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Abstract

Purpose: This report uses the principles of geometrical optics to compute the

optical point-spread function (PSF) from the wavefront error function.

Method: Step 1 uses Prentice’s rule to determine the spatial form of the PSF

established by tracing a field of rays from the eye’s exit pupil to the retina. Ray

vergence is related to the slope of the wavefront error function, which enables the

mapping of light rays to produce a retinal ‘spot diagram’. Step 2 completes the

PSF by assigning an irradiance value to each ray in the spot diagram.

Results and Conclusions: Spot irradiance is inversely proportional to the Gaussian

curvature (i.e. the product of principal curvatures) of each local region of wave-

front error surface centered on the corresponding ray. The Gaussian curvature, in

turn, may be computed as the determinant of the vergence error matrix associated

with each point on the wavefront error surface. Elements of the vergence error

matrix consist of sums and differences of the local power vector components M,

J0 and J45. This method is shown to be equivalent to published derivations of the

geometric PSF using the Jacobian of the ray mapping function and equivalent also

to the Hessian of the wavefront error function. Examples are presented for the

familiar cases of spherical and astigmatic blur as well as for higher order aberra-

tions and the formation of caustics in the retinal image.

Introduction

The optical point-spread function (PSF) is a fundamental

measure of the imaging quality of an eye that can be reduced

to a variety of single-number metrics of retinal image quality

useful for determining the eye’s refractive error, state of

accommodation, optical limits to visual performance, and

optical performance of contact lenses, inter-ocular lenses,

and corneal refractive surgery.1 Calculation of the eye’s PSF

from wavefront aberration measurements is typically based

on the principles of physical optics, which include the effects

of diffraction and interference of light.2 On the other hand,

most practical problems in clinical and visual optics are

solved using the simpler methods of geometrical optics. It

seems likely, therefore, that improved understanding of the

optical basis for computing the geometric PSF will benefit

many aspects of clinical practice and applied vision research.

Geometric optics uses rays to describe the propagation of

light through optical systems to form images. The example

in Figure 1 illustrates rays of light from a distant point

source being refracted by an ideal lens of power F, which

causes all the rays to intersect at a common focal point P

located at an axial distance d = 1/F from the lens. Accord-

ing to Prentice’s rule,3 refraction of an isolated ray dis-

placed by amount r from the optical axis causes the ray to

deviate by angle D = rF. Since the ray is parallel to the opti-

cal axis in this example, D is also the angle between the

refracted ray and the optical axis. Assuming small angles,

D = tan(D) = r/d, and noting that vergence V of the ray

emerging from point Q in Figure 1 is defined by the inverse

of the distance d, it follows that the vergence V of the

emerging ray is 1/d = D/r.
We conceive of wave propagation as motion in a direc-

tion perpendicular to the wave and thus in the direction

indicated by rays drawn normal to the wavefront surface.

Thus ray vergence as defined above may also be interpreted

as wavefront vergence at the point Q of intersection of

wavefront and ray. A line tangent to the wavefront at Q is
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also perpendicular to the ray emerging from Q and there-

fore, according to the geometry of the diagram, D is also

the angle between this tangent line and a reference plane

(e.g. the exit pupil) perpendicular to the optical axis. For

this reason D can be interpreted as the slope of the wave-

front at Q, which implies that Prentice’s rule is also a state-

ment about wavefront slope. That statement is made

explicit by representing the wavefront’s shape by a mathe-

matical function z = W(r). The radial slope of this function

at the point z = W(r) is denoted by the spatial derivative

dW/dr which, according to Figure 1, is equal to the angle

D. Thus, when written in terms of wavefront slope, Pren-

tice’s rule equates ray vergence D/r with wavefront vergence

(dW/dr)/r,

V ¼ D
r
¼ dW=dr

r
: ð1Þ

Anticipating potential confusion of terminology, we note

that a parabolic wavefront specified by the function

W = ar2 is a surface of constant vergence (=2a) according
to Equation 1. Thus, according to Prentice’s rule, a parabo-

loid of revolution is the ideal wavefront that focuses to a

single image point. This is not strictly true, however,

because Equation 1 assumes that the radial location of point

Q on the curved wavefront is identical to the radial dis-

placement of the ray in the reference plane of the exit pupil.

