
K-Multiscope: Combining Multiple Kinect Sensors  
into a Common 3D Coordinate System  

Kyle Stewart 
 Computer Science Department  

 College of Charleston 
 Charleston, SC, USA  
 stewartkh@g.cofc.edu 

Bill Manaris 
Computer Science Department  

 College of Charleston 
 Charleston, SC, USA 
 manarisb@cofc.edu  

Tobias Kohn 
 Computer Science and Technology 

 University of Cambridge 
 Cambridge, UK 

 tobias.kohn@cl.cam.ac.uk 

	

ABSTRACT 
We present a method for combining data from multiple Kinect 
motion-capture sensors into a common coordinate system. Kinect 
sensors offer a cheaper, potentially less accurate alternative for 
full-body motion tracking. By incorporating multiple sensors into 
a multiscopic system, we address potential accuracy and 
recognition flaws caused by individual sensor conditions, such as 
occlusions and space limitations, and increase the overall 
accuracy of skeletal data tracking. We merge data from multiple 
Kinects using a custom calibration algorithm, called  
K-Multiscope.  K-Multiscope generates an affine transform for 
each of the available sensors, and thus combines their data into a 
common 3D coordinate system. We have incorporated this 
algorithm into Kuatro, a skeletal data pipeline designed earlier to 
simplify live motion capture for use in music interaction 
experiences and installations.  In closing, we present Liminal 
Space, a live duet performance for cello and dance, which utilizes 
the Kuatro system to transform dance movements into music. 

CCS CONCEPTS 
• Computing methodologies → Motion capture; Motion pro- 
cessing; • Human-centered computing → Interaction design; • 
Applied computing → Performing arts; 
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1 Introduction 
In the development of interfaces for expressive musical 
interaction and artistic creation, markerless motion capture offers 
the opportunity for free-form, full-body experiences, sonifying 
motion without requiring the user to wear a MoCap suit. Users 
and performers can freely walk in and out of the space, without 
the need for special equipment, and even serendipitously discover 
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Figure 1: The Veil (2017) is an experiment in musical group 
dynamics (i.e., spontaneous musical interaction and 
collaboration among performers), presented at the Music 
Library of Greece, in Dec. 2017. 
 

 
Figure 2: Liminal Space (2018) is an aleatoric piece for 
cello, motion capture, and interactive software motivating 
this work, discussed in more detail later in this paper.  Also 
see http://bit.ly/liminalspace2018b . 
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the experience and decide to engage in it at a moment’s notice.  
This provides wonderful opportunities for artistic creation, 
installation design, and new movement + technology explorations. 
Figures 1 and 2 show experiences designed with earlier versions 
of our system, and motivating the approach presented herein. 

The Kinect 2.0 sensor offers a cheap, mobile, and markerless 
solution, with notable accuracy, which exceeds that of the original 
v1.0, and will be soon replaced by version 3.0 (announced 
recently). With the provided Microsoft Kinect for Windows SDK 
2.0, a single Kinect sensor can process infrared depth data into 
skeletons made of 25 unique joints, for up to six users at a time 
[15].  Individual sensors, however, are prone to producing 
erroneous data, due to the occlusion of body parts, having 
multiple users in the same space, and other conditions. Even in a 
simple scenario, such as a user facing sideways, the sensor may 
lose tracking for entire limbs.  

Our approach is to improve upon the original sensor, by using 
multiple sensors to capture users from different sides, thus 
eliminating occlusions and producing redundancy in skeletal data.  
This can be used to detect and average out noisy data, as well as 
cover larger areas than that of a single sensor.   

Handling data captured by these sensors can be a cumbersome 
process.  Rather than create custom, one-of-a-kind solutions for 
each motion-controlled instrument or art installation (as we have 
done before, e.g. [9, 13]), we decided, driven by the desire to 
generalize, to design our own system to route, organize, store, and 
otherwise handle motion-tracking data.  An early prototype of this 
system was utilized in Liminal Space (see Fig. 2).  Liminal Space 
is described more fully later in this paper. 

