
K-Multiscope: Combining Multiple Kinect Sensors
into a Common 3D Coordinate System

Kyle Stewart
 Computer Science Department

 College of Charleston
 Charleston, SC, USA
 stewartkh@g.cofc.edu

Bill Manaris
Computer Science Department

 College of Charleston
 Charleston, SC, USA
 manarisb@cofc.edu

Tobias Kohn
 Computer Science and Technology

 University of Cambridge
 Cambridge, UK

 tobias.kohn@cl.cam.ac.uk

	

ABSTRACT
We present a method for combining data from multiple Kinect
motion-capture sensors into a common coordinate system. Kinect
sensors offer a cheaper, potentially less accurate alternative for
full-body motion tracking. By incorporating multiple sensors into
a multiscopic system, we address potential accuracy and
recognition flaws caused by individual sensor conditions, such as
occlusions and space limitations, and increase the overall
accuracy of skeletal data tracking. We merge data from multiple
Kinects using a custom calibration algorithm, called
K-Multiscope. K-Multiscope generates an affine transform for
each of the available sensors, and thus combines their data into a
common 3D coordinate system. We have incorporated this
algorithm into Kuatro, a skeletal data pipeline designed earlier to
simplify live motion capture for use in music interaction
experiences and installations. In closing, we present Liminal
Space, a live duet performance for cello and dance, which utilizes
the Kuatro system to transform dance movements into music.

CCS CONCEPTS
• Computing methodologies → Motion capture; Motion pro-
cessing; • Human-centered computing → Interaction design; •
Applied computing → Performing arts;

KEYWORDS
Motion capture, Kinect sensor, motion mapping, skeletal data,
algorithmic music, interaction design

ACM Reference format:
Kyle Stewart, Bill Manaris, and Tobias Kohn. 2019. K-Multiscope:
Combining Multiple Kinect Sensors into a Common 3D Coordinate
System. In Proceedings of 6th International Conference on Movement and
Computing, Tempe, AZ, USA, October 30, 2019 (MOCO), 8 pages.
https://doi.org/10.1145/1234567890

1 Introduction
In the development of interfaces for expressive musical
interaction and artistic creation, markerless motion capture offers
the opportunity for free-form, full-body experiences, sonifying
motion without requiring the user to wear a MoCap suit. Users
and performers can freely walk in and out of the space, without
the need for special equipment, and even serendipitously discover

Permission to make digital or hard copies of all or part of this work for personal or
classroom use is granted without fee provided that copies are not made or
distributed for profit or commercial advantage and that copies bear this notice and
the full citation on the first page. Copyrights for components of this work owned
by others than ACM must be honored. Abstracting with credit is permitted. To
copy otherwise, or republish, to post on servers or to redistribute to lists, requires
prior specific permission and/or a fee. Request permissions from
Permissions@acm.org.
MOCO '19, October 10–12, 2019, Tempe, AZ, USA
© 2019 Association for Computing Machinery.
ACM ISBN 978-1-4503-7654-9/19/10…$15.00
https://doi.org/10.1145/3347122.3347124

.

Figure 1: The Veil (2017) is an experiment in musical group
dynamics (i.e., spontaneous musical interaction and
collaboration among performers), presented at the Music
Library of Greece, in Dec. 2017.

Figure 2: Liminal Space (2018) is an aleatoric piece for
cello, motion capture, and interactive software motivating
this work, discussed in more detail later in this paper. Also
see http://bit.ly/liminalspace2018b .

MOCO, October 10-12, Tempe, Arizona, USA K. Stewart et al.

the experience and decide to engage in it at a moment’s notice.
This provides wonderful opportunities for artistic creation,
installation design, and new movement + technology explorations.
Figures 1 and 2 show experiences designed with earlier versions
of our system, and motivating the approach presented herein.

The Kinect 2.0 sensor offers a cheap, mobile, and markerless
solution, with notable accuracy, which exceeds that of the original
v1.0, and will be soon replaced by version 3.0 (announced
recently). With the provided Microsoft Kinect for Windows SDK
2.0, a single Kinect sensor can process infrared depth data into
skeletons made of 25 unique joints, for up to six users at a time
[15]. Individual sensors, however, are prone to producing
erroneous data, due to the occlusion of body parts, having
multiple users in the same space, and other conditions. Even in a
simple scenario, such as a user facing sideways, the sensor may
lose tracking for entire limbs.

Our approach is to improve upon the original sensor, by using
multiple sensors to capture users from different sides, thus
eliminating occlusions and producing redundancy in skeletal data.
This can be used to detect and average out noisy data, as well as
cover larger areas than that of a single sensor.

Handling data captured by these sensors can be a cumbersome
process. Rather than create custom, one-of-a-kind solutions for
each motion-controlled instrument or art installation (as we have
done before, e.g. [9, 13]), we decided, driven by the desire to
generalize, to design our own system to route, organize, store, and
otherwise handle motion-tracking data. An early prototype of this
system was utilized in Liminal Space (see Fig. 2). Liminal Space
is described more fully later in this paper.