This is a reasonable approximation provided wavefront

slope D is small, but it restricts the domain of Prentice’s rule

(and its further development in this report) to the paraxial

domain. In fact, the ideal wavefront has spherical shape but

it is common language to refer to its parabolic approxima-

tion as a spherical wavefront. We also note that wavefront

curvature in the paraxial domain is given approximately by

the second derivative of the wavefront, which for the para-

bolic wavefront W = ar2 also equals 2a, the wavefront

vergence according to Equation 1. Geometrically, this

equality implies the local centre of curvature for the portion

of wavefront near point Q in Figure 1 lies at point P, which

is only approximately true for a paraboloid (but is exactly

true for a sphere). Nevertheless, this approximate equality

explains why the terms vergence and curvature are often

used synonymously when describing wavefronts even

though they are different geometrical concepts.4,5

Equation 1 is the starting point for developing a general

formula for computing the PSF using geometrical optics.

This development is presented below in three stages, begin-

ning with the simplest case of spherical wavefronts, general-

ising to the slightly more complicated case of sphero-

cylindrical wavefronts, and finishing with the general case

of wavefronts containing higher order aberrations. At each

successive stage the mathematics will require some elabora-

tion, but the emphasis is on optical explanations based on

familiar concepts such as wavefront curvature, power vec-

tors,6 vergence error matrices,7,8 and Gaussian curvature.

The overarching goal is to make the development clinically

accessible by appeal to basic optical principals, keeping the

mathematical formulas as simple as possible. The main

result is an explicit formula for the geometric PSF in terms

of wavefront vergence. Several equivalent formulas for the

PSF are provided to foster a deeper understanding achieved

by approaching the topic from multiple directions. One

application of these formulas is to explore the formation of

optical caustics in the retinal plane commonly known as

visual starbursts.9,10

Methods and results

Blur disks for spherical defocus

Light rays in Figure 1 converge to a single image point P

but if a screen is placed at some other z-axis location, then

the blurred image formed on the screen will be a uniformly

illuminated, circular disk of light. This disk of light is the

geometric PSF for an optically perfect, but defocused, eye.

Our initial goal is to determine the diameter and irradiance

of this blur disk. The answer is already well known11 so the

aim here is to illustrate an approach that can be generalised

to handle astigmatism and higher-order aberrations.

The geometry of the problem is shown in Figure 2. Since

spherical wavefronts are rotationally symmetric, it is suffi-

cient to consider a single cross section of the wavefront

(centred on point G) and the reference sphere (centred on

point R). The reference sphere represents an ideal spherical

wavefront for which all rays intersect at the point R on the

image screen. One such reference ray is the line AR, which

is perpendicular to the reference sphere at point A. The

defocused marginal ray of light is perpendicular to the

wavefront of light at point B and intersects the image screen
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Figure 1. Geometry of ray deflection by a rotationally symmetric lens.
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at point P. Thus the blur disk radius is equal to the length

of line RP. We wish to express the blur disk radius as a

visual angle w subtended by the line RP at the centre of the

exit pupil.

With reference to Figure 2 and Equation 1, the angle h
between the reference radius AR and the optical axis OR is

also the slope of the reference sphere at point A. Similarly,

the angle / between the marginal ray and the optical axis is

also the slope of the wavefront near point A (in this context

we are neglecting the very small separation between points

A and B). From the geometry of right triangles we infer that

the angle D between the marginal and reference rays, called

the angular ray aberration, equals / � h and thus is equal

to the difference in slopes of the wavefront and reference

sphere at point A. From right triangle AQP we know that

tan D = PQ/AQ. For small amounts of defocus the distance

QR is negligible compared to AR, which justifies approxi-

mating AQ by the reference radius AR = OR. Thus we have

established one approximate relationship,

tanD ffi PQ

OR
: ð2Þ

From right triangle ORP we know that tan w = PR/OR.