 Our framework unifies data from multiple sources, which 
capture skeletal data (full-body or otherwise, such as Kinect, 
LeapMotion, etc.), by creating a common 3D coordinate space 
that combines, and updates all data contributed by different 
sensors in real time. This general solution for 𝑛 ∈ {1, 2, 3,… } 
sensors offers increased accuracy and area coverage / range over a 
single sensor, and can be easily adapted to drive a multitude of 
local and telematic applications, in a way that is modular and 
allows for rapid prototyping of music interactive installations, and 
other experiences.  In the next section, we go over earlier, similar 
systems and approaches, and discuss how our approach is 
different to combining multi-sensor data for creating motion-
tracking applications and experiences. 

2 Background 
Employing multiple depth sensors in pursuit of improving overall 
accuracy of motion tracking and pose estimation is a subject 
which has significant research precedent. Due to the ease of 
access to the Kinect sensor as an entry point into the field, there 
have been several attempts at solving the occlusion problem and 
achieving increased accuracy by consolidating the data of multiple 
Kinect sensors positioned around a user, especially in recent 
years. 

Berger et al. explore a technique for calibrating multiple Kinect 
v.1.0 sensors using their RGB cameras. They find that a 

reflective-diffuse checkerboard calibration approach is better in 
calibrating multiple Kinect v1.0 depth and color sensors, when 
compared to a point light system [6]. Their solution, using as 
many as four Kinects, was able to overcome occlusion by viewing 
the user from multiple angles, resulting in a point cloud which 
could be mapped to a three-dimensional model. 

Asteriadis et al. bring the methods of [6] into motion 
estimation, applying the checkerboard calibration technique 
followed by Singular Value Decomposition on the resulting 
matrix [2]. They apply the final transformation matrix on skeletal 
data to some success. 

Baek and Kim compare live motion to that stored in a database 
for dance instruction, combining 4 Kinect v1.0s [3]. They use a 
custom calibration system based on the normal vector derived 
from the user’s hip joints and employ a spline interpolation to 
coordinate asynchronous data delivery from the sensors. 

Gao et al. utilize two Kinect sensors for greater accuracy in 
full-body pose estimation [8]. Rather than operating on skeletal 
data, they work with depth data directly and make use of the 
Iterative Closest Point (ICP) algorithm using the two point clouds 
gathered from each Kinect. The ICP algorithm attempts to find the 
transformation matrix which translates a source point cloud to the 
space of a target point cloud by matching two nearby points as 
closely as possible, then iterating until an accuracy threshold is 
reached. 

Kitsikidis et al. work, again, in pose estimation, but make 
direct use of the Kinect’s skeletal data [11]. By applying the ICP 
algorithm on skeletal data, considering joint confidence as weight, 
and prescreening to prevent errant sudden motions, they were able 
to combine data from several Kinects with measurable success. 
Their solution utilized Kinect v1.0 and had trouble when users 
failed to directly face a given sensor. 

Kim et al. combine 8 Kinects using the ICP algorithm, once 
more with depth data [10]. They find an 85% accuracy in 
capturing dynamic movement when compared with the Xsens 
inertial-based wearable capture system as a control. 

Moon et al. pursue a system of multiple Kinects joined by 
applying Kalman Filtering, where each joint can be evaluated for 
reliability [17]. Their system performs better than a single sensor, 
through simple averaging of multiple sensors’ data when 
occlusions are present. 

Murray-Browne and Plumbley approach the issue of handling 
motion-tracking data for use in interactive sound applications 
[18]. Their system is tailored for capturing musically meaningful 
features via gesture recognition.  They focus on ease-of-use, 
modularity, and rapid prototyping, among others, utilizing a visual 
dataflow programming language similar to Max and PureData. 

Mokhov and Bardakjian develop the Illimitable Space System 
(ISS), which captures motion data from a Kinect or similar 
sensors and facilitates using the data to enhance live performance 
with visuals [16]. The later ISSv3 brings the system into the 
augmented and virtual reality landscape [4]. 

