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Abstract

Natural language processing has been in existence for more than fifty years. During this time, it has
significantly contributed to the field of human-computer interaction in terms of theoretical results and
practical applications. As computers continue to become more affordable and accessible, the
importance of user interfaces that are effective, robust, unobtrusive, and user-friendly — regardless of
user expertise or impediments — becomes more pronounced. Since natural language usually provides
for effortless and effective communication in human-human interaction, its significance and potential
in human-computer interaction should not be overlooked — either spoken or typewritten, it may
effectively complement other available modalities,* such as windows, icons, and menus, and pointing;
in some cases, such as in users with disabilities, natural language may even be the only applicable
modality. This chapter examines the field of natural language processing as it relates to human-
computer interaction by focusing on its history, interactive application areas, theoretical approaches
to linguistic modeling, and relevant computational and philosophical issues. It aso presents a
taxonomy for interactive natural language systems based on their linguistic knowledge and processing
requirements, and reviews related applications. Finally, it discusses linguistic coverage issues, and
explores the development of natural language widgets and their integration into multimodal user
interfaces.

Keywords: natural language processing, human-computer interaction, speech recognition, speech
understanding, natural language widgets, multimodal user interfaces, user interface development,
user interface management systems.
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1. Introduction

The fidld of natural language processing (NLP) originated approximately five decades ago with
machine trandation sysems. In 1946, Warren Weaver and Andrew Donad Booth discussed the
technical feasibility of machine trandation by means of the techniques developed during World
War Il for the breaking of enemy codes’ (Booth and Locke, 1955, p. 2). During the more than fifty
years of its existence, the field has evolved from the dictionary-based machine trandation systems
of the fifties to the more adaptable, robust, and user-friendly NLP environments of the nineties.
This evolution has been marked by periods of consderable growth and funding “prosperity,”
followed by years of intense criticism and lack of funding. This article attempts to provide an
overview of this field by focusing on its history, current trends, some important theories and
applications, and the state-of-the-art asit relates to human-computer interaction (HCI).

1.1 Overview

Currently, the fiddd of NLP includes a wide variety of linguistic theories, cognitive modds, and
engineering approaches. Although unrestricted NLP is ill a very complex problem (and according
to some, an Al-complete problem?), numerous successful systems exist for restricted domains of

2 Similarly to the concept of NP-complete problems, the term Al-complete has been used to describe
problems, that can only be solved if a solution to the “general” Al problem has been discovered
(Carbonell, 1996). Some argue that such problems are unsolvable (Dreyfus, 1993); others suggest that
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discourse. In the context of HCI, NLP applications range from various speech recognition systems,
to natural language interfaces to database, expert, and operating systems, to a multitude of
machine trandation systems. Currently, interactive applications may be classfied along the
following categories (Manaris and Sator, 1996; Obermeier, 1988):

Speech Recognition/Understanding and Synthes s/Generation
Natural Language Interfaces

Discourse Management, Story Understanding, and Text Generation
Interactive Machine Trandation

Inteligent Writing Assistants

This articleis organized as follows. Initially, it addresses the relationship between natural language
processing and human-computer interaction, as well as the potentia in the conscious merging of
the two fields. It briefly examines the field of linguistics and attempts to provide a concise, yet
complete definition for NLP in the context of HCI. It then takes a historical journey through major
advances and setbacks in the evolution of the field; specifically, it looks at the early machine
trandation years, the ALPAC report and its impact, and the fiedld's three major evolutionary
phases. Next it examines application areas and gives examples of research and production systems.
It presents significant approaches in linguistic modding, namey symbolic, stochastic,
connectionist, and hybrid. Then it attempts to specify a classification for NLP systems in HCI
based on depth of linguistic analysis. For each of the categories, it presents examples of related
ressarch and development efforts. It discusses linguistic coverage issues, and examines
methodologies for developing congtrained linguistic models with respect to application domains.
Next it looks at natural language as one of the many possible modalities at the user interface and
presents multimodal integration issues. Finally, it discusses user interface management systems
and development methodologies for effective human-computer interaction with natural language.

1.2 Natural Language and User Interfaces

As the use of computers is expanding throughout society and affecting various aspects of human
life, the number and heterogeneity of computer users is dramatically increasing. Many of these
users are not computer experts; they are experts in other fields who view the computer as a
necessary tool for accomplishing their tasks (Day and Boyce, 1993). Consequently, the user-
friendliness and robustness of interactive computer systems is becoming increasingly more
essential to user acceptability and overall system performance.

One of the goals of HCI is the development of systems which match (and possibly augment) the
physical, perceptual, and cognitive capabilities of users. The fidld of NLP offers mechanisms for
incorporating natural language knowledge and modalities into user interfaces. As NLP tools are
becoming more powerful in terms of functionality and communicative capabilities, ther
contribution to HCI is becoming more significant.

“Speech is the ultimate, ubiquitous interface. It is how we should be able to interact with
computers. The question is when should it begin supplementing the keyboard and mouse? We
think the timeis now.”*

even partial solutions can be beneficial from both a humanistic and economic perspective (Mostow, et al.,
1994; Reddy, 1996).

% Bruce Armstrong, Manager of the Speech Technologies Group, WordPerfect, The Novell Applications
Group, as quoted in (Markowitz, 1996).



As the rdationship between NLP tools and HCI matures, more sophisticated systems are emerging
— systems which combine intelligent components with various communicative modalities, such as
speech input and output, non-speech audio, graphics, video, virtual environments, and telepresence.
As the two fidlds become more integrated, new developments will make it possible for humans to
communicate with machines which emulate many aspects of human-to-human interaction. These
new interfaces will transform computers from machines which are visble, and attention-grabbing,
to tools that are transparent and embedded; these tools will be so natural to use that they may
become part of the context, in such a way that the user may be able focus on the task and not the
actual tool (Weiser, 1994; Winograd and Flores, 1986, p. 164).

2. TheField of Natural L anguage Processing

2.1 An Extended Definition

This section will attempt to answer the question “ what is NLP?’. Asiit turns out thisis a difficult
guestion to answer as “there are amost as many definitions of NLP as there are researchers
studying it” (Obermeier, 1989, p. 9). Thisis due to the fact that from a linguigtics point of view
there are many aspects in the study of language; these aspects range from speech sounds
(phonetics), to sound structure (phonology), to word structure (morphology), to sentence structure
(syntax), to meaning and denotation (semantics), to styles and dialects (language variation), to
language evolution, to language use and communication (pragmatics), to speech production and
comprehension (psychology of language), to language acquisition, and to language and the brain
(neurdlinguistics) (Akmajian, et al., 1990). Moreover, there are other disciplines that contribute to
NLP, such as philosophy, dealing with questions such as “ what is the nature of meaning?’ and
“ how do words and sentences acquire meaning?’ (Allen, 1994a).

2.1.1 Linguistics

In order to derive a definition for NLP, one could focus momentarily on the nature of linguistics.
Linguistics includes the study of language from prescriptive, comparative, structural, and
generative points of view. This study was started at least two thousand years ago by the Sanskrit
grammarians (Winograd, 1983); yet we have not made much progress in understanding,
explaining, and modeling — the latter being an essential aspect in developing computationa entities
— this agpect of human existence.

In order to redlize the difficulty of the endeavor, aswell asthefidd' s fascinating appeal, one could

attempt to answer the highly reated questions “ what is the nature of language?’ and * how does
communication work?’. Some might agree that these questions are eguivalent (at least in
complexity) to “ what is the nature of intdligence?’.

The point being made is that such questions may be smply too broad to answer. Y, it is such
guestions that fields like linguistics, natural language processing, human-computer interaction, and
artificial intelligence are addressing. Although it is quite probable that such questions will never be
completely answered, it is through this process of sdf-study that we have made intriguing

* Thisidea is related to the salf-modeling paradox effectively captured by the aphorism: “If the mind was
so ssimple that we could understand it, we would be so smple that we couldn’t.” Or, as Hofstadter (1979)
putsit, “[t]o seek self-knowledge is to embark on ajourney which ... will always be incomplete, cannot be
charted on any map, will never halt, [and] cannot be described” (p. 697).



discoveries and achieved some significant results. The resultant techniques have found their way
into commercial and industrial applications, and are quietly changing our lives (Munakata, 1994).

2.1.2 Motivations, Definition, and Scope

There are two motivations for NLP, one scientific and one technological (Allen, 1994a). The
scientific motivation is to understand the nature of language. Other traditional disciplines, such as
linguistics, psycholinguistics, and philosophy, do not have tools to evaluate extensive theories and
models of language comprehension and production. It is only through the tools provided by
computer science that one may construct implementations of such theories and modds. These
implementations are indispensable in exploring the dgnificance and improving the accuracy
(through iterative refinement) of the original theories and modds.

The technological motivation is to improve communication between humans and machines.
Computers equipped with effective natural language models and processes could access all human
knowledge recorded in linguistic form; considering the revolution in information dissemination and
communication infrastructure that has been introduced by the World-Wide-Web, one could easily
see the importance and potential of such systems. User interfaces with natural language modalities
(either input or output, spoken or typewritten) would enhance human-computer interaction by
facilitating access to computers by unsophisticated computer users, users in hands-busy/eyes-busy
dtuations (such as car driving, space walking, and air traffic control tasks), and users with
disabilities. Actually, the development of this technology for the latter group is motivated by
federal legidation and guiddines, such as (@) the US Public Laws 99-506 and 100-542 which
mandate the establishment of accessible environments to citizens with disabilities, (b) the 1989 US
General Services Adminigration’s guide, Managing End User Computing for Users with
Disabilities, which describes accommodations for disabled computer users (Shneiderman, 1993),
and (c) the 1996 Tedecommunication Act. In this context, it does not matter how closdy the mode
captures the complexity of natural language communication; it only matters that the resultant tool
performs satisfactorily in a given domain of discourse, or complements/outperforms any alternative
solutions. This article adheres to this perspective in presenting and discussing various NLP
theories, models, and applications.

In this context, and given the state-of-the-art, NLP could be defined as the discipline that studies
the linguigtic aspects of human-human and human-machine communication, develops models of
linguistic competence and performance,” employs computational frameworks to implement
processes incorporating such models, identifies methodologies for iterative refinement of such
processes'/models, and investigates techniques for evaluating the resultant systems.

NLP is an interdisciplinary area based on many fields of study. These fidds include computer
science, which provides techniques for modd representation, and agorithm desgn and
implementation; linguistics, which identifies linguistic models and processes, mathematics, which
contributes formal modds and methods; psychology, which studies models and theories of human
behavior; philosophy, which provides theories and questions regarding the underlying principles of
thought, linguistic knowledge, and phenomena; dtatistics, which provides techniques for predicting
events based on sample data; eectrica engineering, which contributes information theory and
techniques for signal processing; and biology, which explores the underlying architecture of
linguistic processesin the brain.

> Chomsky (1965) defines competence as the linguistic knowledge of fluent speakers of a language, and
performance as the actual production and comprehension of language by such speakers (Akmajian, et al.,
1990).



2.2 Higtorical Background

This section discusses magor milestones in the history of NLP related to human-computer
interaction. The information included in this section is somewhat fragmented, due to the non-
historical focus of the article, and possibly biased, due to the author’s personal path through NLP,
the reader is encouraged to follow the references for a more compl ete historical overview.

2.2.1 The Beginning - Machine Trandation

A common misconception is that NLP research started in the late 1960s or early 1970s. Although
there was a large body of work that was performed during this period, especially within the
symbolic paradigm,® research in NLP actually began in the late 1940s with early studies and
computational implementations of systems attempting to perform mechanical trandations of Soviet
physics papers into English (Bar-Hilld, 1960; Slocum, 1986). Specifically, one of the first
Machine Trandation (MT) projects began in 1946 at the Department of Numerical Automation,
Birkbeck College, London, as Warren Weaver and Andrew Donald Booth began work on
computational trandation based on expertise in breaking encryption schemes using computing
devices (Bar-Hilld, 1960; Booth and Locke, 1955; Obermeier, 1988). Specifically, Weaver (1995,
p. 18) states:

When | look at an article in Russian, | say “This is really written in English, but it has been
coded in some strange symbols. | will now proceed to decode it”.

The work of the Birkbeck group continued until the mid-1960s and made significant contributions
to other NLP areas such as preparation of word-indices and concordances (Josselson, 1971). MT
research in the US started in 1949 at the University of Washington to be closdly followed by The
RAND Corporation (1950), MIT (1951), Georgetown University (1952), and Harvard University
(1953). Asfar as other countries are concerned, the USSR joined the MT research effort in 1955,
Italy in 1958, and Isradl in 1958. Asof April 1, 1959, there were eleven research groupsin the US,
seven in the USSR, and four in other countries employing an estimated 220 full-time researchers
and developers (Bar-Hilld, 1960).

2.2.2 TheFall - ALPAC Report

During thefirst years of MT research, and as considerable progress was being made towards fully-
automatic, high-quality trandation (FAHQT), even many skeptics were convinced that this goal
was indeed attainable, and an operational system was “just around the corner.”  Significant
problems were being solved in quick succession, thus creating the illusion that remaining problems
would also be solved quickly. Thiswas not the case, however, as the few remaining problems were
the hardest ones to solve (Bar-Hilldl, 1960). Consequently, during the 1960s, disillusionment began
setting in, as it became apparent that the origina enthusiasm and promises for the achievement of
FAHQT were unrealistic. Specifically, in 1966 the U.S. National Academy of Sciences sponsored
the Automatic Language Processing Advisory Council (ALPAC) Report which, in essence,
condemned the MT fidld, and eventually resulted in the termination of funding for all MT projects
intheU.S.

The ALPAC report was criticized by many as narrow, biased, short-sighted, and even as based on
inferior analytical work, obsolete and invalid facts, distortion of estimates in favor of human
trandation, and concealment of data (Josselson, 1971; Slocum, 1986). Perhaps one of the better,
and more far-sighted criticisms was the following:

® The symbolic paradigm is covered in Section 4.1.



[Nt seems premature to abandon support of machine trandation after only 12 brief years,
especidly if the abandonment is based only on the findings of the ALPAC committee. Even the
critics of machine trandation admit its contribution to the knowledge of linguists. Who can say
what contributions lie ahead? (Titus, 1967, p. 191)

Although the ALPAC report was a major setback in MT, in specific, and NLP, in generd, its
effects were only temporary. The contributions of early MT research to NLP were significant and
long lasting in that they identified new problems for linguists and computer scientists, and thus laid
the foundation for subsequent NLP research. Thisis clearly evident from the areas of emphasis of
the pre-ALPAC conferences of federally-sponsored MT groups (Jossel son, 1971):

Princeton, 1960: Dictionary design, programming strategies, compatibility/portability of
materials, code, and data formats of research groups.