If the reference angle h is small, PQ is approximately equal

to PR, which gives a second approximate relationship,

tanw ffi PQ

OR
: ð3Þ

Taken together, Equations 2 and 3 imply that w, the

angular radius of the blur disk is approximately equal to D,
the angular ray aberration. This result can be expressed in

terms of pupil radius and dioptres of defocus by applying

Prentice’s rule embodied in Equation 1. The vergence of

the marginal ray of light is //r whereas the vergence of the
reference ray is h/r. This vergence difference E = (/ � h)/
r = D/r, where E is the focusing error in dioptres. This

result confirms Smith’s approximate formula w ffi D = rE

for the angular radius w (in radians) of the blur circle

expressed as the product of pupil radius r (in meters) with

defocus E (in dioptres).11 One advantage of expressing the

size of the blur circle as a visual angle is that the value does

not depend on the distance from exit pupil to image screen.

Thus w applies equally well to the retinal image of an exter-

nal point source and for the areal image formed outside the

eye of a point source on the retina.

The preceding analysis for a point A on the pupil margin

may be applied to any point on the wavefront. Doing so

leads to the key result that the location of a ray’s intersec-

tion with the retinal plane, expressed as a visual angle w
subtended at the pupil centre, is approximately equal to the

ray aberration (/ � h). From the geometry of Figure 1, the

angles / and h are equal to the slopes (i.e. first derivatives)

of the wavefront and the reference sphere, respectively.

Since differentiation is a linear operation, the difference of

derivatives is equal to the derivative of the differences and

therefore the visual angle w is equal to the slope of the

wavefront error (WFE) function computed by subtracting

the reference sphere from the wavefront. This equality

between visual angle and WFE slope suggests further devel-

opment be based on the WFE function (rather than the

wavefront itself) as a way to simplify the analysis and make

generalised conclusions without concern for the underlying

wavefront of light and the reference sphere associated with

the physical layout of the optical system.

To complete the description of the geometrical PSF for

spherical defocus we also need to specify the irradiance at

each point inside the blur disk. An intuitive way to deter-

mine the answer is to consider ray density in the image

plane that results from a set of uniformly spaced rays in the

pupil plane. Applying Prentice’s rule to each ray inside the

pupil, just as we did above for the marginal ray, will give

the angular location of each ray’s intersection with the reti-

nal image plane. The answer for spherical defocus is easily

deduced because vergence of a spherical wavefront is the

same at every point on the wavefront. Similarly, the ver-

gence of a reference ray is independent of pupil location

and therefore the vergence error is the same for all rays

passing through the pupil. As shown above, the angular dis-

placement of the ray’s intersection with the retina (e.g.

point P in Figure 2) is equal to vergence error times pupil

location r. Since vergence error is constant, retinal location

of rays will be proportional to their pupil location. In other

words, uniformly spaced rays in the pupil will be uniformly

spaced on the retina. Thus ray density is uniform, and so is

the geometrical PSF. For a given amount of light flux

r

im
ag

e 
sc

re
en

 
(r

et
in

a) 

wavefront (center @ G) 

reference sphere (center @ R) 

O G R 

P 

= -

Q 

lipuptixe

A 

bl
ur

 d
is

k 
ra

di
us

 

B 

Figure 2. Ray aberrations determine the mapping of pupil coordinates

to corresponding visual coordinates of a ray’s intersection with the

image screen.
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entering the eye, the uniform irradiance of the blur disk will

be inversely proportional to the area of the blur circle. The

larger the blur disk, the lower the irradiance.

