-zero contribution comes from the segment cd:

$$\oint \vec{B} \cdot d\vec{l} = \int_{c}^{d} \vec{B} \cdot d\vec{l} = Bl$$

Where n = N / I is the number loops per unit length

Example: Toroidal Solenoid

Inside: consider path 1

$$B(2\pi r) = \mu_0 NI$$

$$B = \frac{\mu_0 NI}{2\pi r}$$

• Outside: consider path 2 • The net current passing through is zero $B(2\pi r) = 0$ B = 0

Chapter 29: Electromagnetic Induction

- Magnetic Flux
- Induced EMF
 - Faraday's law
 - Lenz's law
- Motional EMF
- Applications of Induction
 - generators
 - motors
- Counter EMF
- Faraday Law (general form)
- Displacement Current and Maxwell Equations

Magnetic Flux

- Consider the B field lines that pass through a surface
 - ♦ define a quantity called the magnetic flux Φ

 $\Phi \equiv \mathbf{B} \mathbf{A} \cos \theta$

where *θ* is angle between *magnetic field B* and the *normal to the plane*.

units of magnetic flux are T.m² = Weber (Wb)

Scalar product

$$\Phi_{B} = \vec{B} \cdot \vec{A}$$

Lenz's Law

induced emf rate of change of flux with time

minus sign comes from <u>Lenz's Law</u>:

The induced emf gives rise to a current whose magnetic field <u>opposes</u> the original <u>change in flux.</u>

Motional EMF

 Consider a conducting rod moving on metal rails in an uniform magnetic field:

$$|\mathbf{\mathcal{E}}| = \frac{\Delta \Phi_{B}}{\Delta t} = \frac{\Delta (BA)}{\Delta t} = \frac{\Delta (BLx)}{\Delta t} = BL \frac{\Delta x}{\Delta t}$$

• Current will flow counter-clockwise in this "circuit"

Electric Generators

• Flux is changing in a sinusoidal manner:

- $\Phi = B A \cos \theta = B A \cos (\omega t)$
- this leads to an <u>alternating emf</u> (AC generator)

$$\varepsilon = N \frac{d\Phi_B}{dt} = NBA \frac{d\cos(\omega t)}{dt} = NBA \omega \sin(\omega t)$$

This is how most of our electricity is generated !!
water or steam turns blades of a turbine which rotates a loop

Motors Generators

AC current + B field \rightarrow rotation rotation + B field \rightarrow AC current

 $electrical \Rightarrow mechanical energy$

mechanical \Rightarrow electrical energy

Counter EMF in a motor

 The armture windings of dc motor have a resistance of 5.0 Ω. The motor is connected to a 120-V line, and when the motor reaches full speed against its normal load, the counter emf is 108 V. Calculate

- the current into the motor when it is just starting up
- the current when it reaches full speed.

Faraday's Law (general form)

$$\varepsilon = -\frac{d\Phi_B}{dt}$$

$$\varepsilon = \oint E \cdot dl$$

The integral is taken around the loop through which the magnetic flux is changing.

$$\oint E \cdot dl = -\frac{d\Phi_B}{dt}$$

A changing magnetic flux produces an electric field.

It's a non-conservative field, because

$$\varepsilon = \oint E \cdot dl \neq 0$$

Maxwell's Displacement Current

Can we understand why we must have a "displacement current"?

• Consider applying Ampere's Law to the current shown in the diagram.

If the surface is chosen as 1,
2 or 4, the enclosed current = I

 If the surface is chosen as 3, the enclosed current = 0! (ie there is no current between the plates of the capacitor)

Big Idea: The added term is non-zero in this case, since the current I causes the charge Q on the capacitor to change in time which causes the Electric field in the region between the plates to change in time. The "displacement current" $I_D = \varepsilon_0 (d\phi_E/dt)$ in the region between the plates = the real current I in the wire.

