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Spatially complex data

Universe

Millennium simulation from Springel

et al. (2005)

Human fibrin network

Pretorius et al. (2009); the white

scale bar is 1 µm
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Outline

Motivation: spatially complex data

Quick overview of persistent homology using the R TDA

package (see Jisu Kim’s talk for more details)

Rips filtration

Function-based filtration

Hypothesis testing with persistent homology

Functional Summaries of Persistence Diagrams
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TDA: persistent homology
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Fibrin

Goal: Hypothesis Tests for spatially complex data
Human vs. Monkey fibrin

Pretorius et al. (2009)
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Homology: considering data

β0 = 1, β1 = 1 β0 = 15, β1 = 0 Universe

β0 = # of connected components
β1 = # of loops

Persistent homology is a multi-scale version of homology

(e.g., Edelsbrunner et al. 2002; Edelsbrunner and Harer 2008; Carlsson 2009)

Image: http://astro.berkeley.edu
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Persistent homology: Rips filtration

radius = 0.45 radius = 0.48 radius = 0.92

Birth of loop: radius = 0.48

Death of loop: radius = 0.92

Persistence (or lifetime) of loop: 0.92 - 0.48 = 0.44

Define Sε = ∪n
i=1B(Yi , ε) (union of balls with radius ε centered at observations

Y1, . . . ,Yn)

Persistent homology tracks the changing homology of Sε across a range of ε’s
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TDA package R code: Rips filtration

library(TDA) #Load library

set.seed(123) #Set random seed to reproduce results

#Generate three noisy circles

n <- 200

sig <- .5

data0 <- rbind(circleUnif(n, r = 6)+ matrix(rnorm(2*n,0,sig), ncol = 2), circleUnif(n, r = 6) +

cbind(rep(18,n), rep(1,n))+matrix(rnorm(2*n,0,sig), ncol = 2), circleUnif(n, r = 6) +

cbind(rep(6,n), rep(-14,n))+matrix(rnorm(2*n,0,sig), ncol = 2))

#Add some scatter

n <- 50

data1 <- rbind(data0, cbind(runif(n, min(data0[,1]), max(data0[,1])),

runif(n, min(data0[,2]), max(data0[,2]))))/10

#Plot the data (see next slide)

plot(data1, xlab = "", ylab = "", pch = 19)

#Get the persistence diagram and plot it (see next slide)

maxscale <- 1

maxdimension <- 1

diag1<- ripsDiag(data1, maxdimension, maxscale, printProgress = TRUE)$diagram

plot.diagram(diag1)

#Plot the barcode

plot.diagram(diag1, barcode = TRUE)
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Persistent homology summaries
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(B) Rips Persistence Diagram
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Persistence diagram D is a collection of birth (bj) and death (dj) times of
homology group generators of a particular rank (rj):

D = {(rj , bj , dj) : j = 1, . . . , l}

where l represents the number of homology group generators off the diagonal
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Function-based persistent homology

Rather than defining the filtration using a Rips Complex over the
data points, a function can be used for persistent homology

Kernel density estimates (e.g. Fasy et al. 2014) or
Distance-to-Measure (DTM) functions (e.g. Chazal et al. 2011)
are popular approaches in TDA for turning a point-cloud of data
into a function
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Function-based persistent homology

Let f : Rd −→ R. An upper level set, relative to a threshold λ ∈ R is

the set of points x ∈ Rd defined by Eλ = {x ∈ Rd : f (x) ≥ λ}

Similarly, lower level set: Eλ = {x ∈ Rd : f (x) < λ}

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

X

f(x
)

Threshold
Upper-level set

?Construct simplicial complexes
on the upper level sets

?Birth and death of separate
components of the upper level set
is related to the birth and death
of maxima and minima

10



Function-based persistent homology

Let f : Rd −→ R. An upper level set, relative to a threshold λ ∈ R is

the set of points x ∈ Rd defined by Eλ = {x ∈ Rd : f (x) ≥ λ}

Similarly, lower level set: Eλ = {x ∈ Rd : f (x) < λ}

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

X

f(x
)