 Our framework unifies data from multiple sources, which
capture skeletal data (full-body or otherwise, such as Kinect,
LeapMotion, etc.), by creating a common 3D coordinate space
that combines, and updates all data contributed by different
sensors in real time. This general solution for 𝑛 ∈ {1, 2, 3,… }
sensors offers increased accuracy and area coverage / range over a
single sensor, and can be easily adapted to drive a multitude of
local and telematic applications, in a way that is modular and
allows for rapid prototyping of music interactive installations, and
other experiences. In the next section, we go over earlier, similar
systems and approaches, and discuss how our approach is
different to combining multi-sensor data for creating motion-
tracking applications and experiences.

2 Background
Employing multiple depth sensors in pursuit of improving overall
accuracy of motion tracking and pose estimation is a subject
which has significant research precedent. Due to the ease of
access to the Kinect sensor as an entry point into the field, there
have been several attempts at solving the occlusion problem and
achieving increased accuracy by consolidating the data of multiple
Kinect sensors positioned around a user, especially in recent
years.

Berger et al. explore a technique for calibrating multiple Kinect
v.1.0 sensors using their RGB cameras. They find that a

reflective-diffuse checkerboard calibration approach is better in
calibrating multiple Kinect v1.0 depth and color sensors, when
compared to a point light system [6]. Their solution, using as
many as four Kinects, was able to overcome occlusion by viewing
the user from multiple angles, resulting in a point cloud which
could be mapped to a three-dimensional model.

Asteriadis et al. bring the methods of [6] into motion
estimation, applying the checkerboard calibration technique
followed by Singular Value Decomposition on the resulting
matrix [2]. They apply the final transformation matrix on skeletal
data to some success.

Baek and Kim compare live motion to that stored in a database
for dance instruction, combining 4 Kinect v1.0s [3]. They use a
custom calibration system based on the normal vector derived
from the user’s hip joints and employ a spline interpolation to
coordinate asynchronous data delivery from the sensors.

Gao et al. utilize two Kinect sensors for greater accuracy in
full-body pose estimation [8]. Rather than operating on skeletal
data, they work with depth data directly and make use of the
Iterative Closest Point (ICP) algorithm using the two point clouds
gathered from each Kinect. The ICP algorithm attempts to find the
transformation matrix which translates a source point cloud to the
space of a target point cloud by matching two nearby points as
closely as possible, then iterating until an accuracy threshold is
reached.

Kitsikidis et al. work, again, in pose estimation, but make
direct use of the Kinect’s skeletal data [11]. By applying the ICP
algorithm on skeletal data, considering joint confidence as weight,
and prescreening to prevent errant sudden motions, they were able
to combine data from several Kinects with measurable success.
Their solution utilized Kinect v1.0 and had trouble when users
failed to directly face a given sensor.

Kim et al. combine 8 Kinects using the ICP algorithm, once
more with depth data [10]. They find an 85% accuracy in
capturing dynamic movement when compared with the Xsens
inertial-based wearable capture system as a control.

Moon et al. pursue a system of multiple Kinects joined by
applying Kalman Filtering, where each joint can be evaluated for
reliability [17]. Their system performs better than a single sensor,
through simple averaging of multiple sensors’ data when
occlusions are present.

Murray-Browne and Plumbley approach the issue of handling
motion-tracking data for use in interactive sound applications
[18]. Their system is tailored for capturing musically meaningful
features via gesture recognition. They focus on ease-of-use,
modularity, and rapid prototyping, among others, utilizing a visual
dataflow programming language similar to Max and PureData.

Mokhov and Bardakjian develop the Illimitable Space System
(ISS), which captures motion data from a Kinect or similar
sensors and facilitates using the data to enhance live performance
with visuals [16]. The later ISSv3 brings the system into the
augmented and virtual reality landscape [4].

Amin and Burke work in a more general context to create a
toolset for interpreting motion data and movement patterns [1].

K-Multiscope MOCO, October 10-12, Tempe, Arizona, USA

They distinguish the capture of data from its interpretation and
focus on deriving meaning from the data.

Similarly, Dahl and Visi work with marker-based motion
capture systems and develop Max abstractions to synthesize
meaningful representations and qualities of motion [7].

Our approach differs from the above in that it utilizes skeletal
data captured from Kinect 2.0 (or other) sensors, positioned
arbitrarily in space (as long as the infrared cameras do not “blind”
one another, i.e., by directly facing each other). These sensors are
paired, in different possible configurations, with a main sensor,
whose coordinate system is used as the main, or reference
coordinate system. Our approach works directly with skeletal
data for simplicity (i.e., no point cloud data), and utilizes a
calibration technique explained in the next section to derive affine
transforms to map and merge data into a single coordinate space.

3 System Calibration
As mentioned earlier, our approach, called K-Multiscope, converts
skeletal data captured from different perspectives (i.e., by
different Kinects or other sensors) to a single perspective. For
simplicity of presentation, we describe a 2D representation of the
problem setup, using a pair of Kinects. Our technique, however,
works for with an arbitrary number of chained sensors in 3D data.