Georgetown, 1961: Grammar coding, automatic converson of coded materials,
investigations of Russian grammar.

Princeton, 1962: Theoretical mode s for syntactic analys's, consideration of syntax problems
in Russian, Arabic, Chinese, and Japanese.

Las Vegas, 1965: Semantic analysis.

This climate of cooperation contributed to the founding of the Association of Computational
Linguistics (ACL)’ in 1962, to the organization of subsequent meetings in the U.S. and dsawhere,
and to consderable growth in NLP research and development in both academia and industry
throughout the world (Josselson, 1971; Obermeier, 1988; Slocum, 1986).

During these fifty years of development, NLP research has been in a state of constant flux due to
shifting goals and objectives, end-user expectations, technical and theoretical advances, predictions
on the potential of hypothes s/theory/technique, and heated debates on the ability of computing
devices to mode certain linguistic phenomena. Possibly, the history of NLP can be seen as
evolving through three phases, namely the engineering phase, the theoretical phase, and the user-
centered phase.  The borderlines among these phases are fuzzy and sometimes overlap. These
phases are examined in the next sections.

2.2.3 Engineering Phase

Thisfirst phasein NLP started in the mid 1940s and lasted until the early 1960s. It is characterized
by an emphasis on algorithms relying maostly on dictionary-lookup techniques used in conjunction
with empirical and stochastic methods. Due to the success of the latter in other fidds, such as
engineering and psychology, such methods were used for condructing linguistic models using
corpora of natural language material. These modds classfied words not only based on meaning,
but also on their co-occurrence with other words. They had been heavily influenced by Shannon’s
work on information theory (Shannon, 1948). These techniques were applied to MT systems with
consderable early results, thus causng an overestimation of the techniques promise for
unconstrained NLP (Bar-Hilldl, 1960; Church and Mercer, 1993).

During this phase, other NLP application areas began to emerge. An example is speech
recognition, employing speaker-dependent, template-based architectures for digit recognition and
limited phoneme classfication (Fatehchand, 1960).

" Originally, Association for Machine Translation and Computational Linguistics (AMTCL).



Other events, which were unrelated to NLP in this phase, but which would considerably influence
the field in subsequent phases included (a) the organization of the Dartmouth Conference in 1956,
which introduced the term “ Artificia Inteligence’—a field that would produce many NLP-shaping
results, and (b) the publication of seminal works in connectionism, namely McCulloch and Pitts
paper on forma neurons (1943), Hebb’'s work on cell assemblies and synapses (1949), and
Rosenblatt’s paper on perceptrons (1958) (Cowan and Sharp, 1988).

Finally, Noam Chomsky's work on the structure of language set the stage for the next NLP phase
through its criticism of stochastic techniques, such as n-grams in language modeling, and its
introduction of a significant theoretical framework for the analysis and generation of language
(Chomsky, 1956; Chomsky, 1957; Chomsky, 1959).

2.2.4 Theoretic Phase

The second phase in NLP spanned approximately from early 1960s until late 1980s. It is
characterized by (a) a strong emphasis on theoretical topics including grammatical, logical,
semantic, and pragmatic theories, (b) the condruction of “toy” systems that demonstrated
particular principles, and (c) the development of an NLP industry which commercialized many of
this phase' s theoretical results. In terms of application foci, this phase can possibly be subdivided
into three eras characterized by the early question-answering type systems and database interfaces
(1960s), the broadening of the application domain to include interfaces to other interactive systems
(1970s), and the commercialization of NLP research (1980s) (Bates, 1994; Obermeier, 1988).

According to Grosz, et al. (1986), sgnificant early work in this phase includes:

a syntactic parser able to effectively handle multiple analyses of syntactically ambiguous
sentences (Kuno and Oettinger, 1963), and

the BASEBALL question answering system which incorporated coding of words by attribute-
value pairs — a technique used throughout this phase, a separate syntactic analyss, and
constrained linguistic domain coverage (Green, et al., 1963).

Following these systems, researchers focused on the sentence and its meaning. This was done ether
in isolation, with respect to the human-computer dialog, or in the immediate (preceding) context.
This work laid the foundation for domain-specific applications, and commercial systems which
emerged towards the end of this phase. In the late 1970s, attention shifted to semantic issues,
discourse phenomena, communicative goals and plans, and user models.

In 1975, in their ACM Turing Award lecture, Allen Newell and Herbert Simon formalized the
physical symbol hypothesis which laid the foundation for symbolic NLP in specific, and symbolic
Al in general (see Section 4.1) (Newell and Simon, 1976).

Many systems were devel oped to demonstrate the effectiveness of various theories in addressing
various linguistic issues (see Section 5.4). Landmark systems include ELIZA (Weizenbaum,

1966), SHRDLU (Winorgad, 1972), REL (Thompson and Thompson, 1975), LUNAR (Woods,
1973), SOPHIE (Brown et al., 1975), LIFER (Hendrix et al., 1978), to name a few. Thousands of
publications were produced to describe theories, incremental results, and resultant systems; Gazdar
et al. (1987), provides a partial listing (1764) of these references appearing between 1980 and
1987.

During this phase, it became clear that isolated solutions to NLP problems did not scale up well,
when attempts were made to widen their linguistic coverage, or apply them to a different domain
(Grosz et al., 1986; Jacobs, 1994). This realization motivated the re-examination of non-symbolic
approaches which had been abandoned earlier by the NLP mainstream. In the stochagtic arena,
Baum and his colleagues developed the basic theory of Hidden Markov Modds (HMMs), Viterbi
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devised an algorithm which could be applied in estimating probabilities for phonetic, lexical and
other linguistic classes, and the Brown and TIMIT corpora were congtructed and made available to
the research community (Allen, 1994a; Chruch and Mercer, 1993; Rabiner and Juang, 1993). In
1985, Church used a stochagtic technique based on letter trigram modeling to identify the national
origin of proper names for pronunciation purposes in the context of text-to-speech systems
(Church, 1985). The success of this application reintroduced stochastic techniques to the
mainstream of traditional NLP (Marcus, 1994).

Earlier, in the connectionist arena, a milestone publication by Minsky and Papert (1969) showed
that perceptrons may be less powerful than a universal Turing machine. This result inhibited
progress in training algorithms for neural networks, as a way to represent linguistic and other
information, for many years. Eventually, significant contributions by several researchers, such as
Grossberg, Kohonen, Hopfield, and Rumelhart revitalized the significance of connectionism and set
the stage for its influence on NLP. An intriguing application of this period, which demongtrated the
utility of neural networks in NLP, is NETtalk. This is a system that performed text-to-speech
converson in English and was capable of handling some coarticulation effects. It worked
surprisingly well, but could not handle syntactic/semantic ambiguities effectively (Clark, 1993;
Cowan and Sharp, 1988; Obermeier, 1988).

By the end of this phase, it had been shown that symboalic, stochastic, and connectionist approaches
could address many dggnificant problems in NLP. Moreover, stochastic and connectionist
approaches had recovered from earlier criticism and were shown to be complementary in many
respects to the mainstream symbolic approach. The results of this era coupled with concepts from
HCI research set the stage for the final, user-centered phase.

2.2.5 User-Centered Phase

In the late 1980s, NLP entered the current empirical, evaluative, “user-centered” phase. Magjor
advances and tangible results from the last fifty years of NLP research are being reinvestigated and
applied to a wide spectrum of tasks where NLP can be applied. These tasks require “real-life’
models of linguistic knowledge, as opposed to the models incorporated in earlier “toy” systems.
Consequently, many successful NLP applications are emerging including speling checkers,
grammar checkers, and limited-domain, spesker-independent, continuous-speech recognizers for
various computer and telephony applications.

During this phase, the fidd of human-computer interaction enters the mainstream of computer
science. Thisis a result of the major advances in graphical user interfaces during the 1980s and
early 1990s, the proliferation of computers, and the World-Wide-Web (Manaris and Sator, 1996).
Accordingly, the evolution of NLP concerns and objectives is reflected in the continued growth of
research and development efforts directed towards performance support, user-centered design, and
usability testing. Emphasis is placed on (a) systems that integrate speech recognition and
traditional natural language processng modes, and (b) hybrid systems — systems that combine
results from symbolic, stochastic, and connectionist NLP research (see Section 4.4). Developers
are focusing on user interface development methodologies and user interface management systems
(see Section 6.4).

Due to the “user-centeredness’ of this phase, theories as well as applications are being judged by
their ability to successfully compete in structured evaluations or in the marketplace (Chinchor and
Sundheim, 1993; Hirschman and Cuomo, 1994; Moore, 1994b; Pallett et al., 1994; Spark Jones,
1994). An emerging, promising methodology for NLP system development is the Star Mode (see
Section 6.4.3). This has been a popular development methodology in human-computer interaction,
and it is now becoming relevant to NLP research, due to the emphasis on rapid-prototyping and



incremental devel opment — necessitated by the current industry focus on speech understanding and
other interactive NLP applications geared towards the everyday user.

3. Application Areas

Important NLP application areas include speech understanding and generation systems; natural
language interfaces; discourse management, story understanding and text generation; interactive
machine trandation; and inteligent writing assgtants (Bates, 1994; Church and Rau, 1995;
Manaris and Sator, 1996; Obermeier, 1988). These areas are examined in the following sections.

3.1 Speech Understanding and Generation

The goal of speech recognition systems is to convert spoken words captured through a microphone
to awritten representation. Speech under standing systems, on the other hand, attempt to perform a
more extensive (semantic, pragmatic) processing of the spoken utterance to “understand” what the
user is saying, and act on what is being said — possibly by executing some command in an
underlying system such as a database, or modifying their particular knowledge of the world. Major
issues in this area include speaker independence vs. dependence, continuous vs. discrete speech,
complexity of the linguistic model, and handling of environment noise (Markowitz, 1996).

Speech generation or synthesis systems deal with the opposite problem, namely to convert written
representations of words to sounds. Compared to speech understanding, speech generation is
considered by some to be a solved problem. This is because there exist severa imperfect, yet
effective speech synthesizers for many application domains and for a number of languages
including English (American and British), Japanese, and Swedish (Kay et al., 1994). Maor
techniques utilized for speech synthesisinclude

concatenation of digital recordings, as in the output produced by US telephone directory
assistance systems,

synthesis by rule, where sounds are being generated dectronically through the utilization of a
grammar providing information on tone, intonation, and phonetic coarticulation effects, and

training of connectionist architectures, as in the NETtalk syssem mentioned in Section 2.2.4
(Prieceet al., 1994).

An interesting example of a system which combines speech recognition with speech generation is
Emily (Mostow et al., 1994). Emily is an experimental speech understanding system that acts as a
reading coach for children. It provides passages for reading, and listens making corrections
whenever necessary — for instance it ignores minor mistakes such as false starts, or repeated words.
Reddy (1996) estimates that this project could save U.S. taxpayers over $45 million if it could
reduceilliteracy in the U.S. by aslittle as 20%.

Examples of speech processing (recognition, understanding, and generation) systems that have
been marketed include Apple s Plain Talk, BBN's Hark, Decipher, DECtalk, DragonDictate, IBM
VoiceType, Kurzweil Voice, Listen, Naturally Speaking, Phonetic Engine (Meisd, 1994;
Obermeier, 1988; Rash, 1994; Scott, 1996).

3.2 Natural Language Interfaces

When examining the evolution of software systems, we observe a definite transition from the
languages understood by the underlying hardware, i.e., languages based on binary alphabets, to the
natural languages of humans (Feigenbaum, 1996; Firebaugh, 1988). In terms of programming
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languages, this trangition is manifested as a shift from machine languages to assembly languages,
to high-levd languages, up to non-procedural languages (also known as fourth generation
languages). The goa of natural language interfaces is to bridge the gap between the linguistic
performance of the user and the linguigtic “competence’ of the underlying computer system. These
systems deal with typewritten as opposed to spoken language. They usually perform much deeper
linguistic analysis than traditional speech recognizers (see Section 5.4).

Applications have been built for various domains including operating systems, databases, text
editors, spreadsheets, and Internet navigation and resource location (Manaris, 1994; Manaris and
Slator, 1996). Section 5.4 discusses several of these applications.

Examples of natura language interfaces that have been marketed include Battelle’'s Natural
Language Query, BBN’s Parlance, EasyTalk, English Query Language, INTELLECT, Intelligent
Query, Language Craft, Natural Language, Symantec’s Q+A Intdligent Assistant, and Texas
Ingrument’s Natural Access (Church and Rau, 1995; Obermeier, 1988).

3.3 Discourse Management, Story Understanding, and Text Generation

The objective of discourse management and story understanding systems is to process natural
language input to eicit significant facts or extract the essence of what is being said. These systems
require access to linguistic knowledge ranging from lexical to, possibly, world knowledge rel evant
to the domain of discourse (see Section 5.3). Specific applications range from indexing (text
segmentation and classification), to summarization (“gisting”), to retrieval (natural language search
engines, data mining), to question and answer dialogs. In order to perform these tasks such systems
may incorporate text generation components. These components utilize the collected linguistic
knowledge to generate various forms of text, such as news summaries (skimming), and specia
documents. Given the latest advances in integration between speech and traditional natural
language processing techniques, it should be straightforward to extend such systems to incorporate
spoken input and outpuit.

One example of a discourse management application that incorporates a text generation component
is the patent authoring system designed by Sheremetyeva and Nirenburg (1996). This system is
intended to interactively dicit technical knowledge from inventors, and then use it to automatically
generate a patent claim that meets legal requirements. Another example is the syssem devel oped by
Moore and Mittal (1996) which allows users to ask follow-up questions on system-generated texts.
Specifically, users can highlight portions of the narrative available at the interface and, in response,
the system will identify a set of follow-up questions that it is capable of handling. (Also, see the
discussion on the DISCERN system in Section 4.4.)

Examples of other systems in this area (many of which have been marketed) include ATRANS,
Battdle s READ, BORIS, Clarit, Conquest, Construe, Freestyle, FRUMP, GROK, J-Space, I1PP,
Oracle's ConText, Savwy/TRS, SCISOR, Target, Tome, and Westlaw's WIN (Church and Rau,
1995; Obermeier, 1988).

