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Abstract. 
This paper develops	  a	  method	  to	  determine	  if	  the	  United	  States’	  Olympic	  sports	  program	  is	  

improving on an individual sport basis. In addition, the probabilistic likelihood of a U.S. Olympic 
sports team reaching the medal podium was investigated. The research presented in this paper 
focuses	  on	  U.S.	  Men’s	  Ice	  Hockey	  (a	  head-to-head sport), with additional research done on 
Women’s	  Alpine	  Skiing	  (a	  multi-competitor sport). 

Three ranking methodologies were employed for	  men’s	  ice	  hockey:	  Massey,	  Elo, and 
Microsoft’s	  Trueskill. Within these methodologies, information accumulated from Olympic 
tournaments and world championships (2004 to 2013) were applied. The subsequent results 
allowed a definite determination in regards to improvement of the U.S. team in respect to other 
competitors. 

A Monte Carlo simulation was run for ice hockey in the format of the 2014 Olympic Games. 
Comparison of a known distribution (normal and uniform) to the generated ratings resulted in a 
predictive measure for the U.S. to medal. Overall, it was found that ranking methodologies 
employed throughout this research were considerably accurate when compared to actual results 
of the 2014 Games. 

Key words: Massey method, Elo method, TrueSkill method, ranking vector, rating vector, Monte 
Carlo simulation 
 

1. INTRODUCTION 

Dr.	  Peter	  Vint,	  Senior	  Director	  of	  the	  U.S.	  Olympic	  Committee’s	  Center	  for	  Competitive	  Analysis,	  
Research, & Innovation provided the following project to the problem-based learning class, 
Operations Research, at the College of Charleston. 

• On a sport by sport basis, how competitive is the United States at any point in time? Is the U.S. 
getting better, staying the same, or getting worse over time? 

• What is the likelihood that the U.S. will reach the medal podium in any given competition? 
 

While an Olympic athlete or team may improve with respect to competition-independent 
measures (e.g., improved distance thrown in the shot put or improved team gymnastics scores), in 
order to medal, the athlete or team must improve relative to its competitors. Thus, in our analysis 
we focused on improvements in U.S. rankings relative to the competition. A ranking is an ordered 
list where the ordering signifies the skill levels of the various competitors. Specifically, each 

                                                           
1 Presenting author and can take any questions directed towards the paper.  
2Presenting author and can take any questions directed towards the paper. 
 Department of Mathematics, College of Charleston, 175 Calhoun Street-RSS 339, Charleston, SC 29401, USA. All authors but the last 

are affiliated with the College of Charleston. The research of A.N.L is supported in part by NSF grant CISE-CCF-AF-1116963. email: 
langvillea@cofc.edu 

£ United States Olympic Committee, Competitive Analysis, Research & Innovation, 1 Olympic Plaza, Colorado Springs, CO 80909 



competitor is given a rating, or numerical score,	  based	  on	  that	  athlete’s	  performance	  relative	  to	  its	  
competitors. After all the athletes have been scored, these ratings are ordered, creating an overall 
ranking. Many methods exist for rating athletes or teams, each generating its own ranking. Which 
ranking method is best becomes a philosophical question: best by what measure? Accuracy with 
respect to prediction of future events? Accuracy with respect to past events? Accuracy with respect 
to some other measure? We provide some answers to these questions at the end of Section 2. 

Dr. Vint and the U.S. Olympic Committee provided us with data on several sports; however, to 
narrow	  the	  focus,	  in	  this	  paper,	  we	  only	  present	  our	  results	  for	  men’s	  ice	  hockey	  and	  women’s	  
downhill skiing. These two sports are representative of the analysis that can be conducted on other 
sports because they cover the two main classes of Olympic sports: (1) head-to-head sports such as 
team sports and (2) multi-competitor sports such as track and field and skiing. 

Ice hockey is a head-to-head sport because each game takes place between two teams, whose 
overall placement in an Olympic event is decided upon a series of binary games played against 
opponents. Contrast this with multi-competitor sports in which the speed at which one races, or the 
length one throws or any number of metrics for success, is directly compared to every other 
individual competing in the same event. There are many methods for ranking head-to-head sports. 
See, for example, those in [1]. On the other hand, there are few methods for ranking multi-
competitor sports. 