Fig. 3 shows a birds-eye view of a 2D setting for two such
Kinects, 𝐾! and 𝐾!. In order for this approach to work, we need
to translate data from one Kinect’s coordinate system to the
corresponding data in the other Kinect’s coordinate system. This
translation between coordinate systems is called an affine
transformation (i.e., a mapping of coordinate points).

Since the Kinects can be placed anywhere in the space to be
captured, we cannot anticipate a priori what the affine
transformation will be – it needs to be discovered / computed at
setup time. We have explored two ways to perform this
calibration.

The first approach utilizes linear regression to derive an affine
transformation between pairs of Kinects, 𝐾! and 𝐾!. The second
approach utilizes a genetic algorithm to evolve the affine
transformation. Both ways are explained below. We then
evaluate the results from each approach, against sets of actual
data, to determine which performs better.

As mentioned earlier, this stitching technique can be
generalized by creating a chain of Kinect pairs (e.g., K1 and K2,
K2 and K3, K3 and K4, and so on), and converting between
coordinate systems, until all data are in the same coordinate
system (e.g., the K1 coordinate system).

3.1 Affine Transformation between Kinects
Our approach works in 3D space. This section explains the affine
transformation in 2D space, for simplicity. In order to convert
data between two Kinects, we need to find:

• the common center, 𝐶, that the two Kinects are seeing, and

• the angle of rotation, 𝜑, relative to this common center (see
Fig. 3).

The angle of rotation 𝜑 around center 𝐶 can be written using a
2×2 matrix 𝐴! as follows (𝑃! stands for the point 𝑃 as seen from
the left Kinect 𝐾!, and 𝑃! is the same point as seen from 𝐾!):

𝐶𝑃! =
cos (𝜑) −sin (𝜑)
sin (𝜑) cos (𝜑) ∙ 𝐶𝑃!

The vectors 𝐶𝑃 can also be written as 𝑃 − 𝐶, yielding:

𝑃! = 𝐴 ∙ 𝑃! + (𝐶 − 𝐴 ∙ 𝐶)

We have thus written the rotation around 𝐶 using a matrix 𝐴
and a translation vector 𝑏 = 𝐶 − 𝐴 ∙ 𝐶 that corrects for the actual
center of rotation. The vector 𝑏 also captures the different
distances of the two Kinects from the common center 𝐶.

Any rotation can thus be expressed as an affine transformation
with a matrix 𝐴 and a translation vector 𝑏 as:

𝑣′ = 𝐴 ∙ 𝑣 + 𝑏

This works similarly for 3D space. During calibration, we need
to calculate estimates for rotation matrix 𝐴 and translation vector
𝑏.

Skeletal data from each Kinect may contain errors. In other
words, having two Kinects measuring the same sets of movements
from different angles reveals inaccuracies in the Kinect internal
measuring system. As it turns out, points 𝑣, as measured by each
Kinect, are approximations derived by the learning model inside
each Kinect, which converts a 2D depth point cloud to skeletal
data. Given the user’s orientation in the space, at different times,
we have observed that each 𝑣 and 𝑣! may be slightly off. We deal
with this issue through averaging of data points (once converted to
a single coordinate system). This, of course, may affect
calibration accuracy. Since we expect that most of the time a
Kinect provides reliable data, the more Kinects are added into a
scene, the more accurate this averaging approach becomes.

Figure 3: Two Kinects 𝑲𝑳 and 𝑲𝑹 looking at a scene with
two points and a common center 𝑪 (in the middle). Left and
right is the situation as seen from either Kinect alone. The
task of calibration is to find the coordinates of the center 𝑪
as well as the angle of rotation 𝝋, so that the two individual
images on both sides combine to the common image in the
middle.

MOCO, October 10-12, Tempe, Arizona, USA K. Stewart et al.

3.2 Linear Regression Algorithm
Our first approach uses linear regression to calculate the affine
transformation between two Kinects. At any given time, we take
the skeletal joints coming from two Kinects and combine the
joints from each skeleton to matrices 𝑉 and 𝑉′ , where each
column represents the coordinates of one joint, relative to the
skeleton's center of gravity. (Centering the points around a center
of gravity eliminates the need for a translation 𝑏). Given that the
Kinect data label joints as head, left-hand, right-elbow, etc., we
can easily pair respective joints 𝑣 and 𝑣′ from two Kinects.

 By multiplying 𝑉 with its transpose 𝑉!, we average part of the
errors out, and get an invertible matrix 𝑉 ∙ 𝑉!. If we assume that
the errors in the measurements are completely random and not
biased, then the errors are likely to partially cancel each other out
in an expression like 𝑣! + 𝑣! + 𝑣! . Multiplying 𝑉 by 𝑉! has
exactly the effect of replacing each column vector 𝑣 in 𝑉 by such
a sum (each column using a different combination of vectors) and
reduces error.