3.4 Interactive Machine Trandation

This is the earliest area involving NLP in human-computer interaction. The goal of machine
trandation systems is to map from a source language representation to target language
representation(s). Although no MT system can handle unconstrained natural language, there exist
many success stories in well-defined sublanguages. In many cases, pre-editing of the input and
post-editing of the output may be required (Hovy, 1993; Kay et al., 1994). However, even in such
cases MT systems can be very useful. Thisisillustrated by the fact that in 1975, and while all U.S.
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government-funded MT projects had been canceled following the recommendations of the ALPAC
report,

[plaradoxically, MT systems were il being used by various government agenciesin the U.S.
and abroad, because there was smply no alternative means of gathering information from
foreign (Russian) sources so quickly. In addition, private companies were developing and
sdling (mosgtly outside the U.S)) MT systems based on the mid-1960s technology (Slocum
1986, p. 969).

As of 1994, the available languages for MT include Arabic, Danish, Dutch, English, Finnish,
French, German, Greek, Italian, Japanese, Korean, Portuguese, Russian, Spanish, and Swedish
(Kay et al., 1994; Miller, 1993).

An example of a system that uses a well-defined sublanguage is TAUM-METEO, a fully-
automatic machine trandation system for trandating weather reports from English to French.
TAUM-METEO has been used extensively in Canada. It encapsulates a sublanguage modd, which
became stable in 1981. It requires almost no pre-editing of its input, or post-editing of its output.
TAUM-METEO has been trandating about 54,000 words per day for over a decade (Church and
Rau, 1995; Obermeier, 1988). (Also, seethe discussion of EUROTRA in Section 5.4)

Examples of systems that have been marketed include Fujitsu's ATLAS | and 11, Globalink’s GTS,
Hitachi’'s HICATS, Intergraph’s DP/Trandator, Logos, Language Assistant Series, Siemens
Nixdorf’'s METAL, Sanyo's SWP-7800 Trandation Word Processor, Smart Trandators,
Socrata’s XL T, Toltran’s Professiona Trandation Series, Toshiba's ASTRANSACT, and Tovna
MTS (Church and Rau, 1995; Kay et al., 1994; Miller, 1993; Obermeier, 1988).

In addition to trandation of written texts, research has been directed on interactive trandation of
spoken utterances. One recent example of such a project is Janus-I1, discussed in Section 5.4.4.2
(Waibd, 1996). Another example is Verbomil, a system designed as a portable smultaneous
interpretation machine. Its goal is to mediate a dialog between two people interacting in real-time
using different languages, possibly over the telephone (Alexandersson et al., 1997; Kay et al.,
1994).

3.5 Intdligent Writing Assistants

Anocther area where NLP techniques have been successfully employed is in providing “intdligent”
support for document preparation. Examples of applications range from spell checking agents, to
hyphenation routines, to intelligent spacing/formatting/text-selecting agents, to grammar checkers,
to style checkers providing readability statistics, to eectronic thesauri, to automated document
creation/maintenance environments, to trandator-support environments. Some of these applications
are so well understood, that many users do not consider them applications of NLP;, examples
include word processing, smple and approximate string matching, keyword search, and glossary
look-up (Church and Rau, 1995; Hall and Dowling, 1980).% Other applications are till in an early
marketability stage since their linguisic models and associated algorithms are still under
development; examples include the grammar/style checkers available independently or bundled
with word processing packages (Church and Rau, 1995; Obermeier, 1988).

An interesting example in this category is the Drafter syssem (Paris and Vander Linden, 1996).
Drafter is an interactive document drafting tool. It assists technical writers with the task of
managing draft, final, and updated versons of manuals in severa languages. The approach is

8 This might be viewed as another instance of the “ Al losing its best children to Computer Science”
phenomenon.
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different from traditional MT, in that the syssem maintains a knowledge base of the concepts to be
included in the manua in a language-independent form. Consequently, the trandation is not
dictated by the original text's language and style. Smilarly to other intelligent writing assstants,
such as spdl checking agents, Drafter is not a fully-automatic toal, in that it relies on the user
(technical writer) to provide information about the domain of discourse. This tool supports
knowledge reuse, propagation of changes throughout documents, simultaneous production of drafts
in several languages, accurate and consistently-used terminology, and production of stylistic
variants of documents.

Given the success of this area of NLP, the market is flooded with a wide spectrum of independent
and embedded systems. Examples of marketed products include popular word processors, such MS
Word, WordPerfect, and FrameMaker, grammar checkers, such as Grammatik, and trandator
workbenches such as the Eurolang Optimizer, IBM’s TrandatorManager/2, and Trados
Trandation Workbench (Chucrch and Rau, 1995; Obermeier, 1988).

4. Linguistic Knowledge Models

Linguistic knowledge models may be classified along four basic categories, namely symbolic
(knowledge-based), stochastic (probabilistic), connectionist, and hybrid approaches. Each
approach has advantages and disadvantages which make it morefless suitable for addressing
specific segments of the NLP problem space. In general, regardless of the approach, development
of “complete,” stable linguistic models is ill a very difficult problem, especialy for certain
application areas such as speech understanding interfaces (Manaris and Harkreader, 1997). For
this reason, investigation and adaptation of effective development methodologies from the area of
human-computer interaction are becoming essential (see Sections 6.4. and 6.5).

The symbolic approach is based on explicit representation of facts about language through well-
understood knowledge representation schemes and associated algorithms. The stochastic approach
employs various probabilistic techniques to develop approximate generalized modes of linguistic
phenomena based on actual examples of these phenomena. The connectionist approach also uses
examples of linguistic phenomena, but since connectionist architectures are less constrained than
stochastic ones, linguistic models are harder to develop (Kay et al., 1994). Finaly, hybrid
approaches explore different variations of compound architectures and linguistic models attempting
to use the best approach (symbalic, stochastic, or connectionist) for a given modeling subproblem
in an application. The following sections examine each of these approaches in terms of ther
foundations, major research results, and their respective strengths and weaknesses.

4.1 Symbolic Approach

The symbolic approach in NLP is best formulated by the physical symbol system hypothesis
(Newd and Simon, 1976), although it originated in the late 1950s (see Section 2.2.3). This
hypothes's states that intelligent behavior can be modded using a physical symbol system
consgting of physical patterns (symbols) which may be used to construct expressions (symbol
structures); additionally, this system contains a set of processes that operate on expressons
through creation, deletion, reproduction, and arbitrary transformation. This system exists in some
larger encompassing environment and evolves through time by modifying its encapsulated symbolic
expressions.

A great portion of the work in computational linguistic is based on this hypothesis. Specifically,
numerous representation formalisms and associated analysis/generation techniques have been
developed that rely on symbolic patterns to represent various notions (see Section 2.2.4). These
notions include phonetic, morphological and lexical constituents, as well as syntactic, semantic,
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Mary will not take the apple

T

MODALITY Mary take the apple
Negative VERB C, C,
Future
Declarative ‘ ‘

take Mary  theapple

Figure 1. Example of Case Grammar Representation
(adapted from Harris, 1985).

and discourse dtructure, relationships, and congtraints. Examples of such formalisms, with
approximate dates in parentheses, include Chomsky's theory of formal language grammars
(regular, context-free context-sensitive, and unredtricted) (1957), Chomsky's transformational
modd of linguistic competence (1965), Filmore's case grammar (1967), Halliday's systemic
grammar (1967), Wood' s augmented transition network (1970), Schank’s conceptual dependency
theory (1975), Wilks preference semantics (1975), Burton's semantic grammar (1976),
Colmerauer’s definite clause grammar (1978), Gazdar’s phrase structure grammar (1979), Kay's
functional grammar (1979), and Bresnan and Kaplan's lexical-functional grammar (1982).°

Figure 1 shows a sample of a case grammar representation of the sentence “ Mary will not take the
apple.” Harris (1985) and Winograd (1983) provide additional details on these formalisms. Such
formalisms spawned a wide variety of algorithms and systems; for examples, see Cercone and
McCalla, (1986), Grosz et al. (1986), Obermeier (1988), and Pereira and Grosz (1994).

Some of the apparent strengths of symbolic formalisms for NLP are as follows (Church and
Mercer, 1993; Winograd, 1983):

They are well understood in terms of their formal descriptive/generative power and practical
applications.

They currently provide the mogt effective approach for modeling long-distance dependencies,
such as subject-verb agreement, and wh-movement.*

They are usually “perspicious,” in that the linguistic facts being expressed are directly vishle
in the structure and constituents of the model.

They are inherently non-directional, in that the same linguistic model may be used for both
analysis and generation.

° This list is by no means exhaustive or representative of the various schools of thought within the
symbolic approach to NLP; moreover, it excludes significant implementations of symbolic formalisms,
such as SNePS (Shapiro, 1979).

19 Winston (1993) provides an introductory presentation on expressing language constraints, such as long-
distance dependencies, using a symbolic approach (pp. 575-598).
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They can be used in multiple dimensions of patterning, that is they can be used for modeing
phenomena at various linguistic knowledge levels (see Section 5.3).

They alow for computationally efficient analysis and generation algorithms, as in (Earley,
1970; Marcus, 1978).

Some of the apparent weaknesses of the symbolic approach to NLP are (Church and Mercer, 1993;
Kay et al., 1994):

Symbolic linguistic models tend to be fragile, in that they cannot easily handle minor, yet non-
essential deviations of the input from the modeed linguistic knowledge — neverthdess, various
flexible (robust) parsng techniques have been devised to address this weakness. Such
techniques look for “idands’ of structural or semantic coherence and, through heurigtics or
user intervention, may recover from parsing failures.

Development of symbolic modd s requires the use of experts such as linguists, phonologists,
and domain experts, since such models cannot be instructed to generalize (Ilearn from example).

Symbolic models usually do not scale up well. For instance, Slocum (1981) discusses how
after two years of intensive development, LIFER' s knowledge base grew so large and complex
that even its original designers found it hard and impractica to perform the dightest
modification. Specificaly, the mere act of performing a minor modification would cause
“ripple effects’ throughout the knowledge base. These side-effects eventually became almost
impossible to isolate and eiminate.

In many practical cases, symbolic-approach techniques perform worse than stochastic and
connectionist pattern recognition systems tuned by real-life training data. They cannot model
certain local constraints, such as word preferences that can be very useful for effective part-of-
speech tagging and other applications.

In summary, symbolic formalisms are the most well-studied techniques for NLP system
development. Although they exhibit several weaknesses when compared against stochastic or
connectionist approaches, they are ill valuable and powerful mechanisms for NLP. They are
especially useful, at least, in cases where the linguistic domain is small or well-defined, and where
modding of long-distance dependenciesis essential.

4.2 Stochastic Approach

The driving force behind stochastic (dtatistical) models is their ability to perform well even in the
presence of incomplete linguistic knowledge about an application domain. Such models thrive on
the inherent inflexibility and fragility of symbolic modds, which stem from our lack of complete
understanding of many linguistic phenomena — an essential prerequisite to developing successful
symbolic models. Stochastic models include a number of parameters that can be adjusted to
enhance their performance (Allen, 1994a; Charniak, 1993; Church and Mercer, 1993; Kay et al.,
1994; Knill and Y oung, 1997; Marcus, 1994).

A popular stochagtic modd is the Hidden Markov Modd (HMM). Similarly to a finite-state
machine, an HMM consists of a set of states (one of which is the initial state), a set of output
symbols which are emitted as the system changes states, and a set of acceptable trangitions among
dtates. Additionally, each state in an HMM (as opposed to a finite-state machine) has two sets of
probabilities associated with it; one determines which symbol to emit from this State (emission
probabilities); the second set determines which state to visit next (transition probabilities). Once the
topology of a given HMM has been decided, Baum’s (1972) backward-forward agorithm can be
used to effectively derive these two sets of probahilities using a set of training data; by adjusting
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S - NP VP | 0.85 P - like | 1.00
S - VP | 0.15 Y, - like | 0.40
NP — N | 0.40 Y, - flies | 0.40
NP — N PP | 0.35 Y, - junps | 0.20
NP — N NP | 0.25 N - flies | 0.45
VP - Y | 0.32 N - junps | 0.05
VP - V NP | 0.31 N - banana | 0.30
VP - VvV PP | 0.19 N - time | 0.20
VP - V NP PP | 0.18

PP - P NP | 1.00

Figure 2. Probabilistic Context-Free Grammar
(adapted from Charniak, 1993).

appropriately the modd’s parameters, this algorithm is guaranteed to either improve or, at least,
not worsen the performance of the modd. Once the HMM’s parameters have been adjusted, the
Viterbi (1967) algorithm may be used to recognize specific input against the trained HMM.

Ancther stochastic mode is the probabilistic context-free grammar (PCFG). Similarly to HMMs,
which extend finite-state machines with probabilities, PCFGs extend context-free grammars with
probabilities. One approach is to assign probabilities based on rule use; that is, usng a set of
training data, the probability of each rule's “dignificance’ can be determined based on the
frequency of thisrule s contribution to successful parses of training sentences (see Figure 2). If one
is willing to compromise potential accuracy over efficiency, given a trained PCFG, there exist
severa effective algorithms that can be employed. For example, one could employ an N-first
parsing algorithm. This algorithm will not explore every possible alternative, but only a preset
number of most promising alternatives, e.g., three or four. This can be accomplished by using a
probability cutoff value to prune less promising parse subtrees. Of course, such techniques are not
admissible™ in that it is possible that they may prune a subtree which, although initialy not very
promising, would be a much better aternative at the end of a complete search through the parse
space. However, assuming that the system explored congtituents in the native language order (e.g.,
left-to-right for English), then the types of sentences that it would probably get confused on would
be the same type of sentences that would confuse a native speaker, i.e., garden-path sentences,
such as“ we gave the girl the cake was baked by grandma s recipe.” 2

Some of the strengths of the stochastic approach are (Church and Mercer, 1993; Kay et al., 1994;
Knill and Y oung, 1997; Rabiner and Juang, 1993; Schmucker, 1984):

Stochastic systems are effective in modeling language performance through training based on
most frequent language use. They are useful in modding linguistic phenomena that are not
well-understood from a competence perspective, e.g., speech.

The effectiveness of a stochagtic system is highly dependent on the volume of training data
available; generally more training data results to better performance.

1 A search algorithm is admissible if it is guaranteed to find the optimum path to a solution, if such a
path exists (Luger and Stubblefield, 1993).

12 The embedded clause “the cake was baked by’ modifies “girl”. For additional discussion on garden-
path sentences and examples, see Section 5.4.2.3 and (Akmajian, 1990; Winograd, 1983).
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Stochastic approaches may be easily combined with symbolic models of linguistic constraints,
such as dialog structure, to enhance the effectiveness and efficiency of an application (hybrid
systems are discussed in Section 4.4).

Stochastic mode s can be used to model nuances and imprecise concepts such as few, several,
and many, that have traditionally been addressed by fuzzy logic.

Some of the weaknesses of the stochastic approach are (Church and Mercer, 1993; Kay et al.,
1994; Rabiner and Juang, 1993):

Run-time performance of stochastic systemsis generally linearly proportiona to the number of
digtinct classes (symbols) modeled, and thus can degrade considerably as classes increase; this
holds for both training and pattern classification.