Maxwell's Displacement Current

- In order to have ∮B dℓ for surface 2 to be equal to ∮B dℓ for surface 3, we want the displacement current in the region between the plates to be equal to the current in the wire.
- The Electric Field E between the plates of the capacitor is determined by the charge Q on the plate of area A: $E = Q/(A\varepsilon_0)$
- What we want is a term that relates E to I without involving A. The answer: the time derivative of the electric flux!!

ecall flux:
$$\phi_E = \oint E \cdot dS = \frac{1}{\varepsilon_0}Q$$
$$\frac{d\phi_E}{dt} = \frac{1}{\varepsilon_0}\frac{dQ}{dt} = \frac{1}{\varepsilon_0}I$$

R

Therefore, if we want $I_D = I$, we need to identify:

$$I_{\rm D} = \varepsilon_0 \frac{d\phi_{\rm E}}{dt}$$

$$\oint \vec{B} \bullet d\vec{\ell} = \mu_0 (I + I_D)$$

Maxwell's Equations

Gauss's law for electric field: electric charges produce electric fields.

J. C. Maxwell (1831 - 1879)

Gauss's law for magnetic field: but there're no magnetic charges.

$$\oint \vec{E} \cdot d\vec{l} = -\frac{d\Phi_B}{dt}$$

Faraday's law: changing B produces E.

$$\oint \vec{B} \cdot d\vec{l} = \mu_0 I + \mu_0 \varepsilon_0 \frac{d\Phi_E}{dt}$$

Ampere's law as modified by Maxwell: electric current or changing E produces B.

All of electromagnetism is contained in this set of four equations.

Chapter 30: Inductance

- Mutual Inductance
- Self-inductance
- Energy Stored in a Magnetic Field
- LR Circuits (DC)
- LC Circuits (DC)
- LRC Circuits (DC)

Mutual Inductance

The magnetic flux in coil 2 created by coil 1 is proportional to I_1 . Define

$$M_{21} = \frac{N_2 \Phi_{21}}{I_1}$$

 M_{21} is called the mutual inductance. It depends only on the geometric factors, NOT on the currents.

Faraday's law:

$$\varepsilon_2 = -N_2 \frac{d\Phi_{21}}{dt}$$

$$\boldsymbol{\varepsilon}_2 = -\boldsymbol{M}_{21} \frac{d\boldsymbol{I}_1}{dt}$$

The reverse situation is

$$\varepsilon_1 = -M_{12} \frac{dI_2}{dt}$$

$$M_{12} = M_{21} = M$$

The SI unit for M is henry (H). 1 H = 1 V.s/A = 1 Ω .s

Example: Solenoid and coil

The magnetic field inside the solenoid is

$$B = \mu_0 \frac{N_1}{l} I_1$$

The magnetic flux through the coil is

$$\Phi_{21} = BA = \mu_0 \frac{N_1}{l} I_1 A$$

Hence the mutual inductance is

$$M = \frac{N_2 \Phi_{21}}{I_1}$$

$$M = \mu_0 \frac{N_1 N_2 A}{l}$$

Use Faraday's law: $\mathcal{E} = -N \frac{d\Phi_B}{dt}$ $\mathcal{E} = -N \frac{d\Phi_B}{dt}$

Self-Inductance

The SI unit for L is also henry (H). 1 H = 1 Ω .s.

Example: Solenoid inductance

The magnetic field inside the solenoid is

$$B = \mu_0 \frac{N}{l}I$$

The total magnetic flux through the coil is

$$\Phi_B = BA = \mu_0 \frac{N}{l} IA$$

$$L = \frac{N\Phi_B}{I} \text{ or }$$

For N=100, 1=5 cm, A=0.3 cm², L=4 π x10⁻⁷x100²x0.3x10⁻⁴/0.05=7.5 μ H.

Hence the self-inductance is

If filled with an iron core (μ =4000 μ_0), L= 30 mH.