Amin and Burke work in a more general context to create a 
toolset for interpreting motion data and movement patterns [1]. 
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They distinguish the capture of data from its interpretation and 
focus on deriving meaning from the data. 

Similarly, Dahl and Visi work with marker-based motion 
capture systems and develop Max abstractions to synthesize 
meaningful representations and qualities of motion [7]. 

Our approach differs from the above in that it utilizes skeletal 
data captured from Kinect 2.0 (or other) sensors, positioned 
arbitrarily in space (as long as the infrared cameras do not “blind” 
one another, i.e., by directly facing each other).  These sensors are 
paired, in different possible configurations, with a main sensor, 
whose coordinate system is used as the main, or reference 
coordinate system.  Our approach works directly with skeletal 
data for simplicity (i.e., no point cloud data), and utilizes a 
calibration technique explained in the next section to derive affine 
transforms to map and merge data into a single coordinate space.   

3 System Calibration 
As mentioned earlier, our approach, called K-Multiscope, converts 
skeletal data captured from different perspectives (i.e., by 
different Kinects or other sensors) to a single perspective.  For 
simplicity of presentation, we describe a 2D representation of the 
problem setup, using a pair of Kinects.  Our technique, however, 
works for with an arbitrary number of chained sensors in 3D data.  

Fig. 3 shows a birds-eye view of a 2D setting for two such 
Kinects, 𝐾! and 𝐾!.  In order for this approach to work, we need 
to translate data from one Kinect’s coordinate system to the 
corresponding data in the other Kinect’s coordinate system.  This 
translation between coordinate systems is called an affine 
transformation (i.e., a mapping of coordinate points). 

Since the Kinects can be placed anywhere in the space to be 
captured, we cannot anticipate a priori what the affine 
transformation will be – it needs to be discovered / computed at 
setup time. We have explored two ways to perform this 
calibration.   

The first approach utilizes linear regression to derive an affine 
transformation between pairs of Kinects, 𝐾! and 𝐾!.  The second 
approach utilizes a genetic algorithm to evolve the affine 
transformation.  Both ways are explained below.  We then 
evaluate the results from each approach, against sets of actual 
data, to determine which performs better.  

As mentioned earlier, this stitching technique can be 
generalized by creating a chain of Kinect pairs (e.g., K1 and K2, 
K2 and K3, K3 and K4, and so on), and converting between 
coordinate systems, until all data are in the same coordinate 
system (e.g., the K1 coordinate system). 

3.1 Affine Transformation between Kinects 
Our approach works in 3D space.  This section explains the affine 
transformation in 2D space, for simplicity.  In order to convert 
data between two Kinects, we need to find:  

• the common center, 𝐶, that the two Kinects are seeing, and 

• the angle of rotation, 𝜑, relative to this common center (see 
Fig. 3).  

The angle of rotation 𝜑 around center 𝐶 can be written using a 
2×2 matrix 𝐴! as follows (𝑃! stands for the point 𝑃 as seen from 
the left Kinect 𝐾!, and 𝑃! is the same point as seen from 𝐾!): 

𝐶𝑃! =
cos (𝜑) −sin (𝜑)
sin (𝜑) cos (𝜑) ∙ 𝐶𝑃! 

The vectors 𝐶𝑃 can also be written as 𝑃 − 𝐶, yielding: 

𝑃! = 𝐴 ∙ 𝑃! + (𝐶 − 𝐴 ∙ 𝐶) 

We have thus written the rotation around 𝐶 using a matrix 𝐴 
and a translation vector 𝑏 = 𝐶 − 𝐴 ∙ 𝐶 that corrects for the actual 
center of rotation. The vector 𝑏  also captures the different 
distances of the two Kinects from the common center 𝐶. 