Blur disks for defocus with astigmatism

Astigmatism disrupts the rotational symmetry that simpli-

fied the preceding derivation of the geometrical PSF for

pure defocus. When astigmatism is present, Figures 1 and

2 are valid only for light rays in the principal meridians

(i.e. meridians parallel to and orthogonal to the axis of

the astigmatism). For rays in other meridians the diagram

is misleading because after refraction the rays no longer

lie in the plane of the diagram and therefore do not

intersect the optical axis (i.e. they are skew rays). Han-

dling skew rays will require an extension of the mathe-

matical treatment given above, but before taking that step

we can estimate the size of the blur disk on the retina

using Smith’s formula D = rE. This formula remains valid

if we confine attention to the principal meridians of the

astigmatic component of the WFE where the rays are not

skew. To simplify the exposition initially, we assume the

principal meridians correspond to the x- and y- axes of a

Cartesian reference frame centred on the pupil as shown

in Figure 3.

To illustrate the general case of blurred images in both

principal meridians, Figure 3 depicts a vertical sheet of rays

from a point source focusing in front of the retina and a

horizontal sheet of rays focusing behind the retina. The

dioptric focusing error Ev for the vertical meridian is larger

than the focusing error Eh for the horizontal meridian in

this example, so (according to Figure 1) the blur disk on

the retina will have a greater extent vertically than horizon-

tally. Applying Smith’s formula to the principal meridians,

the major and minor angular radii of the blur disk will be

Dv = rEv and Dh = rEh. It will be shown below that the

perimeter of the blur disk is an ellipse, which collapses to a

circle (the ‘circle of least confusion’) when the retina lies at

the dioptric midpoint of Sturm’s interval.12 It will also be

shown that the irradiance of the blur ellipse is uniform, just

as for pure defocus.

Visualising skew rays, their vergence, and where they

intersect the retinal plane requires three-dimensional dia-

grams that are difficult to render on paper. This difficulty

introduced by astigmatism is further compounded by

higher order aberrations that, in general, cause all rays to

be skew. To help envision the propagation of wavefronts

from exit pupil to retina, dynamic simulations are

described in the Appendix. The rest of this report, how-

ever, is concerned not with the wavefront per se, but with

the WFE function, which is the difference between the

wavefront and the reference sphere. Nevertheless, some

necessary concepts can be grasped by envisioning the WFE

function as a propagating wavefront surface as illustrated

in Figure 4. This example illustrates the type of WFE

expected for an astigmatic system with vertical and hori-

zontal principal meridians (e.g. Figure 3). By comparison,

a perfect optical system would have WFE = 0 everywhere

in the exit pupil, which would be indicated by a plane

wave focusing at infinity. Areas of the WFE surface that

are converging indicate the wavefront of light is locally

more curved than the reference sphere and therefore will

be blurred in the image plane. Conversely, areas of the

WFE surface that are diverging indicate the wavefront of

light is locally less curved than the reference sphere, which

again produces blur in the image. Thus the magnitude of

curvature of the WFE surface at some location indicates

the degree to which light from that location will be

blurred in the image plane.

An appreciation for WFE slope in three dimensions

can be gathered by considering a ray perpendicular to the

WFE surface at some point A in Figure 4. The three-

dimensional counterpart to the dashed tangent line of

Figure 1 is a plane tangent to the WFE surface at A that

is also perpendicular to the ray. The tangent plane has a

degree of tip and tilt that corresponds to wavefront slope

in the x- and y- directions. To see why, intersect the tan-

gent plane with a horizontal plane (y = constant)

through A to produce the red line, the slope of which in

the horizontal plane is the partial derivative @W/@x. Sim-

ilarly, intersecting the tangent plane with a vertical plane

(x = constant) through A produces the blue line, the

slope of which in the vertical plane is the partial deriva-

tive @W/@y. Following the analysis of Figure 2 given

above, the horizontal and vertical components of slope

(called the gradient of the WFE function, denoted ∇W)

are approximately equal to the horizontal and vertical

components (a, b) of the visual angle of the point of

z 
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Figure 3. Refraction of sheets of rays in the principal meridians of an

eye with sphero-cylindrical aberrations. In this example, the vertical

sheet focuses anterior to the retina and the horizontal sheet focuses

posterior to the retina. The result is a uniformly irradiated blur disk with

elliptical perimeter.
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intersection in the retinal image plane made by the ray