Finally, the estimators 𝐴 and 𝑏 are given by:

𝐴 = 𝑉! ∙ 𝑉! ∙ 𝑉 ∙ 𝑉! !!, 𝑏 = 𝑉′ − 𝐴 ∙ 𝑉

Aggregating all joint measurements from two Kinects as a list
of tuples 𝑣! , 𝑣!! , we then get the error 𝜀 for an 𝐴 and 𝑏 as:

𝜀!,! =
1
𝑛

𝐴 ∙ 𝑣! + 𝑏 − 𝑣!′
!

!

!!!

As each measured skeleton yields estimates 𝐴 and 𝑏, we take the
weighted average. Specifically, for each 𝐴, 𝑏 , we take the
corresponding 1 / 𝜀!,! as weight, so that those combinations of
𝐴, 𝑏 that best describe the data contribute slightly more to the
overall estimates.

Note that the error 𝜀!,! above is in fact the well-known sum of
squares. Indeed, finding the coefficients 𝐴 and 𝑏 in the affine
transformation 𝑣′ = 𝐴 ∙ 𝑣 + 𝑏 is a multivariate linear regression
problem, which is commonly written with a 4×4 matrix 𝑨 that
includes both the rotation matrix 𝐴 as well as the translation
vector 𝑏.

As mentioned earlier, during our calibration runs we found that
the skeletal data from the Kinects has systematic bias. This
introduced an additional scaling factor into the matrix 𝐴 (see
above). To counteract this, we introduced a rescaling step into
our calculations, making sure that det(𝐴) = 1, and eliminated
outliers where such distances differ by more than 10 centimeters.

3.3 Genetic Algorithm
Our second approach uses a genetic algorithm (GA) to calculate
the affine transformation (i.e., rotation matrix and translation
vector, 𝐴 and 𝑏, respectively). In practice, this approach is very
successful as it quickly converges to a solution, given a set of
simultaneous data from two Kinects, K1 and K2.

We have experimented with various GA configurations. We
utilize a genotype of 3 elements, the first element being the

rotation angle 𝜑 and the other two elements comprise the
translation vector. Since the two Kinects are already set up on the
same plane, for efficiency, we solve for 2D space (although
solving for 3D space is similar).

Currently, we use a population of 200 individuals, which we
evolve for 250 epochs (genesis, crossover, mutation, and fitness
calculation), as follows:
• Mutation: the mutation operation used adds or subtracts a

small random displacement to each element in the gene,
while ensuring that values remain within appropriate limits.

• Crossover: the crossover operation takes two parents and
swaps the rotation angle 𝜑 between them (without changing
the translation vector). Thus, new possibilities emerge.

• Fitness Function: to calculate fitness, we convert each
genotype to the corresponding rotation matrix and translation
vector. Then, we use this affine transformation to convert
data from Kinect K2 to Kinect K1’s coordinate space. We
calculate fitness via the mean squared error between the two
data sets. The closer the two data sets are, the higher the
fitness.

This approach can derive a highly accurate estimate of the
affine transformation, for a pair of Kinects, within a few seconds
on a regular laptop (i.e., MacBook Pro, 2.8GHz i7). In particular,
Figure 4 shows how quickly the genetic algorithm converges over
a series of runs. In most cases, the evolved solution’s fitness is
very high (i.e., > 0.9) within the first few generations.

In the next section, we compare the quality of affine
transformations derived by the two approaches.

3.4 Evaluation

This section compares the two techniques presented above, which
produce an affine transformation to best convert data between the
coordinate spaces of two Kinects.

Our experiment has two Kinect sensors placed facing a
common space (as in Fig. 3) and containing a single user. We

Figure 4: Fitness convergence of the genetic algorithm approach
over 20 runs. The line chart indicates the average convergence
across all runs. The area chart indicates the 95% confidence
interval.

K-Multiscope MOCO, October 10-12, Tempe, Arizona, USA

arbitrarily select one sensor as the primary, and the other as the
secondary. Both sensors face parallel to the floor at the same
height. We recorded live Kinect skeletal data of the user’s
movement producing several data sets.

From the first data set, we derive an affine transformation
using each of the above methods.

In order to remove timing discrepancies between the two
Kinects, we search each data set and select pairs of skeletons (one
from each Kinect sensor) that arrived almost simultaneously
(within a fraction of a second). Hundreds of such pairs were
selected.

For each of these pairs, we apply each affine transformation to
the secondary Kinect’s skeleton, creating two versions in the
primary space, the original, unaltered primary data, and the
transformed secondary data. We calculate the mean squared error
between the two data sets (which is the same as the fitness
function used in the GA approach). We plot the resulting fitness
scores (see Fig. 5).

Data sets A and B contain movement of the user across the
floor throughout the space shared by both sensors. In data set C,
the user remains in place, and only moves his arms. Data set D
combines all above movements, i.e., the user moves throughout
the floor space while simultaneously moving his arms.