Any rotation can thus be expressed as an affine transformation 
with a matrix 𝐴 and a translation vector 𝑏 as: 

𝑣′ =  𝐴 ∙ 𝑣  +  𝑏 

This works similarly for 3D space. During calibration, we need 
to calculate estimates for rotation matrix 𝐴 and translation vector 
𝑏.  

Skeletal data from each Kinect may contain errors.  In other 
words, having two Kinects measuring the same sets of movements 
from different angles reveals inaccuracies in the Kinect internal 
measuring system.  As it turns out, points 𝑣, as measured by each 
Kinect, are approximations derived by the learning model inside 
each Kinect, which converts a 2D depth point cloud to skeletal 
data.  Given the user’s orientation in the space, at different times, 
we have observed that each 𝑣 and 𝑣! may be slightly off.  We deal 
with this issue through averaging of data points (once converted to 
a single coordinate system).  This, of course, may affect 
calibration accuracy. Since we expect that most of the time a 
Kinect provides reliable data, the more Kinects are added into a 
scene, the more accurate this averaging approach becomes.  

 
 
Figure 3: Two Kinects 𝑲𝑳 and 𝑲𝑹 looking at a scene with 
two points and a common center 𝑪 (in the middle). Left and 
right is the situation as seen from either Kinect alone. The 
task of calibration is to find the coordinates of the center 𝑪 
as well as the angle of rotation 𝝋, so that the two individual 
images on both sides combine to the common image in the 
middle. 
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3.2  Linear Regression Algorithm 
Our first approach uses linear regression to calculate the affine 
transformation between two Kinects.  At any given time, we take 
the skeletal joints coming from two Kinects and combine the 
joints from each skeleton to matrices 𝑉  and 𝑉′ , where each 
column represents the coordinates of one joint, relative to the 
skeleton's center of gravity. (Centering the points around a center 
of gravity eliminates the need for a translation 𝑏). Given that the 
Kinect data label joints as head, left-hand, right-elbow, etc., we 
can easily pair respective joints 𝑣 and 𝑣′ from two Kinects. 

 By multiplying 𝑉 with its transpose 𝑉!, we average part of the 
errors out, and get an invertible matrix 𝑉 ∙ 𝑉!. If we assume that 
the errors in the measurements are completely random and not 
biased, then the errors are likely to partially cancel each other out 
in an expression like 𝑣! + 𝑣! + 𝑣! . Multiplying 𝑉  by 𝑉!  has 
exactly the effect of replacing each column vector 𝑣 in 𝑉 by such 
a sum (each column using a different combination of vectors) and 
reduces error. 

Finally, the estimators 𝐴 and 𝑏 are given by: 

𝐴  =  𝑉! ∙ 𝑉! ∙ 𝑉 ∙ 𝑉! !!, 𝑏 = 𝑉′ − 𝐴 ∙ 𝑉 

Aggregating all joint measurements from two Kinects as a list 
of tuples 𝑣! , 𝑣!! , we then get the error 𝜀 for an 𝐴 and 𝑏 as: 

𝜀!,! =  
1
𝑛

𝐴 ∙ 𝑣! + 𝑏 − 𝑣!′
!

!

!!!

 

As each measured skeleton yields estimates 𝐴 and 𝑏, we take the 
weighted average. Specifically, for each 𝐴, 𝑏 , we take the 
corresponding 1 / 𝜀!,! as weight, so that those combinations of 
𝐴, 𝑏 that best describe the data contribute slightly more to the 
overall estimates. 

Note that the error 𝜀!,! above is in fact the well-known sum of 
squares. Indeed, finding the coefficients 𝐴  and 𝑏  in the affine 
transformation 𝑣′ =  𝐴 ∙ 𝑣  +  𝑏 is a multivariate linear regression 
problem, which is commonly written with a 4×4 matrix 𝑨 that 
includes both the rotation matrix 𝐴  as well as the translation 
vector 𝑏. 