We present line graphs of the rank of U.S. over time to answer the first question: is the U.S. 
getting better in a particular sport? Head-to-head sports are covered in Section 2 and multi-
competitor sports are covered in Section 3. In Section 4, we present the results of Monte Carlo 
simulations to determine the probability that the U.S. will medal in a particular sport. 

2. RANKING HEAD-TO-HEAD SPORTS 

This section presents the three methods that we analyzed for ranking head-to-head Olympic sports: 
the Massey method, the Elo method, and the head-to-head variant of the TrueSkill method. 

 
2.1. The Massey Method. The Massey method for ranking items was created by Kenneth Massey in 
1997 [2]. Massey had in mind traditional sports teams, such as basketball and football, when he 
developed his model. But his method has since been applied also to individual sports such as tennis 
and bowling. Thus, the Massey method applies naturally to head-to-head	  Olympic	  sports.	  Massey’s	  
model revolves around the rule that the difference in the ratings of two teams i and j, denoted ri − rj, 
represents the point differential in a matchup of these two teams. The Massey method can be 
succinctly summarized with one linear system 

 
                                                                                    Mr = p                                                                                      (1) 

 
where the Massey coefficient matrix M is defined       

                            (2) 

where ti is the total number of games team i played and nij is the number of games teams i and j 
played against each other. The Massey right-hand side vector p is a vector of cumulative point 
differentials. That is, pi is the total number of points team i scored on all opponents minus the total 



number of points opponents scored against team i. It can be proven that M is singular since  
rank(M) = n − 1. As a result, an adjustment is made to ensure nonsingularity. Any row of M is 
replaced with a row of all 1s and the corresponding entry in p is set to 0. This new constraint forces 
the ratings to sum to 0.	  Following	  Massey’s	  advice,	  we	  applied	  this	  nonsingularity	  adjustment	  to	  the	  
last row, creating an adjusted linear system which we denote Mr¯ = p¯. 

Figure 2.1 shows the Massey rankings of the U.S. plus five other countries1 as well as the actual 
placement of the U.S. from 2004 to 2013. These line graphs illustrate how well the U.S. is doing 
relative	  to	  the	  ‘best’	  competition	  and	  can	  be	  easily	  produced	  for	  any	  Olympic	  sport. 

 

Fig. 2.1. Line graph of the Massey rank of U.S. Mens Hockey vs. competitors over 2004-2013 

2.2. The Elo Method. The Elo Method, as discussed in [1], is a ranking methodology characterized 
by the following equation: 

 
ri(new) = ri(old) + k(Si,j − µi,j)             (3) 

 
For each competitor with a subheading i in the characteristic equation, one’s	  rating upon playing 

against an opponent j is updated by adding a multiple of the difference from the binary result of the 
game and the expected result. In this ranking methodology,  
 

          (4) 
 

 di,j = ri(old) – rj(old)                                                                       (5) 
 
are determined before the game starts. Di,j refers to the difference between the pre-match ratings of I 
and j, while µi,j is an estimate of the probability of team I winning a match against team j. The variable 
 
 

(6) 
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takes on a different value depending on the result of the match in question. Finally, ξ	  is a constant 
determining the spread of the ratings, and the value k determines the weight of an individual game. 
Both of these values are determined by the user and are only important in relation to each other. For 
instance,	   their	  ratio	  should	  be	  manipulated	   in	  order	   to	  not	  artificially	   inflate	  a	   team’s	  rating	  with	  
respect to the average. The values ξ	  and k are usually set and then forgotten about, with one notable 
example: if one possesses sufficient evidence that victories in certain circumstances are more 
valuable than others. This allows k to be manipulated so to award more points to those particular 
wins. 

