chapter 30 Photons, Electrons and Atoms

- Blackbody radiation
- The photoelectric effect
- Compton effect
- Line spectra
- Nuclear physics/Bohr model
- Lasers
- Quantum mechanics

Blackbody radiation

Planck radiation law for blackbody radiation

Planck radiation law

Planck, in order to explain these laws had to resort to an "act of desperation". He assumed the energy of the atoms in the wall were "quantized":

E = nhf, n = 1, 2, 3, ...

"Planck's constant": h = 6.626 x 10⁻³⁴ J·s

Intensity as a function of wavelength, $I(\lambda)$:

$$I(\lambda) = \frac{2\pi hc^2}{\lambda^5 (e^{hc/\lambda kT} - 1)}$$

Contains Stefan-Boltzmann, Wien, and Rayleigh-Jeans laws as special cases.

Photoelectric effect

Photoelectric effect

Photoelectric effect observed in 1887

Problem: Electron not discovered until 1897!

Proportional to number of electrons. Notice: V₀ independent of intensity.

Measures maximum kinetic energy of electrons; V_0 a linear function of f.

Planck and Einstein to the rescue!

$$E = hf = \frac{hc}{\lambda}$$

Planck relation; reinterpreted by Einstein

$$K_{\text{max}} = \frac{1}{2} m_e v_{\text{max}}^2 = (-e)(-V_0)$$

$$eV_0 = hf - \phi$$

Max Planck, Nobel Prize, 1918)

 ϕ is the "work function", the minimum energy needed to remove an electron

 $1eV = 1.60 \times 10^{-10} J$

Compton effect

Compton effect

A.H. Compton, Nobel Prize, 1927.

Production

Compton's experiment

Compton effect

$$p = \frac{hf}{c} = \frac{h}{\lambda}$$

Photons

=>

$$\lambda' - \lambda = \frac{h}{mc} (1 - \cos \phi)$$

The wavelength shift calculated holds for the scattering of free electrons, But of course the electrons in an atom are bound to the nucleus. However, X-ray energies are much larger than the atomic binding energy, this treatment is still very accurate.

ConcepTest 38.3

As a result of Compton scattering, the scattered photon

Compton scattering

- (1) has the same wavelength as the incident photon
- (2) has a longer wavelength than the incident photon
- (3) has a shorter wavelength than the incident photon

Line Spectra

Hydrogen spectrum

$$hf = \frac{hc}{\lambda} = E_{\rm i} - E_{\rm f}$$
 $E_n = -\frac{hcR}{n^2}$ $n = 1, 2, 3, 4, \dots$

(24.2)

$$\lambda = \frac{91.18 \text{ nm}}{\left(\frac{1}{m^2} - \frac{1}{n^2}\right)} \qquad \begin{cases} m = m = m \\ m = m \\ \vdots \end{cases}$$
$$n = m + 1, m + 2, \dots$$

1	Lyman series
2	Balmer series
3	Paschen series

Purely "numerology". 4 Balmer lines visible; Lyman in the ultraviolet, Pashen, etc. in the infrared.

Hydrogen energy levels

Possible model

Nuclear physics/Bohr model

The first nuclear experiment

Rutherford (Nobel Prize, Chemistry, 1908)

"It was almost as incredible as if you had fired A 15-inch shell at a,piece of tissue paper and It came back and hit you."

The nucleus

p n p

³He Z = 2 N = 1 A = 30.0001% abundance

⁴He Z = 2 N = 2 A = 499.9999% abundance Z: "Atomic number"Number of protonsA: "Mass number"

Number of protons and neutrons

Notation: ^AZ

 $\mathbf{A} = \mathbf{Z} + \mathbf{N}$

Isotopes consist of different nuclei with Same Z, different N.

Bohr model

Energy levels are complex! (Sodium)

Bohr model is wrong!

N. Bohr, Nobel Prize 1922. Although the Bohr model was correct in predicting the energy levels of hydrogen, it is a patchwork classical/quantum beast. If one attempts to apply it to other atoms, there are persistent discrepancies. It also makes a wrong prediction about hydrogen: that it has a magnetic moment in the ground state, $L_1=h/2\pi$. The angular momenta ARE quantized, but the ground state has $L_1 = 0$. The picture of orbiting electrons, essentially like planets around the sun, is simply wrong!!

Lasers

Relevant concepts: population inversion, metastable state, stimulated emission, optical cavity

For types of lasers, click here

Quantum mechanics

On the road to Quantum Mechanics

$$p = \frac{hf}{c} = \frac{h}{\lambda}$$

also applies to electrons (particles as waves) and all other particles. Due to L. DeBroglie (1925).

=> Wave-particle duality

Ψ(x,y,z,t) is the particle "wavefunction". Schrödinger equation:

$$i\hbar \frac{\partial \Psi}{\partial t} = - \frac{\hbar^2}{2m} \left(\frac{\partial^2 \Psi}{\partial x^2} + \frac{\partial^2 \Psi}{\partial y^2} + \frac{\partial^2 \Psi}{\partial z^2} \right)$$

=> Principle of complimentarity