Threshold
Upper-level set

?Construct simplicial complexes
on the upper level sets

?Birth and death of separate
components of the upper level set
is related to the birth and death
of maxima and minima

10



Function-based persistent homology

Let f : Rd −→ R. An upper level set, relative to a threshold λ ∈ R is

the set of points x ∈ Rd defined by Eλ = {x ∈ Rd : f (x) ≥ λ}

Similarly, lower level set: Eλ = {x ∈ Rd : f (x) < λ}

0 5 10 15 20

0.
0

0.
2

0.
4

0.
6

0.
8

X

f(x
)

Threshold
Upper-level set

?Construct simplicial complexes
on the upper level sets

?Birth and death of separate
components of the upper level set
is related to the birth and death
of maxima and minima

10



Distance-to-a-Measure (DTM) Function

The DTM function can be defined for a probability measure P
with support Y ⊂ Rd and point y ∈ Rd as

dm0(y) =

√
1

m0

∫ m0

0
[G−1

y (u)]2du,

where Gy (t) = P(‖Y − y‖ ≤ t) and tuning parameter 0 ≤ m0 ≤ 1.

Given observations y1, y2, . . . , yn, dm0(y) can be estimated using

d̂m0(y) =

√√√√1

k

∑
yi∈Nk (y)

‖yi − y‖2,

0 < m0 < 1 is a tuning parameter, k = bnm0c, and Nk(y) = k
nearest neighbors of y1, y2, . . . , yn to y .

References: Chazal et al. (2011, 2016)
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TDA package R code: KDE and DTM filtrations

Same data1 as used previously.

#Construct a grid of points over which we evaluate the functions

by <- 0.05

Xseq <- seq(min(data1[,1]), max(data1[,1]), by = by)

Yseq <- seq(min(data1[,2]), max(data1[,2]), by = by)

Grid <- expand.grid(Xseq, Yseq)

#DTM

m0 <- 0.05

data1.dtm <- matrix(dtm(data1, Grid, m0), nrow = length(Xseq), ncol = length(Yseq)) #calculate DTM

image(data1.dtm) #Plot image of DTM

diag1.dtm <- gridDiag(FUNvalues = data1.dtm, sublevel = TRUE, location = FALSE,

printProgress = TRUE, maxdimension = 1)$diagram

plot.diagram(diag1.dtm) #Plot diagram

#KDE

h <- .25

data1.kde <- kde(data1, Grid, h, kertype = "Gaussian", weight = 1, printProgress = FALSE) #calculate KDE

kde_matrix <- matrix(data1.kde,nrow=length(Xseq), ncol=length(Yseq)) #format as matrix

image(Xseq, Yseq, kde_matrix) #Plot image of KDE

diag1.kde <- gridDiag(FUNvalues = kde_matrix, sublevel = FALSE,location = FALSE,

printProgress = TRUE, maxdimension = 1)$diagram

plot.diagram(diag1.kde) #Plot diagram
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Illustration of different filtrations
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(C) Estimated KDE
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Two-sample hypothesis tests

Modeled human fibrin network (left) and monkey fibrin network (right); original
images are from (Pretorius et al., 2009).
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Two-sample hypothesis testing: overview

Setting: samples from two, potentially different, populations

Human vs. monkey fibrin

Or maybe there is population, P(1), such that a random draw produces data on
a noisy circle, and another population, P(2), that produces random noise
(but in advance you do not know there is such a difference)

In a two-sample hypothesis testing framework, you might have the following
hypotheses

Null hypothesis: There is no difference between P(1) and P(2). Differences in
the samples would just be due to chance.

Alternative hypothesis: There is a difference between P(1) and P(2).