Our evaluation results show that the fitness of the genetic
algorithm solution remains close to 1 throughout all data sets. On
the other hand, the fitness of the affine transformation created via
linear regression varies significantly (between 0.84 and 1) within
any given data set. This suggests that the generic algorithm
approach is much better / far more accurate.

Finally, not only the solution derived by the genetic algorithm
is pretty accurate, but also, as seen in the previous section (Fig. 4),
it gets discovered very quickly. This means we could be running
the error-checking algorithm continuously in the background, and,
if at some point the error drastically increases (i.e., one of the
sensors was moved, accidentally or otherwise), we could re-run
the calibration algorithm automatically to update the affine
transformation, as needed. This further increases the robustness
of the presented approach.

3.5 Scaling up to More Sensors

This section describes how our approach scales up to more than
two sensors. Adding more sensors is straightforward. It involves
utilizing the calibration method to pair each new sensor, say K3,
with an existing one (K1 or K2).

3.5.1 Capturing Single Area from Many Viewing Angles
One possibility is to have all sensors oriented so that they observe
part of the same scene (or area) with the main sensor. In order
for this to work, all additional sensors, K2 to Kn, have to be
paired directly to the main one, K1, i.e., to directly transform data
from these sensors to K1’s coordinate system. This way, all
sensors can be calibrated as described above.

The advantage of this approach is that such a setup can handle
multiple degrees of occlusion, i.e., where 3 or more people line up
partially and obstruct each other, from the point of view of the

0.8	

0.85	

0.9	

0.95	

1	

1.05	

1	 13
	

25
	

37
	

49
	

61
	

73
	

85
	

97
	

10
9	

12
1	

13
3	

14
5	

15
7	

16
9	

18
1	

19
3	

20
5	

21
7	

22
9	

24
1	

25
3	

26
5	

27
7	

28
9	

30
1	

Fi
tn
es
s	

Time	

Data	Set	A	

Gene:c	Algorithm	 Linear	Regression	

0.8	

0.85	

0.9	

0.95	

1	

1.05	

1	 22
	

43
	

64
	

85
	

10
6	

12
7	

14
8	

16
9	

19
0	

21
1	

23
2	

25
3	

27
4	

29
5	

31
6	

33
7	

35
8	

37
9	

40
0	

42
1	

44
2	

46
3	

48
4	

50
5	

52
6	

Fi
tn
es
s	

Time	

Data	Set	B	

Gene:c	Algorithm	 Linear	Regression	

0.8	

0.85	

0.9	

0.95	

1	

1.05	

1	 22
	

43
	

64
	

85
	

10
6	

12
7	

14
8	

16
9	

19
0	

21
1	

23
2	

25
3	

27
4	

29
5	

31
6	

33
7	

35
8	

37
9	

40
0	

42
1	

44
2	

46
3	

48
4	

50
5	

52
6	

Fi
tn
es
s	

Time	

Data	Set	C	

Gene:c	Algorithm	 Linear	Regression	

0.8	

0.85	

0.9	

0.95	

1	

1.05	

1	 20
	

39
	

58
	

77
	

96
	

11
5	

13
4	

15
3	

17
2	

19
1	

21
0	

22
9	

24
8	

26
7	

28
6	

30
5	

32
4	

34
3	

36
2	

38
1	

40
0	

41
9	

43
8	

45
7	

Fi
tn
es
s	

Time	

Data	Set	D	

Gene:c	Algorithm	 Linear	Regression	

Figure 5: The results of evaluation, testing fitness over time, for
the genetic algorithm (top) and linear regression (bottom)
solutions, respectively, on data sets A through D. Time (x-axis)
is represented in data frame units (1/30 sec).

MOCO, October 10-12, Tempe, Arizona, USA K. Stewart et al.

main (or other) sensor. Another advantage is that scaling up does
not add any new computational costs, as the calibration and
transformation operations can run in parallel, utilizing each Kinect
Client’s separate processing power (see section 4 below).

3.5.2 Capturing Extended Area from Single Viewing Angles
Another possibility is to spread sensors apart to create a larger
sensing area. In order for this to work, each new sensor, Kn+1,
has to be oriented so that it observes part of the same scene (or
area) with al least one other sensor, Kn (where n ranges from 1 to
as many sensors desired). Again, this allows each new sensor to
be calibrated with the method described above, so that all data
ends up in the same coordinate system (i.e., K1’s coordinate
system, but extended beyond what K1 can individually sense).

The advantage of this approach is that it can handle arbitrarily
large spaces. Of course, as a tradeoff, obstruction situations can be
handled to a lesser degree.

In this case, scaling up does increase upfront computation, as
the calibration operations cannot be run in parallel anymore – they
have to be run in a series: first, we need to calibrate (i.e., pair) K1
with K2; then, K2 with K3; and so on. At first, it would also
appear that data transformations have to be done in a series (i.e.,
to map data from sensor K3 to K1’s coordinate system, first they
need to be mapped to K2’s system, and then to K1’s). However,
any two consecutive transformations can be combined into a
single, new transformation. Therefore, for each sensor K2 to Kn,
we can pre-compute (i.e., at calibration phase) a single
transformation to convert this sensor’s data to K1’s space. Thus,
the cost of this approach, during regular sensing, is equivalent to
the previous one.

