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Installation

R Package TDA: Statistical Tools for Topological Data Analysis

Homology and Persistent Homology

Sample on manifolds, Distance Functions, and Density Estimators

Persistent Homology and Landscape

Statistical Inference on Persistence Homology and Landscape
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For Windows and Mac, TDA can be easily installed.

if (!require(package = "TDA")) {
install.packages(pkgs = "TDA")
}
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For Linux, you need to install several libraries first, and then
install TDA.

» You need to install libraries gmp and mpfr.
» Then you need to install required R package FNN, igraph, and scales.
» Then you can install R package TDA.

if (!require(package = "FNN")) {
install.packages(pkgs = "FNN")

}

if (!require(package = "igraph")) {
install.packages(pkgs = "igraph")

}

if (!require(package = "scales")) {
install.packages(pkgs = "scales")

}

if (!require(package = "TDA")) {
install.packages(pkgs = "TDA")

}
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R Package TDA: Statistical Tools for Topological Data Analysis
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R is ideal for educational purpose.

R is a programming language for statistical computing and graphics.
Many packages for statistical computing.

Easy to make (interactive) plots.

Easy to install and use.

Platform independent.
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... but slow.
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R Package TDA provides an R interface for C++ libraries
for Topological Data Analysis.

> website:
https://cran.r-project.org/web/packages/TDA/index.html

» Author: Brittany Terese Fasy, Jisu Kim, Fabrizio Lecci, Clément
Maria, David Milman, and Vincent Rouvreau.

» R has short development time, while C/C++ has short execution
time.

» R package TDA provides an R interface for C++ library
GUDHI/Dionysus/PHAT, which are for Topological Data Analysis.
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https://cran.r-project.org/web/packages/TDA/index.html

Homology and Persistent Homology
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Number of holes is used to summarize Geometrical features.

» Geometrical objects :
» AB,C,D EFGHIIJKLMNOPQRST, UV W,
XY, Z,
> 7L 7 B

» Number of holes of different dimensions is considered.
1. Bo =# of connected components .
2. 1 =# of loops (holes inside 1-dim sphere) Q

3. B2 =# of voids (holes inside 2-dim sphere) : if dim > 3"~
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Example : Objects are classified by homologies.

1. By =# of connected components .
2. 31 =3 of loops Q

EYCY — [ S
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When analyzing data, we prefer robust features where

features of the underlying manifold can be inferred from
features of finite samples.

Underlying circle 100 samples

/. we ~.
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Homology of finite sample is different from homology of
underlying manifold, hence it cannot be directly used for the
inference.

Underlying circle: Bo=1, B1=1 100 samples: 3, =100, 31 =0
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample, r= 0.1

Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample, r=0.4

Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample, r= 0.5
Sample, r=0.5

r=0.5: 1-dim

hole is formed Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample, r=0.9
Sample, r=0.5

r=0.5: 1-dim

hole is formed Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample,r=1

Sample,r=0.5 Sample,r=1

r=0.5: 1-dim r=1:1-dim hole

hole is formed died Augmented Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

Sample,r=0.5 Sample,r=1

) =

r=0.5: 1-dim r=1:1-dim hole
hole is formed

* 0 dim {components)
& 1 dim (loops)

1 - a(0.51
Death

Persistent Homology
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level = 0.25

-1.5 0.5 05 10 15

Super-Level Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level =0.15
level = 0.15
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L=0.15: 1-dim

hole is formed Super-Level Set
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and

when they die.

level =0.15

!
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L=0.15: 1-dim
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Persistent homology computes homologies on collection of
sets, and tracks when topological features are born and
when they die.

level = 0.15 level =0
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Persistent homology of the underlying manifold can be
inferred from persistent homology of finite samples.
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Confidence band for persistent homology separates
homological signal from homological noise.

Death
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Landscape is a functional summary of the persistent
homology.

Death

0.5

15

1.0

0.0

Persistent Homology Landscape
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Landscape of the underlying manifold can be inferred from
landscape of finite samples.

Circle 200 samples
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Sample on manifolds, Distance Functions, and Density Estimators
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R Package TDA provides a function to sample on a circle.

The function circleUnif() generates n sample from the uniform
distribution on the circle in R? with radius r.

circleSample <- circleUnif(n = 20, r = 1)

plot(circleSample, xlab = "", ylab = "", pch = 20)
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R Package TDA provides distance functions and density
functions over a grid.

Suppose n = 400 points are generated from the unit circle, and grid of
points are generated.

X <- circleUnif(n = 400, r = 1)
lim <- c(-1.7, 1.7)
by <- 0.05

margin <- seq(from = 1lim[1], to = 1im[2], by = by)
Grid <- expand.grid(margin, margin)
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R Package TDA provides DTM function over a grid.