- General goal is to have evidence against the null hypothesis in favor of the
alternative hypothesis

- Two possible conclusions: (i) reject the null hypothesis, or (ii) do not reject the
null hypothesis. (In this setting, we do not accept the null hypothesis.)
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Test statistics and p-values

Consider a simple example of comparing the means of the two
populations:

Null hypothesis: µ1 = µ2

Alternative hypothesis: µ1 6= µ2

General idea: assume the null hypothesis is true, and find a test statistic,
T , to check the compatibility between the null hypothesis and the data

Example: T = (x̄1 − x̄2)/
√
σ2

1/n1 + σ2
2/n2 (where x̄l is the sample mean

for sample drawn from population l = 1, 2 with sample size nl and
[known] population standard deviations σl).

−→ very positive or very negative values of T would be evidence against
the null hypothesis
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How positive or negative depends on the distribution of the test statistic

In this simple example, it turns out we know the distribution of the test
statistic follows a normal distribution with mean 0 and variance 1

−→ p-value = 2P(T > |Tobs |), where T is a random variable
representing the test statistic and Tobs is the observed test statistic

−→ small p-values (< .05, .01, etc) would be evidence against the null
hypothesis
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Two-sample hypothesis tests: TDA

Back to the TDA setting...

Given two sets of persistence diagrams, D
(1)
1 , . . . ,D

(1)
n1 ∼ P(1) and

D
(2)
1 , . . . ,D

(2)
n2 ∼ P(2)

where P(1) and P(2) are the true underlying distributions of
persistence diagrams for group 1 and 2, respectively.
(existence of distributions established in Mileyko et al. (2011))

H0 : P(1) = P(2) vs. H1 : P(1) 6= P(2)

What to use for the test statistic?

Persistence diagrams are difficult objects to work with −→
consider functional summaries of persistence diagrams

18



Several functional summaries have been proposed (e.g., Chazal
et al. 2014; Adams et al. 2015; Bubenik 2015; Chen et al. 2015)

In Berry, Chen, Cisewski-Kehe, and Fasy (2018), we develop a
unified framework for univariate functional summaries of
persistence diagrams then prove some basic functional convergence
theorems using tools from functional data analysis
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Given two sets of persistence diagrams, D
(1)
1 , . . . ,D

(1)
n1 ∼ P(1) and

D
(2)
1 , . . . ,D

(2)
n2 ∼ P(2).

H0 : P(1) = P(2) vs. H1 : P(1) 6= P(2)

Let Fl ,i = F (D
(l)
i ) be the functional summary for diagram i of set

l = 1, 2, and F̂l(t) =
∑nl

i=1 Fl ,i (t)

F̂l(t) is a consistent estimator of the population mean functional summary,

EFl(t) (Berry, Chen, Cisewski-Kehe, and Fasy, 2018)

Then use test statistic T = d(F̂1(t), F̂2(t)) for some metric d(·, ·)
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Landscape functions

Landscape functions are the collection of
functions Fk : D → F s.t. for each k ∈
N

Fk(D; t) = kmax
i=1,...,l

Λi (t)

for t ∈ [tmin, tmax], kmax selects the kth
largest value

Λi (t) =


t − bi t ∈ [bi ,

di+bi
2 ]

di − t t ∈ [ di+bi
2 , di ]

0 otherwise

Bubenik (2015)

Generalized landscapes Berry, Chen, Cisewski-Kehe, and Fasy (2018):

R code available at https://github.com/JessiCisewskiKehe/generalized_landscapes
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TDA package R code: landscape functions

Same data1 as used previously and Rips persistence diagram diag1

#set sequence for function

tseq <- seq(min(diag1[,2:3]),max(diag1[,2:3]), length = 1000)

#get landscapes 1 to 5

land1 <- landscape(diag1, dimension = 1, KK = 1:5, tseq)

#plot first landscape

plot(tseq, land1[,1], type = "l", xlab = "t", ylab = "landscape")
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Fibrin data

Suppose we had a sample of Monkey fibrin images and of Human fibrin images,
and then two sets of persistence diagrams: D

(1)
1 , . . . ,D

(1)
n1 ∼ P (1) and

D
(2)
1 , . . . ,D

(2)
n2 ∼ P (2).