Voltage across an inductor

 Inductor does not oppose current that flows through it. It opposes the change in the current.
 It's a current stabilizer in the circuit.

$$V_{ab} = iR$$

(a) Resistor with current *i*flowing from *a* to *b*:potential drops from *a* to *b*

(b) Inductor with current *i* flowing from *a* to *b*:
If *di/dt* > 0: potential drops from *a* to *b*If *di/dt* < 0: potential increases from *a* to *b*If *i* is constant (*di/dt* = 0): no potential difference

Energy Stored in a Magnetic Field

When an inductor is carrying a current which is changing at a rate dl/dt, the energy is being supplied to the inductor at a rate

$$P = I\varepsilon = LI\frac{dI}{dt}$$

Phys 2435: Chap. 27-31, Pg 38

The work needed to increase the current from 0 to I is

$$W = \int Pdt = \int_{0}^{I} LIdI = \frac{1}{2}LI^{2}$$

By energy conservation, the energy stored in the inductor is

Energy Stored in a Magnetic Field

Question: Where exactly does the energy reside? $U = \frac{1}{2}LI^{2}$

Answer: It resides in the magnetic field.

I

Using
$$L = \mu_0 \frac{N^2 A}{l}$$
 and $B = \mu_0 \frac{N}{l} I$

$$U = \frac{1}{2} \left(\mu_0 \frac{N^2 A}{l} \left(\frac{Bl}{\mu_0 N} \right)^2 = \frac{1}{2} \frac{B^2}{\mu_0} Al \right)$$

Or energy density

$$u = \frac{1}{2} \frac{B^2}{\mu_0}$$

The conclusion is valid for any region of space where a magnetic field exists.

Compare with the electric case:

$$U = \frac{1}{2}CV^2 \qquad u =$$

Phys 2435: Chap. 27-31, Pg 39

 $\varepsilon_0 E^2$

LR Circuits

loop rule:
$$V_0 - IR - L\frac{dI}{dt} = 0$$

Solve differential equation:

$$I(t) = \frac{V_0}{R} \left(1 - e^{-t/\tau} \right)$$

Where $\tau = L/R$ is called the time constant.

LR Circuits

$$loop rule: -IR - L\frac{dI}{dt} = 0$$

A B
$$C$$
 L
Switch V_0

Solve differential equation

 $I(t) = \frac{V_0}{R} e^{-t/\tau}$

time constant $\tau = L/R$

Summary: there is always some reaction time when a LR circuit is turned on or off. The situation is similar to RC circuits, except here the time constant is proportional to 1/R, not R.

LC Circuits

The capacitor is charged to Q_0 . At t=0, the circuit is closed. What will happen?

loop rule :
$$\frac{Q}{C} - L\frac{dI}{dt} = 0$$

Using I=-dQ/dt, one gets

$$\frac{d^2 Q}{dt^2} + \frac{Q}{LC} = 0$$

Solve differential equation

 $Q(t) = Q_0 \cos(\omega t + \phi)$

where

$$\omega = 1/\sqrt{LC}$$

LC Circuits

$Q(t) = Q_0 \cos(\omega t + \phi)$

 $I(t) = \frac{dQ}{dt} = -Q_0 \omega \sin(\omega t + \phi)$

Charge oscillates! So does the current and voltage. What about energy?

$$U_{E} = \frac{1}{2} \frac{Q^{2}}{C} = \frac{Q_{0}^{2}}{2C} \cos^{2}(\omega t + \phi)$$

$$U_B = \frac{1}{2}LI^2 = \frac{Q_0^2}{2C}\sin^2(\omega t + \phi)$$

The total energy is conserved.

LRC Circuits

Damped oscillations! 3 scenarios.
A) Under-damped if R²<4L/C.
B) Critical damping if R²=4L/C.
C) Over-damped if R²>4L/C.

For under-damping:

$$Q(t) = Q_0 e^{-\frac{R}{2L}t} \operatorname{cos}(\omega' t + \phi)$$
$$T = \frac{2\pi}{\omega'} = \frac{2\pi\sqrt{LC}}{\sqrt{1 - \frac{R^2C}{4L}}}$$

Summary of Various Direct Current Circuits

RC circuit, time constant $\tau = RC$ (transient)

LR circuit, time constant $\tau = L/R$ (transient)

LC circuit, oscillation period

$$T = 2\pi\sqrt{LC}$$
 (oscillator)

LRC circuit, damped oscillation period $T = 2\pi \sqrt{LC} / \sqrt{1 - \frac{R^2 C}{\Lambda T}}$

(damped oscillator)

Chapter 31: Alternating Current

AC Circuits (using phasors)