3.5.3 A Mixed Approach
Finally, a combination of the above is possible. In other words,
we may combine several sensors in a group all observing the same
scene (or area), to better handle occlusions and increase data
accuracy in one part of the sensing space. This can be repeated
for different parts of the sensing space (i.e., introduce additional
such groups of sensors all paired together). In-between portions
of the space could then be handled with single sensors paired
sequentially. A careful design could provide for greater accuracy
in certain parts of the space, where such is needed, and lesser
accuracy for less important parts of the space.

In summary, the presented system is flexible enough to handle
different designs / space sensing requirements, for a variety of
installations, with minimal extra computational costs.

4 System Architecture
 Our goal is to facilitate rapid prototyping of new experiences by
creating a pipeline for motion tracking data, based on multiple
Kinect sensors. Our system is an extension of the Kuatro
architecture [9]. It gathers data from a variable number of Kinect
sensors, converts all data to a common coordinate system,
averages data for accuracy, and delivers data to other systems to
generate musical, visual, or other experiences.

 To accomplish this, we utilize a Model-View-Controller
(MVC) architecture consisting of Clients, Views, and a Server
(see Fig. 6). Communication between each module is done via an
API based on the Open Sound Control (OSC) protocol. The
advantage of this approach is that each component may be
developed independently from the others, so artists and
developers can focus on different parts of the system / experience.

Our current implementation is written in CPython for Clients
(due to Kinect API limitations), and Jython for the Server and
Views (to make use of the JythonMusic library, which supports
rapid prototyping and deployment of musical and other
experiences [14]).

In our system, each Client gathers data directly from the Kinect
sensor via the Kinect for Windows SDK 2.0. The Client accesses
skeletal data at a rate of 30 frames-per-second, and compresses
each skeleton into a single OSC message, which is sent to the
Server.

The Server receives data from the Clients, processes it via the
K-Multiscope algorithm, thus converting to a common coordinate
system. As this data model is updated, the Server broadcasts the
updated information to the Views. The Server also includes a
simple GUI, which shows the data flow of all connected Clients,
as well as an interface to control calibration.

Each View receives data from the Server, and acts as the
interface to the user. The Server can communicate with several
Views at once, and, due to the MVC architecture, each View can
approach rendering of data in various ways. Views are specific to
the experience desired and could be acoustic, visual, or other.

4.1 OSC Messaging API
Communication between the various modules of the Kuatro is
facilitated by an OSC messaging API. Modules are distributed

Figure 6: The Kuatro pipeline involves n Clients, which
gather data into packets, and send them to a Server. Server
processes data, and, for each user, consolidates multiple
perspectives into a single / common coordinate system.
Server then repacks and sends common coordinate values to
m Views. Each View interprets data as desired. Directed
connections represent OSC communication.

K-Multiscope MOCO, October 10-12, Tempe, Arizona, USA

over several machines, so messages are sent over the network and
received at registered port addresses.

The following sections describe the message API between the
Clients, Server, and Views. For each message, specific details are
provided about its raison d'être, and the conditions under which it
is generated. This better explains the system architecture and its
processes.

4.1.1 Client-to-Server API
Kuatro Clients may send the following OSC messages to the
Kuatro Server:

• /registerDevice – Registers a new Client to the Server. The
arguments include the IP of the Client to identify it (hereafter
referred to as the Client’s ID) and the type of sensor
connected.

• /newUser – Notifies the Server that a Client has identified a
new user. Because each sensor has limited information, this
notification may mean a user who is already visible to one
Kinect, has been seen by another Kinect in a space of
overlapping perspectives. The arguments include the Client
ID, a unique identifier from 0 to 5 representing the new user
(as each Kinect can track up to 6 unique users), and the XYZ
coordinates of the user’s center of mass.

• /lostUser – Notifies the Server that a Client has lost tracking
on a user. The arguments include the Client ID, and the
user’s identifier.

• /jointCoordinates – A single user’s skeleton, including up to
25 joints’ XYZ coordinates. The arguments include the
Client ID, user identifier, and a joint name, x, y, z, and
tracking confidence for each joint in the skeleton. Individual
joints can be enabled or disabled in the Client.

• /handState – A user’s hands can each be (a) open, (b)
closed, or (c) pointing (called “lasso”), provided they are
being tracked. The arguments include the Client ID, user
identifier, hand (left or right), and the hand’s state.

4.1.2 View-to-Server API
Each View must register with the Kuatro Server using the
following OSC message:

• /registerView – Registers the View with the Kuatro Server
so the Server will begin sending data to it. Arguments
include the IP address of the View and the port at which the
View receives OSC messages.