H0 : P(1) = P(2) vs. H1 : P(1) 6= P(2)

Let Fl,i = F (D
(l)
i ), be the first landscape function for diagram i of set l = 1, 2

Calculate average landscape for each group: F̂l(t) =
∑nl

i=1 Fl,i (t)

Then use test statistic such as T =
∫
|F̂1(t)− F̂2(t)|dt

But what is the distribution of T? Needed to compute a p-value...
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Permutation tests

Null hypothesis: There is no difference between P(1) and P(2).
Differences in the samples would just be due to chance.

Alternative hypothesis: There is a difference between P(1) and
P(2).

−→ Can estimate the null distribution of the test statistic, T , by
randomly mixing (i.e., permuting) the labels of 1 or 2 a bunch of
times to get many realizations of T under the null hypothesis

−→ See where the observed T falls on the null distribution to
calculate a permutation p-value
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Permutation test: Example

Null hypothesis: There is no difference between P(1) and P(2).
Differences in the samples would just be due to chance.

Alternative hypothesis: There is a difference between P(1) and
P(2).
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R code: get samples

library(TDA)

set.seed(123)

pop1 <- function(n){

return(matrix(runif(2*n),ncol=2))

}

pop2 <- function(n,sig,rad){

data0 <- circleUnif(n, r = rad)+

matrix(rnorm(2*n,0,sig), ncol = 2)+c(.5,.5)

return(data0)

}

n_samples <- 20

n1 <- 75

n2 <- 75

sample1 <- lapply(1:n_samples, function(ii) pop1(n1))

sample2 <- lapply(1:n_samples, function(ii) pop2(n2,.06,.4))
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R code: get persistence diagrams
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maxscale <- .4

maxdimension <- 1

diag1 <- lapply(1:n_samples, function(ii) ripsDiag(sample1[[ii]],

maxdimension, maxscale)$diagram)

diag2 <- lapply(1:n_samples, function(ii) ripsDiag(sample2[[ii]],

maxdimension, maxscale)$diagram)
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R code: get landscapes
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tseq <- seq(0,.4, length = 1000)

land1 <- sapply(1:n_samples, function(ii)

landscape(diag1[[ii]], dimension = 1, KK = 1, tseq))

land2 <- sapply(1:n_samples, function(ii)

landscape(diag2[[ii]], dimension = 1, KK = 1, tseq))
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R code: permutation tests

library(sfsmisc) #for integrate.xy

n_perm <- 1000

tseq <- seq(0,.4, length = 1000)

land_mean1 <- apply(land1,1,mean)

land_mean2 <- apply(land2,1,mean)

T_obs <- integrate.xy(tseq,abs(land_mean1 - land_mean2))

landscapes_all <- t(cbind(land1,land2))

T_stat <- c()

for(i in 1:n_perm){

which_landscapes <- sample(1:nrow(landscapes_all),

nrow(landscapes_all)/2, replace = FALSE)

mean1 <- apply(landscapes_all[which_landscapes,],2,mean)

mean2 <- apply(landscapes_all[-which_landscapes,],2,mean)

T_stat[i] <- integrate.xy(tseq,abs(mean1 - mean2))

}
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R code: permutation tests

Approximate distribution of T under the null hypothesis
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Pickup Sticks Simulator (STIX)

Another dataset we can consider in the coding sprints:
To generate an image with n segments, or sticks

1 Two sets of n points are randomly sampled from a Uniform
distribution: {ui1, ui2}ni=1

2 Segments drawn between points in the same position of the
two lists of random numbers (i.e. between ui1 and ui2)

3 The thickness of each segment is randomly drawn from a χ2

distribution with thickness = t degrees of freedom.

Realizations of the Pick-up Sticks Simulation Data (STIX) with
average thicknesses of (left) 5 and (right) 6
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Concluding remarks

Spatially complex data is becoming more common in science (e.g.
Cosmic Web, fibrin)

However, analyzing these data is not always straightforward

Hypothesis testing using persistent homology

Functional summaries of persistence diagrams can be used as test statistics

Thank you!
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