- AC Circuit, R only
- AC Circuit, L only
- AC Circuit, C only
- AC Circuit with LRC
- Resonance
- Transformers

RMS current and voltage

$$i = I \cos \omega t$$

root-mean-square:

$$I_{rms} = \sqrt{i^2}$$

$$\overline{i^2} = \frac{1}{T} \int_0^T i^2 dt = \frac{I^2}{2T} \int_0^T (1 + \cos 2\omega t) dt = \frac{I^2}{2}$$

$$v_R$$
 - v_R - v_R

AC Circuit Containing only Resistance

The AC source is given as

$$i = I \cos \omega t$$

So the voltage across the resistor is

$$v_R = iR = IR\cos\omega t = V_R\cos\omega t$$

The resistor voltage is in phase with the current.

The power dissipated in the resistor is p=iv, or at an average rate

$$\overline{P} = I_{rms}^2 R = \frac{V_{rms}^2}{R}$$

AC Circuit Containing only Inductor

So the voltage across the inductor is

$$v_L = L \frac{di}{dt} = -IL\omega\sin\omega t = V_L\cos(\omega t + 90^\circ)$$

The inductor voltage leads the current by 90 degrees.

Define reactance of inductor $X_L = \omega L$, then $V_L = I X_L$. Its unit is Ohm.

AC Circuit Containing only Capacitor

Define reactance of capacitor $X_c = 1/\omega C$, then $V_c = I X_c$. Its unit is Ohm.

The Impedance Triangle

$$Z = \sqrt{R^2 + (X_L - X_C)^2}$$
$$X_L = \omega L$$
$$X_C = \frac{1}{\omega C}$$
$$\tan \phi = \frac{X_L - X_C}{R} \text{ or } \cos \phi = \frac{R}{Z}$$

General results, valid for any combination of L, R, C in series. For example, if LR circuit, set $X_c=0$.

Check special cases:

R only:
$$X_L = 0, X_C = 0$$
, so $Z = R, \phi = 0$

L only :
$$R = 0, X_C = 0$$
, so $Z = X_L, \phi = +90^\circ$

C only:
$$R = 0, X_L = 0$$
, so $Z = X_C, \phi = -90^{\circ}$

The Power Factor

The power is only dissipated in the resistor, so

the average power is $\overline{P} = I_{rms}^2 R$

В

ut
$$R = Z \cos \phi$$

$$\overline{P} = I_{rms}^2 Z \cos \phi = I_{rms} V_{rms} \cos \phi = \frac{1}{2} IV \cos \phi$$

The factor $\cos\phi$ is called the power factor.

For example: For a pure resistor (ϕ =0), cos ϕ =1. For a pure inductor (ϕ =90⁰) or capacitor (ϕ =-90⁰), cos ϕ =0.

Resonance in AC Circuit

Recall:

$$V = \frac{V}{Z} = \frac{V}{\sqrt{R^2 + (X_L - X_C)^2}}$$

For fixed R,C,L the current I will be a maximum at the resonant frequency ω_0 which makes the impedance Z purely resistive.

Z is minimum when:

So the frequency at which this condition is satisfied is given from:

$$\omega_{o}L = \frac{1}{\omega_{o}C} \implies \omega_{o} = \frac{1}{\sqrt{LC}}$$

- Note that this resonant frequency is identical to the natural frequency of the LC circuit by itself!
- At this frequency, the current and the driving voltage are in phase!

$$\cos\phi = \frac{R}{Z} = 1, \ \sin\phi = 0$$

Resonance in AC Circuit

At resonance, I and V are in phase. V, I and P are at their maximum.

Transformers

Transformers change alternating (AC) voltage to a bigger or smaller value

Input AC voltage V_p in the primary produces a flux

Changing flux in secondary induces emf V_s

$$\boldsymbol{V}_{s} = \boldsymbol{N}_{s} \frac{\Delta \boldsymbol{\Phi}_{B}}{\Delta \boldsymbol{t}}$$

Same $\Delta \Phi / \Delta t !!$

Transformers

Nothing comes for free, however!

- voltage increase comes at the cost of current
- output power cannot exceed input power
- power in = power out (assume no heat loss)

If voltage increases, then current decreases If voltage decreases, then current increases