In generd, given the state-of-the-art in corpus development, producing training data for a
specific application domain can be a time-consuming and error-prone process. Thus, since the
effectiveness of stochagtic systems is tightly bound to extensive, representative, error-free
corpora, the difficulty of developing such systems might be, in the general case, smilar to that
of other approaches.

Stochastic approaches are very effective in addressng modding problems in application domains
where traditional symbolic processes have failed. Although their potential is gill being explored,
and thus new significant results may be discovered, they have aready proven to be a valuable
approach to NLP for human-computer interaction.

4.3 Connectionist Approach

Similarly to the stochastic approach, the connectionist approach is also based on employing
training data to improve the performance of linguistic models. The difference between the two
approaches is in the complexity of the system architecture. Specifically, connectionist models
consist of massive interconnected sets of smple, non-linear components. These components operate
in paralle, as opposed to the non-paralld systems found in other approaches, such as finite-state
machines and context-free frameworks™® Acquired knowledge is stored in the pattern of
interconnection weights among components. There exist various characteristics that affect the
performance and utility of connectionist systems, such as number and type of inputs, connectivity,
choice of activation threshold/function, and choice of update function (Caudill and Butler, 1990;
1992; Cowan and Sharp, 1988; Firebaugh, 1988; Kay et al., 1994; Markowitz, 1996; Obermeier,
1988; Rabiner and Juang, 1993).

Although it has been argued that, due to their lack of internal structures, connectionist architectures
are not competent in handling natural language (Fodor and Pylyshyn, 1988), such architectures
have been used to modd various linguistic phenomena, especially in phonology, morphology, word
recognition (spoken and written), noun-phrase understanding, prepostional-phrase attachment,
script-based narratives, and speech production (Elman, 1991; Miikkulainen, 1993; Wermter,
1996).

3 Neverthdless, from a theoretical perspective, it can be argued that symbolic, statistical, and
connectionist approaches are not necessarily distinct; for instance, connectionist and datistical
architectures are usually implemented on top of non-parallel computational architectures which conform
to the physical symbol system hypothesis. From a practical perspective, however, this distinction is
meaningful, since different approaches appear to be best suited to different regions of the NLP problem
space — similarly to how different high-level programming languages are best suited to different regions of
the problem space solvable by universal Turing machines.
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Figure 3. Phoneme Probability Estimator
(adapted from Schalkwyk and Fanty, 1996)

For example, Figure 3 shows a connectionist approach to phoneme classification. The input
consists of a collection of feature vectors derived through a temporal context window centered on a
target vector. Each of these vectors has been generated from speech input analyzed with a spectral
analysis method such as Linear Predictive Coding. The output is a phoneme probability vector in
which each phoneme is assigned a probability indicating the likdihood that a given input frame
bel ongs to that phoneme.

Some of the strengths of the connectionist approach are (Caudill and Butler, 1990; Fodor and
Pylyshyn, 1988; Rabiner and Juang, 1993):

Connectionist architectures are sdf-organizing, in that they can be made to generalize from
training data even though they have not been explicitly “instructed” on what to learn. This can
be very useful when dealing with linguistic phenomena which are not well-understood — when
it isnot clear what needs to be learned by a system in order for it to effectively handle such a
phenomenon.

Connectionist architectures are fault tolerant, due to the distributed nature of knowledge
storage. Specifically, as increasing numbers of their components become inoperable, ther
performance degrades gracefully (gradually).

The weights of a connectionist architecture can be adapted in real-time to improve
performance.

Due to the non-linearity within each computational eement, connectionist architectures are
effective in moddling non-linear transformations between inputs and outputs.

Some of the weaknesses of the connectionist approach are:

Once a connectionist system has been trained to handle some linguistic (or other) phenomenon,
it is difficult to examine and explain the structure or nature of the acquired knowledge. In
many cases, this is not detrimental; however, it is possible for a connectionist system to learn
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the wrong type of knowledge, especialy if the training set is not well-developed or well-
understood.*

It is possible for a system to be over-trained and thus diminish its capability to generalize —
only the training data can be recognized.

Due to their massive paralldism, and their usual implementation on non-paralld architectures,
connectionist systems may be ineffective from a runtime complexity perspective for many real-
time tasks in human-computer interaction.

Similarly to stochastic approaches, connectionist models are very effective in addressing NLP
problemsin which traditional symbolic models are ineffective. Although their potential is ill being
explored, and thus new techniques and applications are being developed, they have already proven
to be avaluable tool for NLP in human-computer interaction.

4.4 Hybrid Approach

As seen in the previous sections, each of the above approaches has advantages and disadvantages,
accordingly, each approach has advocates and critics, especially on theoretical and philosophical
grounds. However, when dealing with natural language systems for human-computer interaction,
theoretical debates are not of much relevance unless they contribute to on€' s understanding of the
applicability, or utility of a particular approach with respect to developing an effective human-
computer interface. Consequently, researchers have begun developing hybrid architectures which
take advantage of the relative strengths of each approach, in an attempt to use “the best tool for the
job.”

One example of the hybrid approach is the DISCERN system which combines symbolic and
subsymbolic (connectionist) techniques to process script-based narratives. Specifically, it reads
short gtories, stores them in episodic memory, generates paraphrases of the stories, and answers
guestions related to these stories. DISCERN employs subsymbolic modules to perform each of
these subtasks. At alow levd, the system is connectionist in nature; however, at a high levd, it is
symbolic, in that its modules are connected using symbolic information structures, such as scripts,
lexicon, and episodic memory (Miikkulainen, 1993; Miikkulainen, 1994).

Another example is the SCREEN speech understanding system. It combines connectionist and
symbolic techniques to perform robust analysis of real-world spoken language (Wermter, 1996).
Similarly, SpeechActs combines off-the-shelf continuous speech recognizers (employing stochastic
or connectionist moddls) with symbolic modules performing syntactic, semantic, and dialog
analysis (Martin et al. 1996).

Finally, the SUITE architecture integrates speech recognition and natural language processing
components (Manaris and Harkreader, 1997). This is a generic architecture for speech
understanding interfaces to interactive computer applications. It is based on the CSLU-C
architecture for speech recognition and the NALIGE natural language interface architecture
(Manaris and Dominick, 1993; Schalkwyk and Fanty, 1996). It uses connectionist techniques for

14 One such example is a neural network developed at the Stanford Research Institute which was trained
to detect the presence of tanks in photographs. Although the system was successful when presented with
testing data derived from the same batch of photographs as the training set, it performed badly otherwise.
Eventually, it was discovered that the system had learned to recognize other characteristics of the data set,
such as the differences in light intensity and density; it turned out that all photographs in the training set
containing a tank had been taken in the morning, whereas the non-tank ones had been taken in the
afternoon (Clark, 1993; p. 41).
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phoneme identification, stochastic techniques for creating an N-best sentence hypothess, and
symbolic techniques for additional linguigtic analysis of the input. Specifically, It consists of
modules which perform acoustic, phonetic, lexical, syntactic, semantic, and pragmatic processing
asfollows (see Figure 4):

afeature extractor converts the speech signal to a set of feature vectors,

a phoneme probability estimator uses a connectionist moddl to produce a phoneme probability
matrix, which approximates the probability of a feature vector being part of a given phoneme;

alexical analyzer employs a Viterbi search to determine the N-best paths through the phoneme
probability matrix; this search is structuraly-driven to focus only on “valid” phonemic
trangtions, thus enhancing accuracy and efficiency;

an augmented semantic grammar (ASG) parser identifies the sequence of words that could
possibly occur at a given point in a“valid” input, enforce pragmatic congtraints, and generate
semantic interpretations,

a code generator converts semantic interpretations to commands to be passed to the underlying
system.

Additionally, the architecture includes an error handler, a knowledge-base manager and a system
driver.

In summary, hybrid techniques utilize the strengths of symbolic, stochastic, and connectionist
approaches in an attempt to (&) minimize the human effort required for linguistic modd
congtruction, and (b) maximize the flexibility, effectiveness, and robustness of NLP applications
for human-computer interaction.
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5. Knowledge and Processing Requirements

According to Feigenbaum (1996), NLP programs exist in one extreme of a continuum which he
calls, the “ What-to-How” software spectrum.’ On one extreme of this continuum — the “How” or
procedura side — we find general-purpose computing devices. At this level, knowledge is described
in terms of binary code (data and instructions) to be executed by the underlying hardware whose
processing capabilities are theoretically equivalent to universal Turing machines. On the other
extreme of the continuum — the “What” or declarative sde — we have the user who wishes to
express his’her goals and needs through natural communicative modalities such as gesture, speech,
and body language. The history of software evolution is marked by specific milestones in the
attempt to bridge the gap between the “How” and * What” ends of this continuum. Such milestones
include assembly languages, high-level languages, software development environments,
specification languages, intdligent agents, and domain-specific expert systems. The next milestone
in this continuum is probably intelligent user interfaces encapsulating knowledge about the domain
as well as the user communicative capabilities/preferences — thus bringing software closer to the
“What” sde of the continuum.

5.1 Computational Issues

It isimportant to remember that any modd of natural language phenomena will eventually have to
be communicated to and executed by a computing device. Therefore, assuming that Church’s
Thesis holds,™® any theory or representation formalism that is not formally equivalent to a universal
Turing machine, will fall short of exploiting al the power of a computing device in its attempt to
perform NLP; this might have considerable implications with respect to the utility of any NLP
theory.

On the other hand, Wegner (1997) discusses a thought-provoking alternative model of computation
based on interaction, namely interaction machines, that is more powerful than Turing machines.
Specifically, he argues that any system that alows for interaction is capable of exhibiting richer
behavior than a Turing machine. That is the “assertion that algorithms capture the intuitive notion
of what computers compute is invalid” (p. 83). This supports claims of certain researchers that
natural language could be effectively (if not completely) modeled by context-free, or even regular
language frameworks (Blank, 1989; Marcus, 1980; Reich, 1969) — especially if such models can
be trained through interaction.”” Actually, such results have contributed to empirica NLP
applications in the late 1980s and 1990s based on text or speech corpora, finite-state-machine
modeling frameworks, such as HMMs, and neural networks (see Sections 4.2 and 4.3).

5.2 Understanding Natural Language

Let us for a moment consder a hypothetical dialogue taking place between a human and a
computer system. This dialog is in the flavor of Apple's “ Knowledge Navigator” vison of the
future (Lee, 1993):

<Human>: | am getting ready to quit for today.

5 Actually, Feigenbaum focuses on general Al programs. However, assuming that NLP is an Al-complete
problem, hisideas hold in the NLP realm.

16 Church’s Thesis proposes that the intuitive notion of what is computable corresponds to the formal
notion of computability as expressed by Turing machines (Lewis and Papadimitriou, 1981; Wegner,
1997).

Y This has a strong intuitive appeal asit is through interaction that humans acquire natural language.
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<Computer>: | understand.

<Human>: Please do not delete any of the temporary files | have created, as they contain
information that may be useful later for the Advances in Computers article that you and |
areworking on.

<Computer>: | understand.

Actually, assuming that the underlying computer system did not, by default, delete any temporary
files, this “understanding” system could be effectively implemented by the following LISP code
(Firebaugh, 1988):

(while (not (null? (read)))

(display "1 understand”)
(new i ne))

Obvioudy, no understanding is taking place here. Neverthdess, this system contains knowledge
about natural language that has been implicitly programmed into it by its developer. For example:

In adialog there exists two participants.

An information exchange is taking place between these participants. Actualy, this rule does
not specifically appear in the above program,; it is nevertheless one of the rules known to the
designer of the system and thus could be claimed that this knowledge is encapsulated in the
design choices made during the system’ s devel opment.

Once the first participant has completed a statement, the other may clam that (s)he
understands what is being said, even if that is not the case.

One of the philosophical questions which naturally arise in the context of discussng knowledge and
processing requirements for NLP systems is “ what does it mean to understand natural language?’
(Winograd, 1980). From a philosophical perspective, it can be claimed that this system is not much
different from state-of-the-art NLP systems, since such systems are also not capable of doing
anything more than they have been programmed to do. Hofstadter (1979) devotes much discussion
to this and related issues. For ingtance, given the inpuit:

“Margie was holding tightly to the string of her beautiful new balloon. Suddenly, a gust of
wind caught it. The wind carried it into a tree. The balloon hit a branch and burst. Margie
cried and cried” (Rumelhart, 1975, p. 211)

Hofstadter points out that an NLP system could never truly understand what is being said “until it,
too, has cried and cried” (p. 675).

Nevertheless, considering systems like ELIZA (see Section 5.4.1.1), which under certain
circumstances could pass the Turing Test of intelligence,'® and the simplistic keyword matching
strategies they employ (without any formal representation of syntax, semantics, or pragmatics),
how could we possibly expect to distinguish between a system that understands natural language
(if such as a system may ever exist) from one that does not?*® From a human-computer-interaction

'8 The Turing Test, proposed by Alan Turing (1950), requires a human interrogator to communicate with
acomputer via ateletype. The interrogator is not told whether (s)he is communicating with a computer or
another human; if the interrogator cannot tell the difference, then the computer has passed the test
(Russdll and Norvig, 1995; p. 5). The interested reader may also look into the annual Loebner Prize
Competition, aformal effort to locate a machine that can passthe Turing Test (Epstein, 1992).

¥ McCorduck (1979) describes how an ELIZA-like program “participated” in a lengthy, intimate
conversation with an internationally respected computer scientist, as cited in Firebaugh (1988), p. 223.
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perspective, which is the one adopted in this article, such questions are of importance to artificia
intelligence and cognitive science researchers, what really matters is the end-result, namey the
effectiveness, learnability, user-friendliness, and functionality of the user interface which employs
natural language models.

In general, human-defined models are at best approximations of the natural phenomena they
represent — given the limitations imposed on our modding capahilities by our intellectual capacity
and our senses (or lack thereof). Since NLP systems incorporate human-defined models of natural
language — a natura phenomenon — we should expect to find at best an approximation to
understanding. From a computer science perspective, one possible definition to what congtitutes
“understanding” of natural language is the following: A system “ understands’ natural language,
if, in response to some input, it creates a conceptual structure corresponding to that input,
updates an existing conceptual structure, or makes an appropriate modification to a knowedge
base. Obvioudy, this definition excludes minimalistic systems such as the one presented above.
Additionally, it makes only a cursory reference to “correctness’ which is an essential quality of
dgorithms in computer science® Finally, it introduces a new question, namely: “what type of
knowledge would we expect to find in an NLP system’s conceptual structures, or its knowledge
base?’. Thisquestion is addressed in the next section.