As mentioned earlier, during our calibration runs we found that 
the skeletal data from the Kinects has systematic bias. This 
introduced an additional scaling factor into the matrix 𝐴  (see 
above).   To counteract this, we introduced a rescaling step into 
our calculations, making sure that det(𝐴) = 1, and eliminated 
outliers where such distances differ by more than 10 centimeters. 

3.3 Genetic Algorithm 
Our second approach uses a genetic algorithm (GA) to calculate 
the affine transformation (i.e., rotation matrix and translation 
vector, 𝐴 and 𝑏, respectively).  In practice, this approach is very 
successful as it quickly converges to a solution, given a set of 
simultaneous data from two Kinects, K1 and K2. 

We have experimented with various GA configurations.  We 
utilize a genotype of 3 elements, the first element being the 

rotation angle 𝜑  and the other two elements comprise the 
translation vector.  Since the two Kinects are already set up on the 
same plane, for efficiency, we solve for 2D space (although 
solving for 3D space is similar).  

Currently, we use a population of 200 individuals, which we 
evolve for 250 epochs (genesis, crossover, mutation, and fitness 
calculation), as follows: 
• Mutation: the mutation operation used adds or subtracts a 

small random displacement to each element in the gene, 
while ensuring that values remain within appropriate limits.   

• Crossover: the crossover operation takes two parents and 
swaps the rotation angle 𝜑 between them (without changing 
the translation vector).  Thus, new possibilities emerge. 

• Fitness Function: to calculate fitness, we convert each 
genotype to the corresponding rotation matrix and translation 
vector.  Then, we use this affine transformation to convert 
data from Kinect K2 to Kinect K1’s coordinate space.  We 
calculate fitness via the mean squared error between the two 
data sets.  The closer the two data sets are, the higher the 
fitness. 

This approach can derive a highly accurate estimate of the 
affine transformation, for a pair of Kinects, within a few seconds 
on a regular laptop (i.e., MacBook Pro, 2.8GHz i7).  In particular, 
Figure 4 shows how quickly the genetic algorithm converges over 
a series of runs.  In most cases, the evolved solution’s fitness is 
very high (i.e., > 0.9) within the first few generations. 

In the next section, we compare the quality of affine 
transformations derived by the two approaches. 

3.4 Evaluation 

This section compares the two techniques presented above, which 
produce an affine transformation to best convert data between the 
coordinate spaces of two Kinects. 

Our experiment has two Kinect sensors placed facing a 
common space (as in Fig. 3) and containing a single user.  We 

 
 
Figure 4: Fitness convergence of the genetic algorithm approach 
over 20 runs.  The line chart indicates the average convergence 
across all runs.  The area chart indicates the 95% confidence 
interval. 
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arbitrarily select one sensor as the primary, and the other as the 
secondary. Both sensors face parallel to the floor at the same 
height. We recorded live Kinect skeletal data of the user’s 
movement producing several data sets.   

From the first data set, we derive an affine transformation 
using each of the above methods.  

In order to remove timing discrepancies between the two 
Kinects, we search each data set and select pairs of skeletons (one 
from each Kinect sensor) that arrived almost simultaneously 
(within a fraction of a second). Hundreds of such pairs were 
selected.  

For each of these pairs, we apply each affine transformation to 
the secondary Kinect’s skeleton, creating two versions in the 
primary space, the original, unaltered primary data, and the 
transformed secondary data. We calculate the mean squared error 
between the two data sets (which is the same as the fitness 
function used in the GA approach).  We plot the resulting fitness 
scores (see Fig. 5). 

Data sets A and B contain movement of the user across the 
floor throughout the space shared by both sensors.  In data set C, 
the user remains in place, and only moves his arms. Data set D 
combines all above movements, i.e., the user moves throughout 
the floor space while simultaneously moving his arms. 

Our evaluation results show that the fitness of the genetic 
algorithm solution remains close to 1 throughout all data sets.  On 
the other hand, the fitness of the affine transformation created via 
linear regression varies significantly (between 0.84 and 1) within 
any given data set.  This suggests that the generic algorithm 
approach is much better / far more accurate.   