The distance to measure (DTM) d0 : RY — [0, 00) is defined as
1/r

1 r
dro() = (1 3 Ia—vl7|

xi€Ni(y)

where k = [m0 x n] and m0 € (0,1), r € [1,00) are tuning parameters.
The function dtm() computes the DTM function dmg on a grid of points.

m0 <- 0.1
DTM <- dtm(X = X, Grid = Grid, mO = mO)

par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
z = matrix(DTM, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
main = "DTM")
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R Package TDA provides DTM function over a grid.
The distance to measure (DTM) dpmo : RY — [0, 00) is defined as
1/r

1 r
dmo(y) = P Z [xi — v )

X €Nk(y)

where k = [m0 x n] and mO € (0,1), r € [1,00) are tuning parameters.
The function dtm() computes the DTM function d,,0 on a grid of points.

Sample X DTM
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R Package TDA provides KDE function over a grid.

The Gaussian Kernel Density Estimator (KDE) py, : RY — [0, 00) is
defined as

s 1 - —lly = %3
Pn(y) = W Zexp (2/12> )

i=1

where h is a smoothing parameter.
The function kde() computes the KDE function pj, on a grid of points.

h <- 0.3
KDE <- kde(X = X, Grid = Grid, h = h)

par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.5,
main = "KDE")
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R Package TDA provides KDE function over a grid.

The Gaussian Kernel Density Estimator (KDE) g : RY — [0, 00) is
defined as

. 1 . —|ly —x,-|§>
=———— ) exp| ——2],
pn(y) (V) ; p ( T

where h is a smoothing parameter.
The function kde() computes the KDE function pj, on a grid of points.

Sample X KDE
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Persistent Homology and Landscape
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R Package TDA computes Persistent Homology over a grid.

» The function gridDiag() computes the persistence diagram of
sublevel (and superlevel) sets of the input function.
» gridDiag() evaluates the real valued input function over a grid.
» gridDiag() constructs a filtration of simplices using the values of the
input function.
» gridDiag() computes the persistent homology of the filtration.

» The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.
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R Package TDA computes Persistent Homology over a grid.

DiagGrid <- gridDiag(X = X, FUN = kde, lim = c(lim, lim), by = by,
sublevel = FALSE, library = "Dionysus", location = TRUE,
printProgress = FALSE, h = h)

par (mfrow = c(1,3))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
one <- which(DiagGrid[["diagram"]][, 1] == 1)
for (i in seq(along = one)) {
for (j in seq_len(dim(DiagGrid[["cycleLocation"]] [[one[i]11)[11)) {
lines(DiagGrid[["cycleLocation"]] [[one[i]]]1[j, , 1, pch = 19, cex = 1,
col =i+ 1)
}
}
persp(x = margin, y = margin,
z = matrix(KDE, nrow = length(margin), ncol = length(margin)),
xlab = "", ylab = "", zlab = "", theta = -20, phi = 35, scale = FALSE,
expand = 3, col = "red", border = NA, ltheta = 50, shade = 0.9,
main = "KDE")
plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
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R Package TDA computes Persistent Homology over a grid.

» The function gridDiag() computes the persistent homology of
sublevel (and superlevel) sets of the input function.
» gridDiag() evaluates the real valued input function over a grid.
» gridDiag() constructs a filtration of simplices using the values of the
input function.
» gridDiag() computes the persistent homology of the filtration.

» The user can choose to compute persistent homology using either
GUDHI, Dionysus, or PHAT.

Sample X KDE KDE Diagram

S e ———
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-1.0 -05 0.0 0.5 1.0 000 005 010 015 020 025
Death

37 /56



R Package TDA computes Rips Persistent Homology.

» Rips complex consists of simplices whose pairwise distances of
vertices are at most € apart, i.e.

R(X,€) = {[Xny,---» Xn] - d(Xn,, Xn,) < €}

0.0 05 1.0

1.0

» Rips filtration is formed by Rips complices with gradually increasing

€.
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R Package TDA computes Rips Persistent Homology.

» The function ripsDiag() computes the persistence diagram of the
Rips filtration built on top of a point cloud.
> ripsDiag() constructs the Rips filtration using the data points.
> ripsDiag() computes the persistent homology of the Rips filtration.

» The user can choose to compute persistent homology using either
C++ library GUDHI, Dionysus, or PHAT.

DiagRips <- ripsDiag(X = X, maxdimension = 1, maxscale = 0.5,
library = c("GUDHI", "Dionysus"), location = TRUE)

par(mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagRips[["diagram"]], main = "Rips Diagram")
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R Package TDA computes Rips Persistent Homology.

» The function ripsDiag() computes the persistence diagram of the
Rips filtration built on top of a point cloud.

» ripsDiag() constructs the Rips filtration using the data points.
» ripsDiag() computes the persistent homology of the Rips filtration.

» The user can choose to compute persistent homology using either

0.0 05 1.0

1.0

C++ library GUDHI, Dionysus, or PHAT.
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R Package TDA computes Landscape.

> Let A, be created by tenting each point p = (x,y) = (

M@)

2 0 2

representing a birth-death pair (b, d) in the persistence diagram D.

» The persistence landscape of D is the collection of functions

Ae(t) = kmaxAy(t), te[0,T] k€N,
P

where k max is the kth largest value in the set.