5.3 Natural Language Knowledge Levels

The success of any NLP system is highly dependent on its knowledge of the domain of discourse.
Given the current state-of-the-art in NLP models, this knowledge may be subdivided into severa
levels. There exist different schools of thought, but, in general, researchers agree that linguistic
knowledge can be subdivided into at least lexical, syntactic, semantic, and pragmatic levels. Each
level conveys information in a different way. For example, the lexical level might deal with actua
words (i.e., lexemes), their constituents (i.e., morphemes), and their inflected forms. The syntactic
level might deal with the way words can be combined to form sentences in a given language. One
way of expressing such rules is to assign words into different syntactic categories, such as noun,
verb, and adjective, and specify legal combinations of these categories using a grammar. The
semantic level might deal with the assgnment of meaning to individua words and sentences.
Finally, the pragmatic level might deal with monitoring of context/focus shifts within a dialog and
with actual sentence interpretation in the given context.

Table 1 shows one commonly used classification which attempts to be as thorough as possible
(given our current understanding of the language phenomenon) by accounting for acoustic, as well
as general world knowledge (Akmajian et al., 1990; Allen, 1994b; Manaris and Slator, 1996;
Sowa, 1984). In this classfication, each level is defined in terms of the declarative and procedural
characterigtics of knowledge that it encompasses.

5.4 Classification of NLP Systems

As seen in the previous section, natural language can be viewed at different levels of abstraction.
Based on the application domain, NLP systems may require only subsets of the above knowledge
levels to meet their application requirements. For example, a machine trandation system, such as
the Eurotra prototype which focuses on documents dealing with telecommunications, and covers
nine languages of the European Community, namely Danish, German, Greek, English, Spanish,
French, Italian, Dutch, and Portuguese (Arnold, 1986; Maegaard and Perschke, 1991), may
require only knowledge levels 3 to 7 (or possibly 8). Smilarly, a speech recognition system, such

2 A quality that is not always provable, and, in many cases, not even attainable.
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1. Acoustic/prosodic knowedge: What are rhythm and intonation of language; how to form
phonemes.

Phonologic knowledge: What are spoken sounds; how to form morphemes.
Mor phologic knowledge: What are sub-word units; how to form words.
Lexical knowedge: What are words; how to derive units of meaning.

Syntactic knomedge: What are structural roles of words (or collection of words); how to
form sentences.

o~ W N

6. Semantic knowedge: What is context-independent meaning; how to derive sentence
meanings.

7. Discourse knowedge: What are structural roles of sentences (or collections of sentences);
how to form dialogs.

8. Pragmatic knowledge: What is context-dependent meaning; how to derive sentence
meanings relative to surrounding discourse.

9. World knowedge: What is generally known by the language user and the environment, such
as user beliefs and goals; how to derive belief and goal structures. Currently, thisis a catch-
all category for linguistic processes and phenomena that are not well understood yet. Based
on past evolutionary trends, this knowledge level may be further subdivided in the future to
account for new linguistic/cognitive theories and models.

Table 1. Knowledge levelsin NLP moddls.

as Dragon Systems’ Naturally Speaking and Kurzweil Voice, may require only knowledge levels 1
to 5, although it would benefit from having access to knowledge in levels 5 to 7 (Manaris and
Slator, 1996). Finally, a speech understanding interface to UNIX may use knowledge levels 1 to 6
to produce a semantic representation of a given input, eg., del ete-file(”x”), and then
knowledge level 8 to convert that semantic interpretation to the corresponding redlization in the
underlying command language, eg., "rm -i x”. Such an interface could benefit from having
access to specific knowledge about dialog in the context of communicating with an operating
system (see Figure 5). An example of such an interfaceis UNIX Consultant (see Section 5.4.4.1).

In practice, it may be hard to classify NLP systems based on the types and levels of linguistic
knowledge they encapsulate. For example, even for primitive NLP systems, such asthe one seen in
Section 5.2, it might be argued that they contain implicit knowledge from various knowledge levels.
Nevertheless, it may be beneficial to examine NLP systems based on the depth of explicit linguistic
analysis they perform, as this may provide clues on their strengths and weaknesses. In the
remainder of this section, we will attempt to classify a few representative symbolic modeling
methods according to this linguistic analyss classification scheme and provide examples of
relevant NLP systems.

5.4.1 Lexical Analysis Systems

Lexical anayss systems, also known as keyword matching systems, employ a pattern matching
mechanism designed to recognize or extract certain predefined keywords from the user input.
Compared to the minimalistic system of Section 5.2, which implicitly encapsulates a limited
amount of natural language knowledge, it can be claimed that lexical analysis systems directly
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Figure 5. Knowledge Levelsin NLP Systems

understand a small subset of natural language. These systems can be compared to a human visiting
aforeign country who can recognize only a few words and/or phrases from the native language and
can only respond using a small number of previoudy memorized sentences; additionally, once a
certain keyword has been recognized, (s)he may perform some complex action which is appropriate
in the given context, such as following the directions in the sentence: “To find the bank go left,
right, and then left.” In this example, the highlighted words are the actual keywords which convey
the mogt important information.

54.1.1 ELIZA

A program using a lexical approach to natura language understanding is ELIZA. This program
was written by Weizenbaum at MIT in an attempt to study issues relevant to natural language
communication between humans and computers (Weizenbaum, 1966; 1967). ELIZA assumes the
role of a Rogerian psychotherapist and, under many circumstances, manages to misguide the user
into beieving that it actually understands al that is being said. Its knowledge base conssts of a
collection of predefined patterns against which the user’ sinput is compared. Each of these patterns
has a generic template associated with it, which is used in constructing ELIZA’s response.
However, after some interaction with this system the user darts realizing the limits of this
program’s intelligence. Incidentally, Hofstadter (1979, p. 621) claims that humans get bored
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interacting with such an “inteligent” system not when they have exhausted its repertoire of
behavior, but when they have intuited the limits of the space containing this behavior.

54.1.2 NLDOS

One NLP application that performs its function relying on strictly lexical analysis techniques is
NLDOS (Lane, 1987). NLDOS is a natural language interface to operating systems. The main
motivation for building this interface was the syntactic differences between the VAX/VMS and the
MS-DOS command languages, which the designer was using interchangeably. He states (p. 261):

After changing default directories several dozen times on a DEC VAX with the set def
command, | invariably type the same command to change directories on my IBM PC. Then, |
throw a mental “Read my mind!” at the machine and edit the command to cd (short for
chdir).

An additional consderation was the syntactic inflexibility of the MS-DOS backup command,
especially if the user wants to include subdirectoriesin the actual request.

NLDOS was implemented in PROLOG using smple lexical rules to identify tokens in the natural
language input, such as disk drive, filename, and date specifications. This system'’s task coverage
is very limited and its linguistic knowledge is organized in an ad hoc fashion. This is because, the
interface devel opment was mainly motivated by the designer’s personal difficulties and specifically
tailored with respect to his needs. For instance, Lane decided that, for implementation smplicity,
certain punctuation marks within the natural language input, such as colons, periods, and hyphens,
may only appear insde disk drive, filename, and date specifications, respectively.

NLDOS allows for flexible matching to the point where careless or obtuse wording may “ confuse’
the system into executing a command different from the one intended. For instance, assuming that
the system was trained to recognize any pattern of the type (* del ete * <FILESPEC>) as a
request to delete file <FILESPEC>, where * matches zero or more words and <FILESPEC> stands
for afilename token, an input such as*“ Do not delete file REPORT.DOC” would have the opposite
effect. Actually, during the testing phase, Lane reports that the system inadvertently erased the
compl ete contents of one of his computer’s disk drives. Thisis a general problem with systems that
perform flexible (or robust) parsing.

5.4.2 Syntactic Analysis Systems

Syntactic analysis systems, in addition to recognizing certain input keywords, attempt to derive a
unique structure, namely a parse tree, which directly corresponds to the syntactic information
encapsulated in the input sentence.

5.4.2.1 The Chomsky Hierarchy

One of the early influential figures in the fiedld of linguistic analysis is MIT's Noam Chomsky
(1957; 1965). His theories depended on a rigorous approach to studying language devel oped by
earlier researchers, but went further by deriving a collection of grammars which describe the
structural relations which are acceptable within language (Harris, 1985). Chomsky explains that a
generative grammar is a system of rules that in some explicit and well-defined way assigns
structural descriptions to sentences (Chomsky, 1965, p. 8). Thisimplies that generative grammars
offer aformal framework to be used in implementing computer systems which perform syntactical
analysis on statements of a specific language.

Additionally, Chomsky classfied languages into four categories according to the restrictions
imposed on the form of the actual grammar describing them, namely recursively-enumerable,
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context-senditive, context-free, and regular languages. These redtrictions reflect the descriptive
power of the corresponding grammars. Moreover, these redtrictions reflect the computational
power needed by a computer system using such a grammar to perform syntactic analysis on a
specific language. Analytically, the most powerful grammars, i.e., grammars describing recursively
enumerable languages, require the power of a universal Turing machine to be interpreted.
Grammars describing context-sensitive languages require the computational power of a linear-
bounded automaton (a variation of a Turing machine constrained by the fact that the amount of
storage which is available for its processing needs is finite).?* Grammars corresponding to context-
free languages need the processing power of a pushdown automaton. Finally, regular grammars
can be handled by a finite-state machine.

Chomsky claimed that due to the recursive-embedding nature of clauses, natural language cannot
be modeed by finitestate machines. This daim has been subsequently challenged by other
researchers such as Blank (1989), Marcus (1980), and Reich (1969) (see Section 5.4.2).
Incidentally, Chomsky developed a formalism equivalent to a universal Turing machine, namely
transformational grammars, which can be used to modd natural language. However, although this
formalism is appropriate for generating subsets of natural language, it is extremely inefficient for
practical natural language analysis (Woods, 1970).

5.4.2.2 Augmented Transition Networks

In “Trangtion Network Grammars for Natural Language Analyss’, Woods (1970) presents a
formalism caled augmented trandtion networks (ATNSs). This formalism is actuadly a
computational mechanism equivalent in power to a universal Turing machine. An ATN is not by
definition a natura language understanding mechanism, but it may be used to define a process
which can recognize subsets of natural language.”” An ATN is similar to a finite-state machine, in
the sense that it consists of a set of nodes, corresponding to the states of the computational process,
and a set of named directed arcs connecting these nodes, corresponding to the input symbols which
may cause specific trangitions between computational states. Additionally, ATNs have the
following features:

Arcs may be named with state names, thus alowing for recursive invocation of complete
ATNSs, including the caller ATN.

A st of registers each of which may be assigned to congtituents of the parse tree being built.

Arbitrary tests may be associated with any given arc; these tests are built in terms of registers
and/or input symbals.

A st of actions may be associated with any given arc; these actions provide the mechanism to
incrementally construct the appropriate parse tree.

The main advantage of ATNs resides in the immense generative power they offer to the NLP
application designer. Consequently, several NLP systems have been implemented using this
formalism (either exclusvey, or as an underlying programming mechanism), such as LUNAR
(Woods, 1970), SOPHIE (Brown and Burton, 1975), GUS (Bobrow et al., 1977), and LIFER
(Hendrix et al., 1978). Some of these systems will be examined in Section 5.4.3, since, in addition

2 Actually, the amount of storage available to a linear bounded automaton is linearly proportional to the
storage occupied by its original input, as opposed to the infinite storage capacity characterizing universal
Turing machines (Moll et al., 1988).

2 The ATN formalism can be thought of as a special-purpose high-level language.
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to performing dtrictly syntactic analysis, they attempt to construct a semantic interpretation of their
natural language input.

Dueto their non-deterministic nature, ATNs tend to be very expensive from a computational point
of view. This problem isintensfied when dealing with large grammars, since, in such a case, input
sentences tend to appear locally highly ambiguous thus increasing the amount of backtracking that
IS necessary to successfully parse them.

54.2.3 PARSIFAL

A system employing an interesting approach to NLP which is diametrically opposed to the non-
deterministic approach characterizing ATN based systems, is Marcus's PARSIFAL (Marcus,
1980; Winograd, 1983). This system was built to demonstrate that there is a theoretica
sgnificance to the determinism hypothesis. This hypothesis states that given certain well-defined
mechanisms, syntactical analysis [may be performed] deterministically. (Winograd, 1983, p.
410.)

Most natural language understanding systems employ strategies intended to explore existing
aternatives in an attempt to handle apparent syntactic ambiguity. For example, consder the
sentences “Have the boxes in the boiler room thrown away!” and “Have the boxes in the boiler
room been thrown away?’. These two sentences appear structuraly similar until the words
“thrown”, and “been”, respectively, come into focus.

The idea on which PARSIFAL is based is that one may procrastinate assigning a syntactic
structure to some given congtituent until encountering an input word which resolves any existing
ambiguity. This system uses a small, fixed-sze buffer in which constituents are stored until their
syntactic functions can be determined.

Although the resulting mechanism allows for extremely efficient parsing, one major drawback is
that if the amount of |ook-ahead needed to resolve the apparent ambiguity is greater than the buffer
size, then the system may choose an incorrect syntactical structure (or smply fail to produce one)
(Winograd, 1983). Moreover, once a disambiguating word is read from the input, there is no way
of retracing earlier steps in an attempt to correct a wrong decision (thus resulting in a parsing
failure, although there may exist at least one possible syntactic interpretation).

Nevertheless, the sentences on which PARSIFAL fails to assign an appropriate syntactic structure
are exactly those on which humans have trouble, also known as garden path sentences (Akmajian,
1990; Blank, 1989). A classic example of such a sentence is “ The horse raced past the barn fell
down.” The part “raced past the barn” modifies the noun “ horse” The alternative interpretation,
which happens to be the one chosen by most human readers, isto initialy treat “raced” asthe main
verb of the sentence. Although such sentences may not be compatible with the linguistic
competence of some English speakers, they are nevertheless treated as grammatical by mainstream
linguists (Akmajian, 1990, p. 371).

Concluding, PARSIFAL demondtrates that we may be capable of designing systems which
understand a significant part of natural language, and whose formal power is equivalent to that of a
finite-state machine. In addition to Marcus, several other researchers follow a smilar deterministic,
finite-storage approach to natural language understanding. These results are of major importance,
since they have set the stage for stochastic approaches based on HMMs — a probabilistic version of
afinite-state machine (see Section 4.2).
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5.4.3 Semantic Analysis Systems

Semantic analysis systems differ from lexical and syntactic analysis systems in ther ability to
perform processing at the semantic level, in addition to the lexical and syntactic levels. This ability
isadirect result of their encompassing knowledge related to the functionality or tasks associated
with the application domain (semantic domain). These systems can be further subdivided according
to the form in which they represent this semantic knowledge.