Finally, not only the solution derived by the genetic algorithm 
is pretty accurate, but also, as seen in the previous section (Fig. 4), 
it gets discovered very quickly.  This means we could be running 
the error-checking algorithm continuously in the background, and, 
if at some point the error drastically increases (i.e., one of the 
sensors was moved, accidentally or otherwise), we could re-run 
the calibration algorithm automatically to update the affine 
transformation, as needed.  This further increases the robustness 
of the presented approach. 

3.5 Scaling up to More Sensors 

This section describes how our approach scales up to more than 
two sensors. Adding more sensors is straightforward. It involves 
utilizing the calibration method to pair each new sensor, say K3, 
with an existing one (K1 or K2).   

3.5.1 Capturing Single Area from Many Viewing Angles 
One possibility is to have all sensors oriented so that they observe 
part of the same scene (or area) with the main sensor.  In order 
for this to work, all additional sensors, K2 to Kn, have to be 
paired directly to the main one, K1, i.e., to directly transform data 
from these sensors to K1’s coordinate system.  This way, all 
sensors can be calibrated as described above.   

The advantage of this approach is that such a setup can handle 
multiple degrees of occlusion, i.e., where 3 or more people line up 
partially and obstruct each other, from the point of view of the 
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Figure 5: The results of evaluation, testing fitness over time, for 
the genetic algorithm (top) and linear regression (bottom) 
solutions, respectively, on data sets A through D.  Time (x-axis) 
is represented in data frame units (1/30 sec). 
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main (or other) sensor. Another advantage is that scaling up does 
not add any new computational costs, as the calibration and 
transformation operations can run in parallel, utilizing each Kinect 
Client’s separate processing power (see section 4 below). 

3.5.2  Capturing Extended Area from Single Viewing Angles 
Another possibility is to spread sensors apart to create a larger 
sensing area.  In order for this to work, each new sensor, Kn+1, 
has to be oriented so that it observes part of the same scene (or 
area) with al least one other sensor, Kn (where n ranges from 1 to 
as many sensors desired).  Again, this allows each new sensor to 
be calibrated with the method described above, so that all data 
ends up in the same coordinate system (i.e., K1’s coordinate 
system, but extended beyond what K1 can individually sense).   

The advantage of this approach is that it can handle arbitrarily 
large spaces. Of course, as a tradeoff, obstruction situations can be 
handled to a lesser degree.   

In this case, scaling up does increase upfront computation, as 
the calibration operations cannot be run in parallel anymore – they 
have to be run in a series: first, we need to calibrate (i.e., pair) K1 
with K2; then, K2 with K3; and so on.  At first, it would also 
appear that data transformations have to be done in a series (i.e., 
to map data from sensor K3 to K1’s coordinate system, first they 
need to be mapped to K2’s system, and then to K1’s).  However, 
any two consecutive transformations can be combined into a 
single, new transformation.  Therefore, for each sensor K2 to Kn, 
we can pre-compute (i.e., at calibration phase) a single 
transformation to convert this sensor’s data to K1’s space. Thus, 
the cost of this approach, during regular sensing, is equivalent to 
the previous one.   

3.5.3 A Mixed Approach 
Finally, a combination of the above is possible.  In other words, 
we may combine several sensors in a group all observing the same 
scene (or area), to better handle occlusions and increase data 
accuracy in one part of the sensing space.  This can be repeated 
for different parts of the sensing space (i.e., introduce additional 
such groups of sensors all paired together).  In-between portions 
of the space could then be handled with single sensors paired 
sequentially.  A careful design could provide for greater accuracy 
in certain parts of the space, where such is needed, and lesser 
accuracy for less important parts of the space. 

In summary, the presented system is flexible enough to handle 
different designs / space sensing requirements, for a variety of 
installations, with minimal extra computational costs. 