Elo	  focuses	  on	  rewarding	  a	  team	  based	  on	  the	  opponent’s	  skill	  level.	  Teams	  will	  rise	  in	  rank	  more	  
quickly if they beat teams with a higher Elo rating. Similarly, teams will fall in rank faster if losing to 
an opponent with a far worse Elo rating. In general, each team is given an arbitrary starting point, 
usually at rating zero. The main benefit of the Elo method is being able to update the ratings after 
each individual match, making it ideal for following along with rankings on a day-to-day basis. This 
is one reason why Elo is used by FIDE (Federation Internationale des chees) for chess and FIFA 
(Federation Internationale de Football Association) to soccer. 

The	  following	  graph	  shows	  the	  United	  States	  ranked	  in	  men’s	  ice	  hockey	  over	  time	  along	  with	  the	  
same five other countries. The results from Figure 2.2 were found by using a constant k value. 
However, several other results were procured by changing k throughout a single tournament. For 
more information on these results, feel free to contact the authors. 

 

Fig. 2.2. Line  graph  of  the  ELO  rank  of  U.S.  Men’s  Hockey  vs.  competitors  over  2004-2013 

2.3. The TrueSkill Method. Microsoft TrueSkill refers to the proprietary, patented system of 
ranking players of multi-competitor computer games. It is used by the XBOX Live leaderboards. For 
more information on Trueskill, see [3]. TrueSkill is a Bayesian method. Parameters of the model are 
estimated using two values: a mean, µ, and a variance, σ2. Contrast this with the traditional statistical 
approach of using one value, the mean. Thus, this Bayesian approach accounts for the variability of 
the sampling itself, which is helpful for modeling sports because	   the	   skill	   level	   of	   an	   individual’s	  
performance typically varies from game to game. The tradeoff is that the implementation of the 
Bayesian TrueSkill method is more complicated than that of the Massey or Elo methods. While the 
TrueSkill method was originally devised for and shines in multi-competitor situations, it can also be 
applied to head-to-head situations. Head-to-head events are simply multi-competitor events with just 
two competitors. However, the fundamental philosophy between the two are different. The 



advantage of using TrueSkill for head-to-head events is the additional information obtained about 
the variability of each rating. 

In the TrueSkill method, each competitor starts with the same mean and standard deviation (e.g., 
µ = 25,    σ	  = 8.3). Similar to the Elo method, TrueSkill updates after every match according to the 
following set of update equations for both the winner w and loser l: 

                         (7) 
  

where 

                                                                                (8) 
  
and N(t − α) refers to the standard normal probability density function evaluated at t − α, and       
Φ(t − α) refers to the standard normal cumulative density function evaluated at t − α.	  Each	  player’s	  
skill can be thought of as having a normal distribution itself. The Empirical Rule implies that for any 
skill level represented by Normal(µi,σi2), 68% of the individuals performances will fall within the 
region (µi − σi,µi + σi), 95% of the performances will fall in the region (µi − 2σi,µi + 2σi), and 99% of 
the performances will fall in the region (µi − 3σi,µi + 3σi).	  In	  other	  words,	  99%	  of	  the	  individual’s	  
performances will occur at a skill level above µi − 3σ. Microsoft uses this value, called a 
‘Conservative	  Ranking’,	  as	  their	  Xbox	  Live	  leaderboard	  rating	  for	  a	  particular	  player [3]. 

Figure	  2.3	  shows	  Trueskill	  rankings	  for	  the	  United	  States	  Men’s	  Ice	  Hockey	  team	  over	  time	  
along with the same five other countries used in the Massey and Elo methods. 

 

Fig. 2.3. Line  graph  of  the  Trueskill  rank  of  U.S.  Men’s  Hockey  vs.  competitors  over  2004-2013 
 



As seen below, Figure 2.4 displays all three methods simultaneously along with the official 
U.S. placement. One can observe that the lines are not drastically different from the official 
placement. The most one could say is that the Trueskill rankings appear to resemble the official 
placements the most, but a simple visual observation cannot definitively determine if any method is 
superior to the others.  
 