4.1.3 Server-to-View API
The Kuatro Server may send the following OSC messages to the
Views:

• /newUser – Notifies the View that a new user has been
identified. The Server will only report unique users to the
Views and will not report a new perspective being
established. The arguments include a unique identifier ≥ 0
representing the new user (these are distinct from those
reported by the Clients), and the XYZ coordinates of the
user’s center of mass.

• /lostUser – Notifies the View that a user has been removed,
as there are no Clients tracking it. The only argument is the
user’s identifier.

• /jointCoordinates – A single user’s skeleton, including up to
25 joints’ XYZ coordinates. These coordinates take into
account each sensor’s view of the user, which have been
combined through the K-Multiscope algorithm. The
arguments include the user identifier and a joint name, x, y,
z, and tracking confidence for each joint in the skeleton. This
list will include each joint which is reported by at least one of
the Kinects.

• /handState – The hand state seen by the majority of
perspectives, or the higher state in case of a tie, is reported to
the View. The arguments include the user identifier, hand
(left or right), and the hand’s state.

5 Case Study: Liminal Space
Liminal Space is a piece for cello, motion capture, and interactive
software. It was developed in parallel with this work and
demonstrates our approach to utilizing Kinect sensors via the
Kuatro architecture [9] and JythonMusic [14] for developing
interactive music installations and experiences.

“Liminal Space” was first performed in Limassol, Cyprus, July
2018 (see Fig. 7), as part of the juried musical program of the
Sound and Music Computing conference. The design,
architecture, and technical approach behind this piece are
presented herein for the first time.

The piece’s narrative design explores what happens when the
past – J.S. Bach’s Sarabande from Cello Suite No. 1 in G major
(BWV1007) – meets the present, i.e., movement computing,
stochastic music, and interaction. Through the use of Kinect
sensors, sound spatialization, and algorithmic composition, a new
musical interface is created, between a cellist and a dancer.

The piece has five sections. Each section has predetermined
musical phrases (different sets for different sections). In different

Figure 7: Performance of “Liminal Space” in Limassol, Cyprus
with Erin Leigh Butcheck (dance) and Leslie Jones (cello).
Also, see http://bit.ly/liminalspace2018b.

MOCO, October 10-12, Tempe, Arizona, USA K. Stewart et al.

sections, different movements of the dancer (sometimes the left
hand, sometimes the head, sometimes the right foot) trigger
sounds to play. The dancer knows well what section we are in,
and what movements cause what sounds. She also drives the
transition between sections, through her movements.

Compositionally and choreographically, we find that there is a
fine balance between free expression (i.e., movement) of the
dancer, and her ability to “play” music with her movements, in the
context of this piece. While with the cellist, all her movements
are geared towards fine control of her instrument, with the dancer,
if all movements make or control sound, then she cannot dance
anymore - she a prisoner of her ability (i.e., Midas touch).
Creatively, this introduces an interesting dimension to explore.
How much, or how little (and when)? The decisions we made
can be seen in this video – http://bit.ly/liminalspace2018b .

6 Conclusion
We presented our latest results in the development of a
multiscopic motion tracking system utilizing Kinect 2.0 sensors.
The system incorporates a live calibration component, which
allows to transform skeletal data from Kinects observing the same
or different scenes from various perspectives, into a uniform /
common 3D coordinate system. This allows developing motion
experiences, which incorporate many performers / users in the
same space or different spaces, while reducing obstruction
problems and data errors caused by system confusion (i.e.,
inaccurate tracking).

Future plans include extending the system to incorporate data
from different types of motion and depth sensors, such as
LeapMotion and RealSense cameras. This approach can expand
the design and complexity of future interactive experiences to
include multiple perspectives, sensing strategies, as well as local
and telematic performers, as originally explored in [5].

ACKNOWLEDGMENTS
Funding for this work has been provided in part by the US
National Science Foundation (DUE-1044861 and DUE-1323605),
IBM, and the Niarchos Foundation. David Johnson and Seth
Stoudenmier contributed to the original development of the
Kuatro framework. Leslie Jones (cello), Erin Leigh Butcheck
(dance), Paul Helling (audio processing code), and Timothy Ward
(recording support) contributed to the development and
performance of “Liminal Space”. Timothy Ward contributed to
the design and performance of “Veil”.