4 System Architecture 
 Our goal is to facilitate rapid prototyping of new experiences by 
creating a pipeline for motion tracking data, based on multiple 
Kinect sensors. Our system is an extension of the Kuatro 
architecture [9].  It gathers data from a variable number of Kinect 
sensors, converts all data to a common coordinate system, 
averages data for accuracy, and delivers data to other systems to 
generate musical, visual, or other experiences.  

 To accomplish this, we utilize a Model-View-Controller 
(MVC) architecture consisting of Clients, Views, and a Server 
(see Fig. 6). Communication between each module is done via an 
API based on the Open Sound Control (OSC) protocol. The 
advantage of this approach is that each component may be 
developed independently from the others, so artists and 
developers can focus on different parts of the system / experience.   

Our current implementation is written in CPython for Clients 
(due to Kinect API limitations), and Jython for the Server and 
Views (to make use of the JythonMusic library, which supports 
rapid prototyping and deployment of musical and other 
experiences [14]). 

In our system, each Client gathers data directly from the Kinect 
sensor via the Kinect for Windows SDK 2.0.  The Client accesses 
skeletal data at a rate of 30 frames-per-second, and compresses 
each skeleton into a single OSC message, which is sent to the 
Server. 

The Server receives data from the Clients, processes it via the 
K-Multiscope algorithm, thus converting to a common coordinate 
system. As this data model is updated, the Server broadcasts the 
updated information to the Views. The Server also includes a 
simple GUI, which shows the data flow of all connected Clients, 
as well as an interface to control calibration. 

Each View receives data from the Server, and acts as the 
interface to the user. The Server can communicate with several 
Views at once, and, due to the MVC architecture, each View can 
approach rendering of data in various ways. Views are specific to 
the experience desired and could be acoustic, visual, or other.  

4.1 OSC Messaging API 
Communication between the various modules of the Kuatro is 
facilitated by an OSC messaging API. Modules are distributed 

 
 
Figure 6: The Kuatro pipeline involves n Clients, which 
gather data into packets, and send them to a Server.  Server 
processes data, and, for each user, consolidates multiple 
perspectives into a single / common coordinate system.  
Server then repacks and sends common coordinate values to 
m Views. Each View interprets data as desired. Directed 
connections represent OSC communication. 
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over several machines, so messages are sent over the network and 
received at registered port addresses.  

The following sections describe the message API between the 
Clients, Server, and Views.  For each message, specific details are 
provided about its raison d'être, and the conditions under which it 
is generated.  This better explains the system architecture and its 
processes.  

4.1.1 Client-to-Server API 
Kuatro Clients may send the following OSC messages to the 
Kuatro Server: 

• /registerDevice – Registers a new Client to the Server. The 
arguments include the IP of the Client to identify it (hereafter 
referred to as the Client’s ID) and the type of sensor 
connected. 

• /newUser – Notifies the Server that a Client has identified a 
new user. Because each sensor has limited information, this 
notification may mean a user who is already visible to one 
Kinect, has been seen by another Kinect in a space of 
overlapping perspectives. The arguments include the Client 
ID, a unique identifier from 0 to 5 representing the new user 
(as each Kinect can track up to 6 unique users), and the XYZ 
coordinates of the user’s center of mass. 

• /lostUser – Notifies the Server that a Client has lost tracking 
on a user. The arguments include the Client ID, and the 
user’s identifier. 

• /jointCoordinates – A single user’s skeleton, including up to 
25 joints’ XYZ coordinates. The arguments include the 
Client ID, user identifier, and a joint name, x, y, z, and 
tracking confidence for each joint in the skeleton. Individual 
joints can be enabled or disabled in the Client. 

• /handState – A user’s hands can each be (a) open, (b) 
closed, or (c) pointing (called “lasso”), provided they are 
being tracked. The arguments include the Client ID, user 
identifier, hand (left or right), and the hand’s state. 

4.1.2 View-to-Server API 
Each View must register with the Kuatro Server using the 
following OSC message: 

• /registerView – Registers the View with the Kuatro Server 
so the Server will begin sending data to it. Arguments 
include the IP address of the View and the port at which the 
View receives OSC messages. 