 
Fig. 2.4. Comparison of all three methods 

 
2.4. Comparison of the Methods. 

2.4.1. Direct Prediction Using Prior Results. In order to find some accuracy for which teams 
would advance to the semi-final	  of	  a	  tournament,	  we	  focused	  on	  a	  team’s	  success	  from	  the	  previous	  
year. The thought of doing such measure was two-fold: first, by seeing how successful a team is to 
advance based from the previous year served as a decent metric for the accuracy of each ranking 
system. Secondly, and more importantly, we wanted to find a threshold below which we no longer 
had to consider teams as a threat to medal. Figure 2.5 shows the average predictive power for each 
method	  and	  threshold.	  Note	  that	  ‘Simple	  Weighted’	  and	  ‘Heavy	  Weighted’	  are	  two	  forms	  of	  Elo found 
by not using a constant k value. 

 

 
Fig. 2.5. Top 4 Predictions 

 
For	  men’s	  ice	  hockey,	  these results show that by using the top six teams from the previous year 

on average results in a 91% level of accuracy (based on the Massey method) at finding the top four 
teams in the current year. Also, the Elo method applied with a constant k value (Straight Elo) fairs 



better than when not holding k constant. If one considers just Straight Elo, along with Massey and 
Trueskill, one will observe that Trueskill produces the worse predictions for using the top six teams 
in the previous year to predict the top four in the following year. This is particularly interesting since 
the line graphs for Trueskill appeared to reflect the official placement for the U.S. the most. This 
reiterates the point that visual observations can be misleading. Even so, when the threshold is 
extended to eight teams, one will see that the prediction results are moderately better. This leads us 
to believe that looking at the top six teams from the previous year is sufficient for this sport. 
Therefore, Figure 2.5 puts an emphasis on consistency as a standard for achievement. If a team 
consistently places in the top six, it stands to reason that for the following year, that team will be 
competitive for medaling. 

2.4.2. Hindsight Predictions. One of the later goals in this project was to quantify the accuracy 
of each ranking method in order to verify its efficiency. To achieve this goal, the ratings from these 
ranking methods are used to determine the outcome of all the games associated with the rankings. 
The higher rated team would be deemed the winner. These outcomes were then compared to the 
actual results. For our research, the ratings accumulated at the end of a year would be used to 
determine the outcomes of those games. This method is known as hindsight accuracy [1].  

Figure 2.6 displays a comparison of all three methods.  From this table, Trueskill has the best 
hindsight predictions with an average percent of 85.33%. Thus, the year by year ratings on average 
from Trueskill are better than Elo and Massey for predicting the actual outcomes of games for 
individual years. Also, the minimum percent correct for Trueskill is 80.36%, whereas for Elo and 
Massey, they are 73.68% and 73.21%, respectively. Since we are focusing on the Olympics, Trueskill 
also has the highest percentages for the 2006 and 2010 Olympic Games. This could be due to the 
structure	  of	  Trueskill	  by	  accounting	  for	  the	  variability	  a	  team’s	  skill level.  

 

 
Fig. 2.6. Comparison of all three methods hindsight accuracy 

Figure 2.7 below gives one access to data found by using the Elo method with a constant k value. 
This table illustrates the biggest upset (based on the difference of ratings) from each season, which 
characterizes a threshold above which the ranking method is statistically perfect. We identified the 
max differences from each year and compared these to the rest of the data. This was done to see how 
much of the entirety of the data rested on each side of these differences. The smallest difference was 



18.256, which 62.4% of the data had a greater difference of the ratings. If one takes the hindsight 
accuracy of just this data, one obtains a value of 95.3%. Therefore, if the difference of the ratings is 
above 18.256, the higher ranked team will have a 95.3% chance of winning.  

Fig. 2.7. Hindsight with Straight ELO 

Each ranking method has its own range of values for ratings to figuring out the rankings. 
Consequently, the smallest difference in ratings for Elo, for instance, is much higher than that of 
Massey and Trueskill.  Therefore, it is impractical to compare the smallest differences from all three 
methods. Figures 2.8 and 2.9 below show the results for Massey and Trueskill, respectively. Thus, the 
most one could say is how well do the rankings match up to the actual results.  