» The function landscape() evaluates the landscape function Ax(t).

tseq <- seq(0, 0.2, length = 1000)

Land <- landscape(DiagGrid[["diagram"]], dimension = 1, KK

par (mfrow = c(1,2))

plot(x = DiagGrid[["diagram"]], main = "KDE Diagram")
plot(tseq, Land, type = "1", xlab = "(Birth+Death)/2",
ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main

axis(1); axis(2)

1, tseq = tseq)

"Landscape")
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R Package TDA computes Landscape.

> Let A, be created by tenting each point p = (x,y) = (254, 452)
representing a birth-death pair (b, d) in the persistence diagram D.

» The persistence landscape of D is the collection of functions

A(t) = km;;ax/\p(t)7 te0,T],k €N,

where k max is the kth largest value in the set.

» The function landscape() evaluates the landscape function Ax(t).

KDE Diagram Landscape
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Statistical Inference on Persistence Homology and Landscape
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

W (D1, D2) = i')yf sup [|x — (x)loos

x€ED,

where « ranges over all bijections from D; to D;.
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Bottleneck distance gives a metric on the space of persistent
homology.

Definition

Let Dy, Dy be multiset of points. Bottleneck distance is defined as

Woo (D1, D2) = inf sup [Ix — 7(x)||co;
ol xeDy

where « ranges over all bijections from D; to D;.

Death
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0.0 0.5 1.0 15
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Confidence band for the persistent homology is a random
quantity containing the persistent homology with high

probability.
Let M be a compact manifold, and X = {Xy,---, X,,} be n samples. Let
fi and fx be corresponding functions whose persistent homology is of
interest. Given the significance level « € (0,1), (1 — «) confidence band
¢n = ¢n(X) is a random variable satisfying

P (Woo(Dgm(fm), Dgm(fx)) < c,) > 1-—«a.

Circle 200 samples
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Confidence band for the persistent homology can be
computed using the bootstrap algorithm.

1. Given a sample X = {xq,..., Xy}, compute the kernel density
estimator py,.
2. Draw X* = {x7,...,x¥} from X = {x1,...,x,} (with replacement),

and compute 6* = /n||p;(x) — pn(x)||oc, where pj; is the density
estimator computed using X*.

*

3. Repeat the previous step B times to obtain 07,...,0%
4. Compute g, = inf {q : %2}3:1 107 > q) < a}

5. The (1 — «) confidence band for E[pp] is [ﬁh - %, Pn + %} )
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R Package TDA computes the bootstrap confidence band
for a function.

The function bootstrapBand() computes (1 — «) bootstrap confidence
band for E[pp].

bandKDE <- bootstrapBand(X = X, FUN = kde, Grid = Grid, B = 20,
parallel = FALSE, alpha = 0.1, h = h)
print (bandKDE[["width"]])

## 90%
## 0.05576625
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The bootstrap confidence band for a function is used as the

confidence band for the persistent homology.
The (1 — a) bootstrap confidence band for E[5j] is used as the
confidence band for the persistent homology.

par (mfrow = c(1,2))

plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(x = DiagGrid[["diagram"]], band = 2 * bandKDE[["width"]],
main = "KDE Diagram")
Sample X KDE Diagram
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oo-landscape distance gives a metric on the space of
landscapes.
Definition
Let D1, Dy be multiset of points, and A1 , A2 be corresponding
landscapes. co-landscape distance is defined as

Noo(D1, D2) = ||A1 — A2l|oo-

(Death-Birth)/2
0.0 02 04 06

[ T T T T 1
00 02 04 06 08 10

(Birth+Death)/2
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oo-landscape distance can be controlled by the
corresponding distance on functions: Stability Theorem.

Theorem
Let f,g : X — R be two functions, and let Dgm(f) and Dgm(g) be
corresponding persistent homologies. Then

Ao (Dgm(f), Dgm(g)) < [|f — gllco-

51/56



Confidence band for the landscape can be computed using

the bootstrap algorithm.

» Let Ay and Ax be landscapes of the manifold M and samples X.
From Stability Theorem, P (||fy — fx|| < ¢p) > 1 — o implies

P(Ax(t) — cn < Am(t) < Ax(t) + e VE) > P(||fm — fx|| < cn) > 1—0,

so the confidence band of corresponding functions fyy can be used
for confidene band of the landscape Ap.
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The bootstrap confidence band for a function is used as the
confidence band for the landscape.

The (1 — ) bootstrap confidence band for E[5] is used as the
confidence band for the landscape.

par (mfrow = c(1,2))
plot(X, xlab = "", ylab = "", main = "Sample X", pch = 20)
plot(tseq, Land, type = "1", xlab = "(Birth+Death)/2",
ylab = "(Death-Birth)/2", asp = 1, axes = FALSE, main = "200 samples")

axis(1); axis(2)
polygon(c(tseq, rev(tseq)), c(Land - bandKDE[["width"]],

rev(Land + bandKDE[["width"]])), col = "pink", lwd = 1.5,

border = NA)
lines(tseq, Land)
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The bootstrap confidence band for a function is used as the
confidence band for the landscape.

The (1 — «) bootstrap confidence band for E[p;] is used as the
confidence band for the landscape.

Sample X 200 samples
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Reference
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Thank youl
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