 REFERENCES
[1] Sam Amin and Je Burke. 2018. OpenMoves: A System for Interpreting Person-

Tracking Data. In Proceedings of 5th International Conference on Movement
and Computing, Genoa, Italy, June 28–30, 2018 (MOCO), 4 pages.
https://doi.org/10.1145/3212721.3212846

[2] Stylianos Asteriadis, Anargyros Chatzitofis, Dimitrios Zarpalas, Dimitrios S.
Alexiadis, and Petros Daras. 2013. Estimating human motion from multiple
Kinect sensors. In Proceedings of the 6th International Conference on
Computer Vision / Computer Graphics Collaboration Techniques and
Applications (MIRAGE '13). ACM, New York, NY, USA, Article 3, 6 pages.
DOI: https://doi.org/10.1145/2466715.2466727

[3] Seongmin Baek and Myunggyu Kim. 2015. Dance Experience System Using
Multiple Kinects. In International Journal of Future Computer and
Communication vol. 4, no. 1, pp. 45-49. https://doi.org/10.7763/IJFCC.2015.
V4.353

[4] Sebouh-Steve Bardakjian, Serguei A. Mokhov, Miao Song, and Sudhir P.
Mudur. 2016. ISSv3: from human motion in the real to the interactive
documentary film in AR/VR. In SIGGRAPH ASIA 2016 Virtual Reality meets
Physical Reality: Modelling and Simulating Virtual Humans and
Environments (SA '16). ACM, New York, NY, USA, Article 1, 5 pages. DOI:
https://doi.org/10.1145/2992138.2992139

[5] Christopher Benson, Bill Manaris, Seth Stoudenmier, and Timothy Ward. 2016.
SoundMorpheus: A Myoelectric-Sensor Based Interface for Sound
Spatialization and Shaping. In Proceedings of the 16th International
Conference on New Interfaces for Musical Expression (NIME 2016), Brisbane,
Australia, Jul. 2016.

[6] Kai Berger, Kai Ruhl, Yannic Schroeder, Christian Bruemmer, Alexander
Scholz, and Marcus Magnor. 2011. Markerless Motion Capture using multiple
Color-Depth Sensors. Vision, Modeling, and Visualization. The Eurographics
Association. http://dx.doi.org/10.2312/PE/VMV/VMV11/317-324

[7] Luke Dahl and Federico Visi. 2018. Modosc: A Library of Real-Time
Movement Descriptors for Marker-Based Motion Capture. In Proceedings of
ACM MOCO conference (MOCO’18). ACM, New York, NY, USA, 4 pages.
https://doi.org/10.475/123_4

[8] Zhiquan Gao, Yao Yu, Yu Zhou, and Sidan Du. 2015. Leveraging Two Kinect
Sensors for Accurate Full-Body Motion Capture. In Sensors. 15, 9 (Sep. 2015),
24297–24317. https://doi.org/10.3390/s150924297

[9] David Johnson, Bill Manaris, Yiorgos Vassilandonakis, and Seth Stoudenmier,
Kuatro: A Motion-Based Framework for Interactive Music Installations. In
Proceedings of the 2014 International Computer Music Conference, Athens,
Greece, Sep. 2014.

[10] Yejin Kim, Seongmin Baek, and Byung-Chull Bae. 2017. Motion Capture of
the Human Body Using Multiple Depth Sensors. ETRI Journal, 39: 181-190.
https://doi.org/10.4218/etrij.17.2816.0045

[11] Alexandros Kitsikidis, Kosmas Dimitropoulos, Stella Douka and Nikos
Grammalidis, Dance Analysis using Multiple Kinect Sensors. In VISAPP2014,
Lisbon, Portugal, 5-8 January 2014.

[12] Bill Manaris and Andrew R. Brown, Making Music with Computers: Creative
Programming in Python, Chapman & Hall/CRC Textbooks in Computing, pp.
502, May 2014.

[13] Bill Manaris, David Johnson, and Malory Rourk, “Diving into Infinity: A
Motion-Based, Immersive Interface for M.C. Escher’s Works“, 21st
International Symposium on Electronic Art (ISEA 2015), Vancouver, Canada,
Aug. 2015.

[14] Bill Manaris, Pangur Brougham-Cook, Dana Hughes, and Andrew R. Brown,
JythonMusic: An Environment for Developing Interactive Music Systems.
In Proceedings of the 18th International Conference on New Interfaces for
Musical Expression (NIME 2018), Blacksburg, VA, Jun. 2018.

[15] Microsoft. 2014. Kinect for Windows SDK 2.0: Features. Retrieved March 30,
2019 from https://docs.microsoft.com/en-us/previous- versions/windows/kinect/
dn782025(v%3dieb.10).

[16] Serguei A. Mokhov, Amandeep Kaur, Mehak Talwar, Keerthana Gudavalli,
Miao Song, and Sudhir P. Mudur. 2018. Real-time Motion Capture for
Performing Arts and Stage. In Proceedings of SIGGRAPH ’18 Educator’s
Forum. ACM, New York, NY, USA, 2 pages.
https://doi.org/10.1145/3215641.3215642

[17] Sungphill Moon, Youngbin Park, Dong Wook Ko, and Il Hong Suh. Multiple
Kinect Sensor Fusion for Human Skeleton Tracking Using Kalman Filtering.
In International Journal of Advanced Robotic Systems, (March 2016).
https://doi.org/10.5772/62415

[18] Tim Murray-Browne and Mark Plumbley. 2014. Harmonic Motion: A Toolkit
for Processing Gestural Data for Interactive Sound. In Proceedings of the
International Conference on New Interfaces for Musical Expression (NIME),
2014-06-30. Goldsmiths, University of London, UK.