Fig. 2.8. Hindsight with Massey 

Fig. 2.9. Hindsight with Trueskill 

 



3. RANKING MULT-COMPETITOR OLYMPIC SPORTS 
 

In this section, we transition from methods that rank head-to-head competitions to methods that 
rank multi-competitor competitions. The data provided for the multi-competitor portion of this 
project came in the form of placements. Consider a three-competitor race with placements, A, first, B, 
second, and C, third. One can transform these placements into a series of head-to-head events by 
forming all pairwise combinations of athletes, resulting in the following head-to-head data: A beats 
B, A beats C, and B beats C. Thus, a multi-competitor event with n competitors creates  head-to-
head matches. Since methods for ranking head-to-head data exist, this is a very useful transformation. 

For this multi-competitor to head-to-head transformation, the point differential data of the 
Massey method is helpful. One can think of the difference in the rank placement as a scoring 
differential and can create the matrices the same way as presented in the head-to-head section. This 
implementation provides easily interpretable results, although the computation time is longer than 
running other methods. 

Unfortunately, applying a similar transformation to the Elo and the (head-to-head variant of the) 
Trueskill methods is problematic due to the updates required after every match. Given that a multi-
competitor match is broken up into  individual matches, how does one choose the order in which 
to update the matches? Our experiments showed that the order does indeed affect the results. 

Consequently, we focused on the multi-competitor variant of the Trueskill method to handle 
multi-competitor sports. In particular, we decided to use multi-competitor	   data	   from	  Women’s	  
Alpine skiing. Due to the large number of athletes within our dataset, we limited our visual 
representation (see Figure 3.1 below) to only include those whom have been ranked as number one 
according to Trueskill for at least one year. The data ranged from 2002 to 2013. 

We chose to display the results in a table since implementing the same type of line graphs done 
for head-to-head data with multi-competitor data can be deemed impractical. This is because it is 
difficult to compare athletes from different time periods. For example, a notable trend from Figure 
3.1 is that athletes will no longer compete after a few years of reaching their peak performance 
(highest ranking). Contrast this with ice hockey where teams can replace individual athletes, and this 
results in a much more practical use of line graphs for a wider range of years. National teams exist as 
long as the country qualifies for the competitions. 

Although one could still compare the skiers in the years they overlap, the table is misleading in 
its representation of the data as a whole. Tina Maze, Maria Hofl-Riesch, and Lindsey Vonn 
participated much more often than the other skiers included in the data. The average time a skier 
competed was four years. The three skiers mentioned above have each been participating for at least 
ten	  years,	  and	  the	  longevity	  of	  these	  women’s	  careers	  is	  uncommon.	  This	  makes	  for	  fairly sparse data 
and creates a much higher level of uncertainty due to a low retention rate of athletes from year to 
year. 

 

Fig. 3.1. Table	  of	  Trueskill	  Rankings	  for	  Women’s	  Alpine	  Skiing 

To further complicate matters, actual ratings show very little variation. For example, Figure 3.2 
shows the ratings for 2005 for the previously mentioned six skiers. Using the interpretation of 
TrueSkill	   ratings	   as	   parameters	   to	   a	   normal	   distribution	   of	   the	   athlete’s	   performance,	   Figure	  3.2	  
displays 95% confidence intervals of	  the	  six	  skiers’	  performance	  distribution.	  One	  can	  see	  that	  Renate	  



Gotschl’s	  and	  Lindsey	  Vonn’s	   intervals	  are	  much	  higher	   than	  the	  other	  four	  skiers’	   intervals.	  This	  
suggests that a predictive model based off these ratings would eliminate any possible outcomes 
where any of the four skiers finish before either Gotschl or Vonn. However, the nature of the sport 
dictates that this is not something that could be predicicted with absolute certainty, which implies 
that we may have designed a model too restrictive to yield accurate predictions. 

 

Fig. 3.2. Graph  of  2005  Trueskill  Rankings  for  Women’s  Alpine  Skiing 

These results led us to conclude that multi-competitor sports cannot be analyzed in the same 
ways we approached head-to-head sports. Further research will need to be conducted in order to 
find an efficient method of ranking for multi-competitor sports dealing with data only including 
placements. 

4. MONTE CARLO SIMULATIONS TO PREDICT MEDALING 
 
Monte Carlo is a general term used to describe any situation in which random sampling obtains a 

numerical result. A statistical random variable is used in combination with a win probability given by 
the ranking methods in order to determine the winner of a hypothetical contest between two teams. 
This is iteratively repeated in the form of the Olympic tournament in question, and this procedure is 
done until the results converged to a statistical probability giving what place each team would finish. 