from point A,

rW ¼ grad Wðx; yÞð Þ ¼ @W

@x
;
@W

@y

� �
ffi ½a; b�: ð4Þ

In summary, given an algebraic formula W(x,y) for the

WFE function, the x- and y- slopes can be computed ana-

lytically or numerically as the partial derivatives @W/@x

and @W/@y. These slopes are the gradient of W(x,y) and are

approximately equal to the visual coordinates of the ray’s

intersection with the retinal plane. Decomposing WFE

slope into a pair of orthogonal components this way sim-

plifies the calculation of ray (and wavefront) propagation

to the image plane by separately computing the horizontal

and vertical components of the ray.13 Similarly, as will be

shown below, decomposing wavefront vergence into its

horizontal and vertical components simplifies the calcula-

tion of the geometrical PSF for astigmatic systems and

when higher-order aberrations are present.

To demonstrate the approach outlined above, consider

the problem of finding the shape of the blur disk by an

astigmatic imaging system. In the absence of higher-order

aberrations, the WFE function W(x,y) can be described by

the weighted sum of second-order Zernike polynomials.14

Although these polynomials are conventionally expressed

in terms of normalised pupil coordinates, here it is more

convenient to use physical coordinates thereby showing

pupil radius explicitly.

Wðx; yÞ ¼ C0
2Z

0
2 þ C2

2Z
2
2 þ C�2

2 Z�2
2

¼ C0
2

ffiffiffi
3

p
2ðx=RÞ2 þ 2ðy=RÞ2 � 1
� �

þ C2
2

ffiffiffi
6

p ðx=RÞ2 � ðy=RÞ2� �
þ C�2

2 2
ffiffiffi
6

p ðx=RÞðy=RÞð Þ:

ð5Þ

In this equation x, y are pupil coordinates in physical

units, R is pupil radius, C0
2, C

2
2, C

�2
2 are the Zernike coeffi-

cients, and Z0
2 , Z

2
2 , Z

�2
2 are the Zernike polynomials for

defocus, astigmatism with principal curvatures in the hori-

zontal (0°) and vertical (90°) meridians, and astigmatism

with principal curvatures in the obliquely oriented 45° and
135° meridians, respectively. The horizontal and vertical

slopes of the wavefront at each (x,y) pupil location are

determined by computing the partial derivatives of W(x,y),

@Wðx; yÞ
@x

¼ C0
24

ffiffiffi
3

p
x=R2

þ C2
22

ffiffiffi
6

p
x=R2 þ C�2

2 2
ffiffiffi
6

p
y=R2;

ð6Þ

@Wðx; yÞ
@y

¼ C0
24

ffiffiffi
3

p
y=R2

� C2
22

ffiffiffi
6

p
y=R2 þ C�2

2 2
ffiffiffi
6

p
x=R2;

ð7Þ

If pupil coordinates and radius are specified in mm and

Zernike coefficients are in microns, then Equations 6 and 7

for the WFE gradient can be expressed in clinical dioptric

units associated with power vector components

M ¼ C0
24

ffiffiffi
3

p
=R2 for defocus, J0 ¼ C2

22
ffiffiffi
6

p
=R2 for 0°/90°

astigmatism, and J45 ¼ C�2
2 2

ffiffiffi
6

p
=R2 for 45°/135° astigma-

tism (see equation 1 of reference 1). According to Equa-

tion 4, the results are approximately equal to the visual

angles a, b

aðx; yÞ ffi @Wðx; yÞ
@x

¼ M þ J0ð Þx þ J45y; ð8Þ

bðx; yÞ ffi @Wðx; yÞ
@y

¼ M � J0ð Þy þ J45x; ð9Þ

If the principal meridians of the astigmatic WFE function

are oriented horizontally and vertically (as in Figure 4 for

example), the coefficient J45 = 0. In that case, Equation 8

says wavefront vergence error in the horizontal plane is

M + J0 = (@W/@x)/x and Equation 9 says the wavefront

Z = W(x,y)

Y 

X 

Skew 
ray 

Figure 4. Geometry for specifying tip and tilt of a plane tangent to the

wavefront error surface at point A. Intersection of the tangent plane

with horizontal and vertical planes through A are indicated by the red

and blue lines, respectively, for which the slopes are equal to the partial

derivatives @W/@x and @W/@y.
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vergence error in the vertical plane is M�J0 = (@W/@y)/y.