4.1.3 Server-to-View API 
The Kuatro Server may send the following OSC messages to the 
Views: 

• /newUser – Notifies the View that a new user has been 
identified. The Server will only report unique users to the 
Views and will not report a new perspective being 
established. The arguments include a unique identifier ≥ 0 
representing the new user (these are distinct from those 
reported by the Clients), and the XYZ coordinates of the 
user’s center of mass. 

• /lostUser – Notifies the View that a user has been removed, 
as there are no Clients tracking it. The only argument is the 
user’s identifier. 

• /jointCoordinates – A single user’s skeleton, including up to 
25 joints’ XYZ coordinates. These coordinates take into 
account each sensor’s view of the user, which have been 
combined through the K-Multiscope algorithm. The 
arguments include the user identifier and a joint name, x, y, 
z, and tracking confidence for each joint in the skeleton. This 
list will include each joint which is reported by at least one of 
the Kinects. 

• /handState – The hand state seen by the majority of 
perspectives, or the higher state in case of a tie, is reported to 
the View. The arguments include the user identifier, hand 
(left or right), and the hand’s state. 

5 Case Study: Liminal Space 
Liminal Space is a piece for cello, motion capture, and interactive 
software.  It was developed in parallel with this work and 
demonstrates our approach to utilizing Kinect sensors via the 
Kuatro architecture [9] and JythonMusic [14] for developing 
interactive music installations and experiences.   

“Liminal Space” was first performed in Limassol, Cyprus, July 
2018 (see Fig. 7), as part of the juried musical program of the 
Sound and Music Computing conference. The design, 
architecture, and technical approach behind this piece are 
presented herein for the first time. 

The piece’s narrative design explores what happens when the 
past – J.S. Bach’s Sarabande from Cello Suite No. 1 in G major 
(BWV1007) – meets the present, i.e., movement computing, 
stochastic music, and interaction. Through the use of Kinect 
sensors, sound spatialization, and algorithmic composition, a new 
musical interface is created, between a cellist and a dancer. 

The piece has five sections.  Each section has predetermined 
musical phrases (different sets for different sections).  In different 

 
 
Figure 7: Performance of “Liminal Space” in Limassol, Cyprus  
with Erin Leigh Butcheck (dance) and Leslie Jones (cello). 
Also, see http://bit.ly/liminalspace2018b.  
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sections, different movements of the dancer (sometimes the left 
hand, sometimes the head, sometimes the right foot) trigger 
sounds to play.  The dancer knows well what section we are in, 
and what movements cause what sounds.  She also drives the 
transition between sections, through her movements. 

Compositionally and choreographically, we find that there is a 
fine balance between free expression (i.e., movement) of the 
dancer, and her ability to “play” music with her movements, in the 
context of this piece.  While with the cellist, all her movements 
are geared towards fine control of her instrument, with the dancer, 
if all movements make or control sound, then she cannot dance 
anymore - she a prisoner of her ability (i.e., Midas touch).  
Creatively, this introduces an interesting dimension to explore.  
How much, or how little (and when)?   The decisions we made 
can be seen in this video – http://bit.ly/liminalspace2018b . 

6 Conclusion 
We presented our latest results in the development of a 
multiscopic motion tracking system utilizing Kinect 2.0 sensors.  
The system incorporates a live calibration component, which 
allows to transform skeletal data from Kinects observing the same 
or different scenes from various perspectives, into a uniform / 
common 3D coordinate system.  This allows developing motion 
experiences, which incorporate many performers / users in the 
same space or different spaces, while reducing obstruction 
problems and data errors caused by system confusion (i.e., 
inaccurate tracking).  

Future plans include extending the system to incorporate data 
from different types of motion and depth sensors, such as 
LeapMotion and RealSense cameras.  This approach can expand 
the design and complexity of future interactive experiences to 
include multiple perspectives, sensing strategies, as well as local 
and telematic performers, as originally explored in [5]. 
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