For the Massey method, the probability that team i beats team j is	  Φ( ),	  where	  Φ	   is	   the	  
standard normal cumulative distribution function and σ	  is the standard deviation of all the Massey 
ratings. The normal cumulative distribution function gives a value between 0 and 1, which allows one 
to compare the win probability to a X ∼ Unif(0,1) random variable. Thus, this comparison results in 
the ability to pick the winner of a hypothetical match between teams i and j. 



The Elo method produces the value µi,j, which is the probability that team i beats team j. Thus, one 
can create a random variable with a µi,j probability	  of	  being	  in	  one	  region	  and	  a	  1	  −	  µi,j = µj,i probability 
of being in another region. To do so, take the value X ∼ Unif(0,1) and compare it to the µi,j value. If X < 
µi,j then the hypothetical contest results in a win for team i. Otherwise, team j wins the hypothetical 
contest. 

Since Trueskill treats skill as two variables, mean µ and standard deviation σ, one can use these 
two variables to create a distribution for the skill of each player. Consequently, the skill for player i 
can be described by Si ∼ N(µi,σi2) while the skill for player j can be described by Sj ∼ N(µj,σj2). Drawing 
random values from each of these distributions results in the ability to directly compare the 
hypothetical skill levels between players i and j in a given match. 

With these methods for finding the winner of a hypothetical match between any two competitors, 
the rest of the predictive	  Monte	  Carlo	  model	  is	  derived	  from	  the	  Olympic	  sport	  in	  question.	  For	  men’s	  
ice hockey, we followed the format of the tournament for that sport and thus began by simulating a 
group stage involving three groups of four teams by using the teams that qualified for the Olympics. 
This provided the order in which the teams are placed into a knockout-style competition. The 
tournament was simulated until a winner was confirmed. For our simulation, this process is repeated 
multiple times, in this case ten-thousand, until we reached the results in the following tables. The 
colored rows indicate which countries actually medaled in the 2014 Olympics. 

 
Table 4.1 

2014 Prediction Results - Massey

 

 
 
 
 
 
 
 
 
 
 
 
 



Table 4.2 
2014 Prediction Results - Elo

 

Table 4.3 
2014 Prediction Results - Trueskill	  (β	  =	  40)

 

  



Table 4.4 
2014 Prediction Results - All % Chance to Medal

 

5.CONCLUSIONS AND FUTURE WORK 
Our analysis of Olympic sports used ranking methods and Monte Carlo simulation to assess 

America’s	   competitiveness.	  Such analysis allows U.S.O.C officials to make statements such as the 
following	  regarding	  men’s	  ice	  hockey. 

1. The United States was the sixth best team in the world based on recent results at the 
beginning of 2014 Olympics; 

2. The	  United	  States	  Men’s	  Ice	  Hockey Team had roughly a 27% chance to medal in the 2014 
Olympics; 

3. While the United States did not medal, they did finish 4th, exceeding any metric of 
expectation for the Olympic Games; 

4. Since the 2010 World Championships, the United States has been improving at ice hockey.  

However, these statements only deal with one sport. It is possible that for other head-to-head 
sports we cannot arrive at similar conclusions. For instance, ice hockey is a team head-to-head 
sport, and teams can replace athletes. Contrast this with individual head-to-head sports, such as 
fencing or taekwondo, where it might not be as intuitive to use the same type of tests done in 
section 2.4. It is possible that for individual head-to-head sports that predicting the top four 
athletes in the current year based on the top six or top eight from the previous year would result in 
much lower percentages. Also, for team head-to-head sports, there could be a more or less balance 
of play than that of ice hockey. Thus, more research needs to be conducted on other types of head-
to-head sports to see if the three ranking methodologies will arrive at similar results. We have not 
yet run Monte Carlo simulations from the rankings generated for multi-competitor sports but 
intend to undertake this as future work along with implementing the ranking methods for other 
head-to-head sports.  
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