5.4.3.1 Implicit Semantic Representation

Systems acting as natural language interfaces to various interactive computer systems are
classfiable under this category if they represent their semantic domain in terms of the underlying
system’s command language. Examples of such interfaces include LUNAR (Woods, 1973), and
LIFER (Hendrix et al., 1978). However, command language syntax is not as suitable for
representing the semantic domain of an application, as a predicate or lambda calculus based
knowledge representation language. This is because the former, since it is equivalent to a
procedural description, disallows representation of semantic domain meta-knowledge which could
be used in error detection, reasoning and recovery operations. Consequently, NLP systems
employing implicit semantic representation are incapable of, or extremely ineffective in producing
“inteligent” error messages regarding conceptual errors committed by the user.

5.4.3.2 Explicit Semantic Representation

Systems under this category represent their semantic domain in terms of an intermediate leve,
which facilitates the explicit identification of semantic domain &ements known to the system. Maore
analytically, the actual knowledge base of such a system encompasses declarative (or procedural)
knowledge regarding the conceptual entities known to the system, the actions which manipulate
these entities, and the relationships that exist among them. Examples of such NLP systems include
SHRDLU (Winograd, 1983), and UNIX Consultant (Wilensky et al., 1984; 1988).

54.3.3 LUNAR

One of the first systems to be implemented based on the ATN formalism is Wood's LUNAR
system (Woods, 1973). LUNAR is a natural language interface to a database system built to
trandate a subset of English into the corresponding database queries. It interfaces with a database
containing data about the mineral samples obtained from the Apollo-11 misson to the moon.
LUNAR consists of an ATN used to store natural language knowledge, a lexicon containing
approximately 3,500 words, and a target query language based on predicate calculus. An example
of thetrandation process performed by this system follows.

(Do any sanpl es have greater than 13 percent al um num

R

(TEST (FOR SOVE X1 / (SEQ SAMPLES : T;
(CONTAIN * X1 (NPR* X2 / (QUOTE AL203))
( GREATERTHAN 13 PCT))))
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5.4.3.4 Augmented Semantic Grammars

The semantic grammar formalism was invented by Burton for use in the SOPHIE NLP system
(Brown and Burton, 1975; Burton, 1976). These grammars are equivalent in descriptive power to
context-free grammars. The only difference is that in semantic grammars the syntactic and
semantic aspects of the linguistic knowledge have been incorporated into a single framework.
Although, this formalism has been effectively used for knowledge representation in limited
application domains, it is incapable of dedling effectivdy with context-sendtive linguistic
phenomena, such as paralld-association condructs, e.g., “Peter, Paul, and Mary like Bach,
Debussy, and Stravinsky, respectively.”

Hendrix et al. (1978) developed augmented context-free grammars (ACFGs), which augment
semantic grammars by alowing for actions to be associated with each production rule in the
grammar. These actions are equivalent to the actions associated with arcs in the ATN formalism.
The semantics of associating an action with some production rule is that the specified action is
executed if and only if the corresponding production rule is successfully matched against a given
input constituent. This augmentation is shown to make ACFGs equivalent to a Turing machine in
terms of generative/descriptive power. Although this formalism can effectively deal with various
linguistic phenomena, it lacks conditions to be tested prior to examining a production rule. This
deficiency resultsin reduced parsing efficiency.”

Manaris and Dominick (1993), introduced an additional augmentation to the ACFG formalism,
namey the association of preconditions with production rules in the grammar. The resultant
formalism, namely augmented semantic grammars (ASGs) has been shown to be powerful enough
to recognize any language recognizable by a computing device, yet maintain a degree of
“perspicuousness,” and provide an effective mechanism for controlling combinatorial run-time
behavior in parsing. ** ASGs have been used to develop a variety of NLP applications. Examples
include a natural language interface to operating systems (see next section); a natural language
interface for Internet navigation and resource location; a natural language interface for text pattern
matching; a natural language interface for text editing; and a natura language interface for
eectronic mail management (Manaris, 1994).

5.4.3.5 Natural Language Interfaces to Operating Systems

Manaris (1994) presents a natural language interface to UNIX and its subsequent porting to MS-
DOS, VAX/VMS, and VM/CMS. Although it has some pragmatic-level knowledge incorporated
into its knowledge basg, it is best classified as a semantic analysis system as it does not maintain
any knowledge on dialog structure. This system has been developed as a demonstration of the
NALIGE user interface management system which can be used to congtruct natural language
interfaces to interactive computer systems (see Section 6.4.1). The interface to UNIX handles a
variety of user tasksincluding:

File Tasks: copy, delete, display, edit, print, and send via e-mail
Directory Tasks:. create, delete, list contents, and display name

% Conditions to be tested as well as actions to be executed are part of other formally equivalent, but
potentially more efficient formalisms such as augmented phrasal structure grammars (Sowa, 1984) and
ATNs (Woods, 1970).

24 \Woods (1970), uses the term perspicuity to describe the inherent readability of context-free grammars,
that is being able to directly determine the consequences of a production rule for the types of constructions
permitted by the linguistic model (as opposed to other formalisms such as regular grammars and
pushdown automata).
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<MAKE- DI RECTORY> :

CONSTRUCT- V] <MAKE- DI RECTORY- SPEC> || “(createdirectory :directory ,

CREATE- V] <MAKE- DI RECTORY- SPEC> || “(createdirectory :directory ,

MAKE- V] <MAKE- DI RECTORY- SPEC> || “(createdirectory :directory ,

MKDI R- V] <MAKE- DI RECTORY- SPEC> || “(createdirectory :directory ,

OPEN- V] <MAKE- DI RECTORY- SPEC> || “(createdirectory :directory ,

PRODUCE- V] <MAKE- DI RECTORY- SPEC> || “(createdirectory :directory ,
<MAKE- DI RECTORY- SPEC> :

*DI R-NAMVE*] || (V 1)

DIR-N] [*DIR-NAMVE*] || (V 2)

DIR-N] [ NAMED- REF] [*DI R-NAME*] || (V 3)

DIR-N] [REF-V] [*DI R-NAME*] || (V 3)

*DI R-NAVE*] [AS-REF] [DIR-N] || (V 1)

NEW ADJ] [DIR-N] [*DI R-NAME*] || (V 3)

A-1NDEF] [NEWADJ] [DIR-N] [*DI R-NAME*] || (V 4)

A-INDEF] [DIR-N] [ NAVED-REF] [*DI R-NAMVE*] || (V 4)

A-INDEF] [DIR-N] [CALLED-V] [*DIR-NAVE*] || (V 4)

BLANK- ADJ] [DIR-N] [CALLED-V] [*DIR-NAME*] || (V 4)

A-1NDEF] [NEWADJ] [DIR-N] [CALLED-V] [*DI R-NAME*] || (V 5)

A-INDEF] [DIR-N] [AND-CONJ] [CALL-V] [IT-N] [*DIR-NAVE*] || (V 6)

ME- PN] [ AN-DEF] [EMPTY-ADJ] [DIR-N] [CALLED-V] [*DIR-NAMVE*] || (V 6

A-1 NDEF] [ BRAND- ADV] [NEWADJ] [DIR-N] [CALLED-V] [*DI R-NAMVE*] || (

Figure 6. ASG Excerpt from UNIX Natural Language Interface
(reprinted with permission of World Scientific).
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Other Tasks: change user password, display user information, display users on system, list e-
mail messages, and send e-mail messages

Figure 6 shows an excerpt from the augmented semantic grammar included in thisinterface.

5.4.4 Pragmatic Analysis Systems

Pragmatic analysis systems improve on the natural language understanding capabilities of semantic
analysis systems. This is because the main objective of these systems is to participate in extended
dialogues with users over some specific area of world knowledge. These systems employ a
sgnificant subset of world knowledge associated with a given application, in order to facilitate a
deeper understanding of a given natura language input. More specifically, pragmatic analysis
systems attempt to derive the deeper meaning or implications of natural language utterances by
performing inference on pragmatic discourse elements, such as the goals of dialogue participants,
social protocols associated with a given dtuation, and facts derived from earlier parts of the

dialogue/story.

For example, consder the sentence “The gas is escaping!” in a story understanding application.
Although the semantics of this sentence is clear, its pragmatics is ambiguous. More specifically, if
the sentence is uttered by a chemigtry instructor to a student performing an experiment in a
chemistry lab, then a pragmatic analysis system might infer the following facts:

1. The student has been cardless.
2. Theingructor isdispleased.

3. Thestudent may receive alow gradein thislab.

On the other hand, if the dialogue is taking place in a San Francisco building following a major
earthquake, the syssem might infer:
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1. The earthquake hasruptured agasline.
2. Thereisimminent danger of an explosion.
3. Thebuilding has to be evacuated immediately.

Pragmatic analysis is necessary for story understanding and discourse analysis. In the last few
years, pragmatic analysis has been incorporated to a wide variety of applications including natural
language and speech understanding interfaces to a variety of applications including eectronic
appointment scheduling, battlefield smulation, currency exchange information, € ectronic calendar,
electronic mail, rea-time machine trandation, Rolodex, stock quote access, voice mail, and
weather forecast access (Alexandersson et al., 1997; Busemann et al., 1997; Martin, 1996; Moore
et al., 1997; Waibel, 1996; Wauchope et al., 1997).

5.4.4.1 UNIX Consultant

UNIX Consultant (UC) is a natural language understanding system whaose objective is to advise
users of the UNIX operating system (Wilensky et al., 1984; 1988). This system allows users to
obtain information about the usage of commands, such as command language syntax, on-line
definitions of general UNIX terminology, and command-line debugging problems.® UC employs a
pattern-action formalism for processing of natural language inputs, which is formally equivalent to
an ATN. It has been implemented using the LI1SP and PEARL programming languages.

Actually, the objectives of UC are of a wider scope than those of the natural language interface
applications discussed in the previous sections. This is because, instead of ssimply providing a
natural language front-end to a particular operating system, UC attempts to improve a user’s
understanding of the UNIX environment by participating in possibly extended question-and-answer
type of interactive sessons. Consequently, in addition to natural language understanding, it
combines concepts from a number of Al aress, such as natural language generation, Situation
planning, and problem solving (Chin, 1983). The rationale for developing UC is to provide naive
users (having to phrase some specific request in an unfamiliar command language) with a more
attractive alternative than locating a knowledgeable user consultant and/or searching through some
esoteric manual. UC employs a natural language analyzer able to produce user-friendly error
feedback when faced with ill-formed input. This system incorporates an extens ble knowledge base
of facts about UNIX and the English language.

5.4.4.2 JANUSI

Janus-ll is a speech trandator that operates on spontaneous conversational dialog in limited
domains (Waibel, 1996). It currently includes vocabularies of 10,000 to 40,000 words and accepts
input in English, German, Japanese, Spanish, and Korean. Its output can be any of the these
languages.

The system consists of modules for speech recognition, syntactic and semantic parsing, discourse
processing (contextual disambiguation), and speech generation. It incorporates HMMs and HMM-
neural network hybrid techniques to generate the most promising word hypotheses. For parsing it
employs semantic grammars within a pattern-based chart parser (Phoenix) and a stochadtic,
fragment-based generalized LR* parser. The reault is a language-independent representation (an
Interlingua) that is used by the generation part of the system to produce a spoken trandation of the

% A presentation of a similar natural language understanding system, namely UNIX-TUTOR, appears in
(Arienti et al., 1989).
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input in the desired output language. Although the Interlingua approach dates from the early MT
days of NLP, it continues to be a very viable approach for the following reasons:

It disassociates the syntactic structures of the input and output languages.

It facilitates introduction of new languages to the system, as the linguistic knowledge which is
specific to a given language can be contained within only a few modules of the system.

It alows generating output in any language, including the origina input language. This
facilitates feedback to the user, since, as the input gets converted to the Interlingua
representation it is possible that errors, may have been introduced. This approach alows the
user to verify that the system has “understood” the input correctly.

Janus-Il has been used to develop severa speech-trandation application prototypes including a
videoconferencing station with a spoken-language interpretation facility, and a portable speech
trandator running on a portable computer incorporating headphones and a wearable display for
output.

As systems move up the knowledge-level classification, they acquire more capahilities in handling
natural language phenomena. But what are some of these natural language phenomena and
associated problem areas? The next section addresses these i ssues.

5.5 Problem Areas

Cercone and McCalla (1986) and Grosz et al. (1987) discuss many issues that arise in the context
of processing natural language. These issues include augmenting linguistic coverage, generalizing
parser capabilities and robustness, incorporating pragmatics and meta-knowledge (knowledge
about the domain and the system), devising comprehensive knowledge representation schemes,
porting linguistic knowledge, modeling the user, and handling various discourse phenomena. The
latter include reference resolution, ambiguity resolution, handling dlipsis, monitoring user focus,
handling incomplete knowledge, representing exceptions, summarizing responses, handling time
dependencies, and dealing with hypothetical queries, references to system generated concepts,
system knowledge updates, and user goals.

Weizenbaum (1976, p. 204) indicates that, smilarly to Eingtein’s ideas on the relativity of motion,
inteligence is also meaningless without a frame of reference. In everyday interaction, we provide
such frames of reference, based our own cultural, educational, and social background and the
Stuation at hand. The same can be argued for language competence and performance. Although it
would be wonderful to have a modedling theory and associated algorithms that account for and
handle the complete spectrum of linguistic issues arising in human-human interaction, this is not
necessarily required for achieving effective human-computer interaction. This is because, human-
computer interaction applications are aways devel oped within specific frames of reference, that is
specific application domains. Therefore, one should focus on methodologies for developing modds
which provide effective linguistic coverage in specific application domains. The next section
discusses three methodol ogies which provide significant insghts into the problem at hand.

% This point is best illustrated in the context of the Eurotra MT project which covers 72 language pairs
(Arnold, 1986; Maegaard and Perschke, 1991); by isolating the language dependencies from as many
modules of the architecture as possible, only the language dependent modules have to be re-written, as
new languages are introduced.
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5.6 Linguistic Coverage

Furnas et al. (1987; 1983) discuss issues related to spontaneous language use at the user interface.
Although they focus on the sdection of natural language words to describe semantic eements
(objects, actions) in command language interfaces, their study provides intuitions regarding the
potential for unconstrained natural language in human-computer interaction, as well as the
development of constrained linguistic models. They indicate that the variability of spontaneous
word choice is “surprisingly large,” in that in all cases they sudied, the probability that the same
natural language word is produced by two individuals at the interface to describe a single semantic
entity islessthan 0.20.

Specifically, they discuss sx general schemes for assigning natural language descriptions to
semantic elements at the interface. Additionally, they present results from several experiments
designed to evaluate each of these schemes with respect to the resultant systems performance
measured against expected user behavior. They conclude that, out of the six schemes, the following
three are the mogt important: weighted random one-description-per-object scheme, which they
also refer to as the armchair modd, optimized one-description-per-object scheme, which will be
subsequently referred to as the optimal single-description mode, and optimized multi-description-
per-object scheme, which will be subsequently referred to as the optimal multi-description modd.

5.6.1 Armchair Modd

The armchair modd corresponds to the standard approach used in deriving command names and
syntactical structures for input languages to interactive computer systems, such as operating
environments, and information systems (Furnas et al., 1987). The underlying idea is that each
semantic eement available in the system is associated with a single surface description. Moreover,
this description is chosen by a system expert, usually the system designer, according to hisher
personal belief (“armchair” introspection) asto what congtitutes a proper naming convention.

The data derived from the conducted experiments suggest that this popular method is highly
unsatisfactory. More analytically, it is observed that, if the natural language description of a
semantic dement known to a system has been derived using the armchair method, untutored
subjects will fail 80 to 90 percent of their attempts to successfully access this semantic element.” It
should be noted that the experiments conducted by Furnas et. al. concentrate on semantic € ement
descriptions which consist of a single word. However, they suggest that usage of multi-word
descriptions is certain to result in even lower performance. Clearly, this is highly undesirable for
human-computer interaction.

Actually, the source of the problem isthat:

[T]here are many names possible for any object, many ways to say the same thing about it, and
many different things to say. Any one person thinks of only one or a few of the posshilities.
Thus, designers arelikely to think of names that few other people think of, not because they are
perverse or stupid, but because everyone thinks of names that few others think of. Moreover,
since any one person tends to think of only one or a few alternatives, it is not surprisng that
people greatly overrate the obviousness and adequacy of their own choices (Furnas et al.,
1983, p. 1796).

The usual solution has been for system designers to rely on the fact that, through practice, users
will eventualy learn this linguistic modd — a prescriptive linguistics approach. When the semantic
coverage of the system is rdatively small, this method works fairly well. Actually, it has been

# Furnas et. al. (1987, p. 966) point to similar results reported in other studies.
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shown that, for small systems, using a semantically unrelated and/or random naming convention
has little or no significant effect on initial learning by untrained users (Landauer et al. 1983). But,
if the system is large and its use is intermittent, this approach is unacceptable from a human
factors point of view.

5.6.2 Optimal Sngle-Description Model

The next dternative is to discard the convenience sampling method of the armchair modd, i.e,
focusing on the personal taste or intuition of a single individual, and instead attempt to employ a
more objective salection method. This method takes into consideration the preferences of numerous
subjects and use them to derive an optimal single description for each eement in the system’s
semantic domain based on frequency distribution. This approach has been popular in the context of
command-line interfaces where there is usually only one way to describe one action (Furnas et al.,
1987; 1983).

It has been shown that this method approximately doubles the chances of serendipity over the
armchair moddl. That is an untrained user has double the chances in generating the appropriate
language understood by the underlying system. Although thisis a significant improvement over the
armchair method, it is not good enough to be used in practice, since, even with this method,
subjects fail to communicate successfully with the underlying system 65 to 85 percent of the time.

5.6.3 Optimal Multi-Description Model

The main problem with the previous modds is that they fail to take into consideration the wide
variety of language that users spontaneoudy produce with respect to a specific semantic el ement.
As a result, the performance of the resultant systems with respect to untrained users is highly
unsatisfactory.

The optimal multi-description mode differs from the armchair and optima single-description
models in that it provides the resultant system with an “unlimited” number of aliases describing
individual semantic dements (Furnas et al., 1987; 1983). More specifically, the major
characterigtics of this mode are the following: The system has the capahility to acquire over time
all descriptions which users may use to refer to a specific semantic dement. Data is also collected
to identify the alternate meanings associated with each of the above descriptions. In the case of
semantic ambiguity, the system presents the user with theligt of alternative interpretations.

The results of the conducted experiments indicate that there is significant improvement over the
previous models. Specifically, when the number of aliases reaches 20, the percentage of successis
within 60% to 95%. The significant improvement over the previous modes is due to the fact that
most descriptions produced spontaneoudy by users are “rar€”’ in nature, in the sense that there
exists a very small probability that other users will choose the exact same description to refer to a
given semantic e ement.

This spontaneous generation of natural language descriptions tends to follow Zipf's distribution
(Zipf, 1949). Specifically, if we plot the logarithm of the frequencies of such descriptions against
the logarithm of the corresponding ranks, we produce a straight line having a dope of negative one.
The interpretation of this observation is that few linguistic constructs are used very frequently,
whereas the vast majority of them are used only rarely. A sSmilar observation is made in the
context of the Brown corpus, a representative corpus of American English, where about half of the
world types appear only once — approximately 32,000 out of 67,000 total word types (Marcus,
1994).
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Due to the complexity of natural language, it is practically impossible to expect that an NLP
system will ever be able to collect a “complete’” modd of natural language even with respect to a
single user. Nevertheless, it could always improve its performance in an asymptotic manner.

The optimal multi-description modd is consstent with the current success of corpus-based
stochastic and connectionist approaches. These approaches, in addition to being Statically trained
through corpora, which contain a wide variety of linguistic data, are aso capable of dynamic
adaptation based on the actua linguistic performance of users. An example of this is found in
many speech recognition systems which improve their performance by constantly updating their
stochastic mode of phonetic knowledge during interaction with the user. Lately, it has been shown
that corpora may also be utilized in the automatic development of symbolic modds; this might lead
to results demonstrating that the relative success of stochastic and connectionist approaches, over
traditional symbolic ones, may be due to ther corpus-based nature and interactive learning
capabilities, as opposed to some other inherent characteristic (Marcus, 1994). This possibility is
supported by Wegner's (1997) claim on how “all forms of interaction transform closed systems to
open systems and express behavior beyond that computable by algorithms’ (p. 83).

5.6.4 Controlled Languages

A similar approach has been to find a compromise between unconstrained natural language and the
need for single unambiguous descriptions required by the underlying computer systems through the
use of controlled languages (Church and Rau, 1995). This compromise has been to redtrict the
natural language available at the interface in a syssematic and easily remembered fashion while
smultaneoudy allowing for some freedom of linguistic expresson. These restrictions may be
imposed at any level of linguistic knowledge, such as phonetic, lexical, syntactic, or semantic.
Actualy, in a sense, the functionality of the underlying applications aready redtricts the
pragmatics. Examples include certain speech recognition systems (phonetic, lexical), spelling
checkers (lexical), style checkers (lexical, syntactic, semantic).

This approach is very successful in developing effective linguistic models for human-computer
interaction. Thisis because the interface can “subliminally educate’ users through feedback (Slator
et al., 1986), while the linguistic model of the interface gradually adapts to users linguigtic
preferences through appropriate extensibility mechanisms. Of course, these mechanisms are tightly
bound to the type of linguistic modeling approach employed, namely symbolic, stochastic,
connectionist, or hybrid. The only weakness of this approach is that in some cases, due to the size
of the linguistic moddl, or the deviance of the user from the linguistic modd, data collection
(adaptation) may continue for along time before asymptotic performance is approached.”

6. Multimodal I nteraction

Until the early 1980s, the prevalent interactive style was command entry. However, in the mid
1980s another user interface paradigm became popular, namey Windows, Icons, Menus, and
Pointing (WIMP). This introduced new possihilities, such as direct manipulation, which have
resulted in today’ s graphical user interfaces.

It is now clear that the user interface designer has severa building components (interaction styles,
input/output devices) available from which to develop an effective interface. In terms of interaction

% This is the case in many current speech recognition systems as their linguistic models make implicit
assumptions regarding the users educational, cultural, and native-language backgrounds. For instance,
users with non-American accents, or speech impediments cannot fully benefit from such applications.
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styles these include command-line entry, menus and navigation, question and answer dialogs, form
fill-in, natural language, and direct manipulation. In terms of devices these include keyboard,
display, mouse, trackball, joystick, touch screen, microphone, speakers, video camera, dataglove,
datasuite, 3D tracker, and various other types of sensors and actuators (Priece et al., 1994;
Shneiderman, 1993). Naturally, thislist is constantly evolving, as it depends on the state-of-the-art
in technology for interfacing with human communication channes, namely sight, touch, taste,
smdl, and hearing.

According to Coutaz and Caden (1991), a multimodal user interface combines various
interaction styles, is equipped with hardware for acquiring and rendering multimodal
expressions in real time, must select appropriate modality for outputs, and must * understand”
multimodal input expressions. This is contrasted to a multimedia interface which acquires,
delivers, memorizes, and organizes written, visual, and sonic information, but ignores the
semantics of the information it handles.

Additionally, Coutaz and Cadlen (1991) identify a taxonomy for multimodal user interfaces as
follows:

an exclusve multimodal user interface allows one and only one modality to be used in
rendering a given input/output expression;

an alternative multimodal user interface allows aternative modalities to be used in rendering
an input/output expression;

a concurrent multimodal user interface allows several input/output expressions, possibly in
different modalities, to be rendered in parald; and

a synergic multimodal user interface allows components of input/output expressions to be
rendered in different modalities.

Since natural language is one of the prevailing modalities for human-human interaction, it is a
natural modality for effective, user-friendly, human-computer interaction. This has lead to an
extenson of the WIMP paradigm, namey WIMP++. The latter incorporates additional modalities,
such as natural language and animation (Hirschman and Cuomo, 1994). However, some HCI
researchers indicate that although natural language at the interface has several advantages, it is not
a panacea. Shneiderman (1993, p. 167), for example, states that “[p]eople are different from
computers, and human-human interaction is not necessarily an appropriate modd for human
operation of computers.” So, a question that arises is “is there a benefit from having natura
language modalities available at the interface?’. The next section reports on three studies that
address thisissue.

6.1 Effectsof Natural Language on User Performance

Ledgard et al. (1980) report on an experiment conducted at the University of Massachusetts,
Amherst, in association with Digital Equipment Corporation. One of this study’s assertions is that
an interactive system should facilitate use of familiar, descriptive, everyday words and legitimate
English phrases at the interface. The experiment’s objective was to test the above hypothesis and,
smultaneoudy, demondrate the effects that human engineering can have on commercialy
available software in terms of human efficiency, performance, and satisfaction.

The study involved users with varying degrees of computing experience. Users were divided into
inexperienced, familiar, and experienced groups. Additionaly, the study utilized two semantically

2 Another term for multimodal user interfacesisintelligent multimedia interfaces (Maybury, 1993).
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equivalent versions of an interactive computer system — atext editor. The differences between the
two versions were confined at the input syntax level. One employed a natural language front-end
which accepted flexible, yet constrained natural language — this was the only input modality
provided. The other understood the standard computer system syntax which consisted of
abbreviated, cryptic keywords and rigid syntactical rules. One half of the subjects were randomly
assigned to the natural language equipped system, whereas the other half were assigned to the
standard system. Subsequently, the subjects were given a number of tasks to be performed by the
assigned computer system. These tasks were compound in nature, in the sense that each required a
sequence of actual system commands in order to be accomplished. On all measures, and regardless
of user expertise, performance using the natural language front-end proved superior to performance
using the regular command language. Finally, they conducted a post-experimental study to test
asymptotic performance. They found that significant performance differences between the two
versions remained even after along time of use.

Similarly, Napier et al. (1989) report on a closdy related study comparing the performance of
novice users using two syntactically different (but semantically equivalent) versions of the Lotus 1-
2-3 spreadshest system. The firgt verson employed a restricted natural language front-end,
whereas, the second one employed the standard user interface, i.e., command language, and menu
sdection. They conclude that there is a clear and consstent advantage in favor of the natural-

language equipped system.
Finally, Pauch et al. (1991) compare the use of discrete speech input against menu selection. They

found considerable performance increase (21%) in users who had access to both voice selection
and mouse, as opposed to those with access only to mouse.

Although all the above studies indicate that natural language is beneficial at the interface, one
should not assume that this aways the case. For instance, Napier et al. (1989) point to other
studiesthat are critical of natural language being the only available modality at the interface. Since
natural language is not appropriate for every type of information exchange in human-human
interaction, it is not surprising that this may also be the case in certain types of information
exchange in human-computer interaction. Obvioudy, investigation of the application domain, as
well as good design of the interface are essential to user acceptance — regardiess of whether the
interface incorporates natural language or not. That is developers should not religioudy employ a
single modality, such as natural language, at the interface, but instead select the best combination
among the set of available modalities for building an interactive system.

6.2 Natural Language Widgets

There already exist several popular toolkits and environments, such as X-Window and MS
Windows, which facilitate development of user interfaces by making available a collection of user
interface building dements. How could we possibly extend such collections to incorporate natural
language building blocks?

Hall et al. (1996) introduce the concept of natural language edit controls (NLECs). NLECs are
specia user interface building ements which facilitate use of natural language for specific input
expressons in multimodal user interfaces. NLECs are an extension of traditiona text entry
contrals, in that they facilitate rendering a portion of a user input in natural language. When
combined with the other traditional controls available at the interface, such as buttons, check
boxes, didebars, and menus, they can result in the most effective interface for a given application.
Although NLECs are a excdlent idea, they are neverthdess limited in that they deal only with
typewritten natural language.
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One could extend this concept to a more general natural language widget, of which an NLECs is
only an instance. Specifically, a natural language widget is defined as a user interface widget that
incorporates a generic NLP engine capable of handling a limited domain of discourse. Natural
language widgets may come in different flavors, as they may employ any of the approaches for
modeling natural language (see Section 4), may incorporate as many or as few knowledge levels as
necessary (see Section 5.3), and may implement any kind of natural language application that is
relevant to the task at hand, such as speech recognition, voice identification, word spotting, and
spoken or written natural language generation.

6.3 Modality Integration
Oviatt and Cohen (1991, p.70) indicate that modalities

physically congrain the flow and shape of human language just as irresistibly as a river bed
directs the river’s current. ... Although communication modalities may be less visually
compdlling than the terrain surrounding a river, it is a mistake to assume that they are less
influential in shaping the [information] transmitted within them.

Spoken or written natural language is clearly not appropriate for all tasks at the user interface.
This is supported by the fact that human-human interaction includes additional modalities such as
pointing, drawing and various other gestures (Oviatt et al. 1997). Specifically, some things can be
best pointed at, or drawn, or selected from a list of alternatives. For this reason, natural language
needs to be combined with other traditional or non-traditional modalities in order to construct
effective user interfaces. This introduces the question “ what tasks (or portions of tasks) are best
specified through natural language?”.

6.3.1 Effective Use of Natural Language

Hall et al. (1996) provide a decison procedure for when to employ natural language over deictic
controls — contrals utilizing a pointing device, such as mouse, pen or finger. Extending on their
ideas, in order to accommodate both actions and objects, it appears that natural language is best
for input tasks where the set of semantic dements (entities, actions) from which to chooseis

large, unfamiliar to the user, or not well-ordered; or

gmall and unfamiliar, with no bijective mapping®™ between that set to a set of familiar
eements.

Figure 7 shows the extended decision procedure for sdlecting between natural language widgets and
traditional deictic controls.

6.3.2 Synergic Multimodal Interfaces with Natural Language

Oviatt et al. (1997) discuss integration patterns of input modalities in the context of synergic
multimodal interfaces that include natural language. They report that multimodal interaction is
most frequent for tasks involving spatial location, and somewhat frequent for tasks involving
sdlection. Integration patterns consist of sequential, simultaneous, point-and-speak, and compound
rendering of input expressons. In temporal terms, written input may overlap with spoken input
subexpressions — with written (pen) input providing location information at the beginning of an

%0 A bijective mapping is an one-to-one mapping between two sets which includes all elements from both
sets.
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IF (familiar set) THEN
IF (large set) AND
(not well-ordered set) THEN

use a text entry control // user types famliar object

ELSE

use deictic control /1l user selects famliar object

ELSE /1 unfamliar
I F (exists bijective mappi ng) AND
((small set) OR (well-ordered set)) THEN

use a deictic control /'l user selects famliar object
/1l system maps to unfaniliar object

ELSE

use a natural |anguage w dget

Figure 7. Extended Decision Procedure for Use of Natural Language Widgets
(adapted from Hall et al., 1996)

expression. For example, in the context of a user interface to an operating system, a user may
circle two file iconswhile saying “ delete thess”. Additionally, spoken and written modalities supply
complementary (as opposed to redundant) semantic information. For instance, a user might typein
afile name and say “edit this’.

In a different study, Cohen et al. (1997) have found that multimodal interaction makes users
generate smpler linguistic congtructs than unimodal speech interaction. For example, in order to
create ared line between two <x,y> grid coordinates a user might say “create a red line from one
three five point eight to four six seven point nin€’.; whereas (s)he could draw a line on the map
while saying “red”.

One example of an multimodal interface which includes speech input is CommandTak (Moore et
al., 1997). Thisis a user interface to the ModSAF battle-field smulator which alows the use of
natural language to create forces, assgn missons, modify missions during execution, and contral
various simulation functions, such as map display control. Another example of a multimodal
interface that incorporates natural language is QuickSet (Cohen et al., 1997). QuickSet combines
pen and speech to manage distributed interactive smulations. It combines widgets (agents) that
handle speech recognition, written natural language, and gesture recognition (pen input). Finaly,
MedSpeak is a multimodal interface for creating radiology reports (Lai and Vergo, 1997). It
accepts input via speech (dictation and command modes), mouse, and keyboard.

6.4 User Interface Management Systems

User interface management systems (UIMSs) are environments which facilitate the specification,
design, implementation, evaluation, and run-time support of user interfaces (Bass and Coutaz,
1992). Although they have been used extensively in developing graphical user interfaces, only
recently have they been used in the context of natural language interfaces. Such systems are
extremely significant since they facilitate the development of natural language widgets (see Section
6.2).
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Figure 8. NALIGE Architecture
(reprinted with permission of World Scientific).

6.4.1 NALIGE

An example of such an environment is NALIGE (Manaris and Dominick, 1993; Manaris, 1994).
NALIGE facilitates the development of natural language interfaces to interactive computer systems
through the use of high-level specifications. These specifications describe the linguistic model to be
incorporated in the interface in terms of lexical, syntactic, semantic, and pragmatic knowledge.

As shown in Figure 8, the NALIGE environment consists of several subsystems, namely:

Specification editor modules: These editors provide context-sensitive assstance in the
development of the NALIGE input specifications.

Specification compiler modules: These compilers accept the input specifications and convert
them to an efficient internal representation (declarative and procedural knowledge).

Specification integrity-checker module: As the input specifications sometimes have to
reference the same entity, eg., a token, this module performs checks to enforce inter-
specification integrity.

Subsystem template module: This module contains generic procedural components, such as
code templates for alexical analyzer, a parser, a target-code generator, a low-level interface to
the underlying system, a knowledge-base manager, and an error handler.

Application generator module: This module combines the necessary code templates with the
declarative and procedural knowledge produced by the compilers to generate an operational
natural language interface.
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6.4.2 SpeechActs

Ancther example of such a system is SpeechActs (Martin et al., 1996). This is a user interface
management system for developing loosely-coupled speech understanding applications. The
architecture facilitates the incorporation of commercial speech recognizers as front-ends to
interface applications. Currently, the system is compatible with the following continuous-speech
recognizers. BBN's Hark (Smith and Bates, 1993), Texas Instruments Dagger (Hemphill, 1993),
and Nuance Communications (Digalakis and Murveit, 1994).

6.5 Development Methodol ogies

There exist many different syssem development methodologies employed in human-computer
interaction (Priece et al. 1994). One of the most promising is the Star modd (Hartson and Hix,
1993) (see Figure 9).

This mode encompasses a user-centered approach,® since it provides for constant evaluation of all
aspects of system development by users and experts. It stresses the idea that system devel opment
activities should follow a flexible order. It facilitates top-down (analytic), bottom-up (synthetic),
and iterative-refinement types of devedopment — the latter in tighter, smaller loops than spird
development methods. Finally, it emphasizes rapid prototyping and incremental development
(Prieceet al., 1994).

In the context of devel oping natural language widgets, the Star mode may be adapted as follows:

Task analysis: Identify the tasks to be performed through the natural language widget. This
could be performed in various ways, including study of corpora collected through Wizard-of-
Oz techniques.® This phase is essential in that it provides information about the functionality
that the widget is to provide through its “ understanding” of natural language.

Linguistic analysis: Specify (or automatically capture) the sublanguage to be modeled.
Depending on the expected size of the sublanguage and the knowledge modeling approach
(symbolic, stochastic, connectionist, hybrid), this phase might include specification of
vocabulary, syntax, semantic eements (entities, actions), or dialog structure.

Conceptual design: Identify the internal architecture of the widget in terms of knowledge
components, procedural modules, and their interaction. A UIMS can greatly assst during this
phase in that it may provide design support based on existing linguistic knowledge and
processing modules.

Prototyping: Develop an operational prototype of the system. A UIMS can greetly assst
during this phase in that it may combine the sublanguage model captured during the linguistic
analysis phase with existing knowledge and processng modules to construct a functional
prototype.

Evaluation: Evaluate the ddiverable of any of the above phases. A UIMS can greatly assist
during this phase by providing specific benchmarks and automated evaluation tools to be used

3 The basic idea behind user-centered design is to incorporate end-users throughout the development of a
product or application. This is somewhat intrinsic in the process of collecting data for stochastic or
connectionist architectures, since users are involved in the development by contributing to the linguistic
model to be incorporated in the NLP application; however, user involvement needs to extend to every step
in the system devel opment process.

32 Wizard-of-Oz techniques employ simulated NLP systems, which collect linguistic data from users. The
systems’ natural language understanding capabilities are simulated by remotely located humans.
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Figure 9. The Star Model for NLP System Devel opment
(adapted from Priece, et al., 1994)

in formative and summative evaluation. These benchmarks and tools should facilitate
utilization of user expertise (possibly through collected corpora) to test and measure the
effectiveness or relative completeness of any of the above ddiverables.

Additional information on user interface development, including task anayss, design, and
prototyping may be found in (Day and Boyce, 1993; Priece et al., 1994, Shnederman, 1993).
Significant work has been carried out in NLP system evaluation (Hirschman and Cuomo, 1994;
King, 1996; Moore, 1994b; Pallett et al., 1994; Spark Jones, 1994). However, existing techniques
and methodol ogies require additional development, so that they (a) take into account user tasks and
environments, in terms of the influence that these have on system development and performance,
and (b) address natural language as one of many available modalities, in the context of multimodal
human-computer interaction (Spark Jones and Galliers, 1996).

7. Conclusions

The fidd of natural language processing has entered its sixth decade. During its relatively short
lifetime, it has made sgnificant contributions to the fields of human-computer interaction and
linguistics. It has also influenced other scientific fidds such as computer science, philasophy,
mathematics, statistics, psychology, biology, and engineering by providing the motivation for new
ideas, as wdl as a computational framework for testing and refining existing theoretical
assumptions, models, and techniques. Finally, it has impacted society through applications that
have shaped and continue to shape the way we work and live our lives.

But other events have happened in these fifty years. For instance, it was initially believed that no
more than a handful, so to speak, of computers would ever be needed around the world. It was aso
predicted that enabling these machines with (artificial) intelligence would be only a matter of a few
years worth of research and development. Both predictions were wrong. They did, however, set
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the stage for a ping-pong effect felt throughout the history of the fidd: On one sde, enter
overzedlous critics who interfere with creative thinking and vision, e.g., the ALPAC report and the
dampening effect it had on the fidd's evolution; on the other side, enter overzealous enthusiasts
who make unredligtic, full-of-hype claims and promises, e.g., the trandation bureaus which had
opened up in big cities promising fully-automatic, high-quality MT services — only to close down a
in few months (Josselson, 1971). Numerous examples of this effect can be seen throughout the
evolution of the field. Assuming that historical patterns can provide insights about the future, it is
clear that we need to support visonary, far reaching, yet well-founded research ideas, while
keeping our feet on the ground and maintaining a critical view with respect to our intellectua and
modding limitations and their effect on the capabilities and potential of technology.

In these fifty years, computers have become ubiquitous. Consequently, the fiedd of human-
computer interaction has become extremely important as it focuses on bridging the communicative
gap between humans and machines. This is accomplished by studying the nature of human
communication and by deriving models which attempt to augment the flexibility, learnability,
robustness, and overall habitahility of computing tools. It is hoped that results from this field will
increase our quality of life by facilitating the seamless integration of computing devices into the
fabric of society; computer users will be able to focus more on the things they want to accomplish,
as opposed to the actual user interfaces.

In terms of natural language in human-computer interaction, we now have severa linguistic
modeling approaches available, namey symbalic, stochastic, connectionist, and hybrid. Currently,
we have a rdatively good understanding of the symbolic approach, in that it seems that we have
mapped out the limits of the region it best addresses within the NLP problem space. Based on our
relatively incomplete understanding of stochastic and connectionist approaches, it appears that
these address a different region of the NLP problem space, although some overlap might exist with
respect to the symbolic approach. Moreover, symbolic techniques traditionally adhere to the
armchair and optimal single-description models, and thus have been generally ineffective from the
perspective of users — that is users other than the system devel oper(s). On the other hand, corpus-
based stochastic and connectionist techniques inherently adhere to the optimal multi-description
model, and thus have already produced a wide variety of useful speech- and text-based systems.

Although corprus-based stochastic and connectionist models appear to be more effective than
traditional symbolic ones, they are nevertheless bound to some notion of “statistical average” with
respect to users linguistic performance, and thus their effectiveness depends on a given user’s
proximity to that “average.” Such models are usually capable of adapting dynamically, and thus
are consgderably more flexible and robust than symbolic ones. Nevertheless, their adaptation
effectiveness is also bound to the user’s proximity to the modeed “average.” For instance, users
with speech impediments cannot benefit from the latest advances in speech recognition technol ogy,
because such technology is geared towards the “average’ user — for obvious marketability reasons.
Therefore, as we focus on natural language-enabled interfaces dealing with a wide spectrum of
user needs and instances of linguistic competence/performance, our attention needs to shift from
general corpora, whose development is expensive and error-prone, to effective methodologies for
developing specialized corpora. Such methodologies may be incorporated into user interface
management systems that facilitate, among other things, effective development of linguistic models
for well-defined user groups — a truly user-centered approach.

In terms of multimodal interaction, we need to continue research on integrating natural language
with other modalities. This has aready been recognized by funding agencies around the world,
sncein the last few years, they began providing support for basic and applied research in human
multimodal communication utilizing among other modalities speech, text, and images (Strong,
1996). Moreover, we need to focus on techniques for intermodal trandation of communicative
information. This will be of great benefit in stuations were some modalities are temporarily or
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permanently unavailable, either because of the task at hand, or because of the user’s capahilities
(or lack thereof). Specifically, magjor results have been achieved in the context of converting text to
speech; such results have been incorporated into text-reading software utilizing speech synthesis
technology. Nevertheless, certain problems still remain, such as dealing with the two-dimensional
nature of text (and the ease of scanning it affords), compared to the one-dimensional nature of
speech. Such research will be extremely valuable to users with certain motor and/or visual
disabilities in that it will facilitate interaction with various computing or computer-controlled
devices. The benefits of related applications are immense, considering the new possibilities they
open to users with disabilities in terms of access to information and control/manipulation of
immediate and remate physical environments (Muller et al., 1997).

In terms of the future, in the short-term, we should experience benefits in various aspects of
everyday life from the momentum of the latest research and development efforts, such as dialog-
based speech-understanding telephony applications. Actually, several development environments
are aready beginning to emerge for dialogue-based speech processing telephony applications.
Additionally, we could see various speech-enabled and voice-rdlated applications appear dealing
with security, voice dialing, voice identification, language identification, and language trandation
(Flanagan, 1994; Wilpon, 1994).

As we continue to improve our appreciation of the strengths and weaknesses of linguistic modeling
approaches, and our understanding of the nature and use of language, we will become more
effective in addressing NLP problems. Considering the boom of the NLP industry within the last
decade, it is safe to assume that we have reached a critical point in our understanding of modding
approaches, linguistic phenomena, application requirements, and compromises that we can afford.
Clearly, some approaches appear more suitable to specific applications over other approaches, eg.,
stochastic approaches to speech recognition. Nevertheless, there seems to be a complexity
associated with linguistic model devel opment that transcends modeling approach. Some believe that
this is due to the language phenomenon itsdf (Ristad, 1993). It is highly probable that achieving
truly effective, natural human-computer interaction will be the next bottleneck, in that our inability
to understand “ how it is that we do what we do” gets in the way of accomplishing this fidd's
ultimate goal. This has been the case with other scientific endeavors that study aspects of human
existence, such as hiology, psychology, and cognitive science. Neverthdess, although our models
of natural phenomena— such as language — will most probably always remain approximations, it is
through this quest for knowledge about self that we are finding out more about who we are, how to
be more effective in doing what we do, and thus contribute to the evolution of society and
ourselves.
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