These expressions are the three-dimensional expression of

Prentice’s rule (Equation 1) for wavefront vergence for the

special case when the axis of astigmatism is 0° or 90°. How-

ever, the general case of arbitrary axis of astigmatism is

complicated by the introduction of skew rays, as will be

shown in the next section.

To determine the shape of the perimeter of the geometric

PSF for the astigmatic example in Figure 3 we use Equa-

tion 4 to map points from the margin of the circular pupil

to the retinal plane. If the starting ray location is given in

polar coordinates (R, h) where R is pupil radius and h is

the meridian angle, then the Cartesian coordinates of the

ray in the pupil plane are (x = Rcos(h), y = Rsin(h)).
Combining these expressions with Equations 4, 8, and 9

yields

a ¼ @W

@x
¼ M þ J0ð Þx ¼ M þ J0ð ÞR cosðhÞ

¼ A cosðhÞ; ð10Þ

b ¼ @W

@y
¼ M � J0ð Þy ¼ M � J0ð ÞR sinðhÞ

¼ B sinðhÞ: ð11Þ

This pair of equations is recognised as the parametric

form of an ellipse with semi-diameters A and B expressed

as visual angles. (Although not considered here, the blur

disk remains elliptical when the pupil in an astigmatic sys-

tem is elliptical.15) As a numerical example, let the pupil

radius R = 3 mm, power vector component M for defo-

cus = 1 D, and the component J0 for astigmatism = 2 D.

Evaluating Equations 8 and 9 gives the major radius

A = (1 + 2)D*3 mm = 9 mrad and the minor radius

B = (1 � 2)D*3 mm = �3 mrad. The negative sign for b
indicates the ray has crossed over to the opposite side of

the optical axis, as shown in Figure 3.

As noted earlier, the irradiance of the geometric PSF

depends on the area of the blur disk. The area of an ellipse

with major and minor semi-diameters A and B is pAB.
According to Equations 8 and 9, A and B are proportional

to the vergence errors in the principal meridians. Although

rotation of the axis of astigmatism will alter the power vec-

tor values associated with a wavefront, rotation has no

effect on the principal vergence errors and therefore will

have no effect on the area the blur ellipse. Thus we may

conclude that the area of the geometric PSF is proportional

to the product of vergence errors in the principal meridi-

ans. As noted earlier, wavefront vergence and curvature are

equivalent for parabolic wavefronts in the paraxial domain,

so the area of the elliptical PSF is also proportional to the

product of principal curvatures of the wavefront aberration

function.

In the field of mathematics, the product of principal cur-

vatures of a surface is called the Gaussian curvature. Using

this language, we conclude that the area of the blur ellipse

caused by sphero-cylindrical refractive error is proportional

to the Gaussian curvature of the wavefront aberration func-

tion. Thus the irradiance of the blur ellipse is inversely pro-

portional to the Gaussian curvature of the WFE function.

In the next section we show that this basic result can be

applied to eyes with higher-order aberrations by approxi-

mating each local region of the WFE function as a sphero-

cylindrical surface with Gaussian curvature that varies with

position across the exit pupil.

Vergence error matrix and the geometric PSF

Equations 8 and 9 derived above are mapping functions

that provide the visual coordinates (a, b) of light on the

retina arising from some point (x,y) in the exit pupil. If we

envision light propagation by individual rays carrying

energy from the pupil plane to form spots of light in the

retinal plane, then the distribution of those spots according

to Equations 8 and 9 is a first approximation to the geo-

metrical PSF. In the field of optical engineering, this distri-

bution of light spots is called a ‘spot diagram’ and is used

to determine where the image will be bright (region of high

spot density) or dim (region of low spot density). Below we

show how a refined approximation to the PSF may be

obtained by assigning a value to each spot that represents

the local retinal irradiance inferred from the Gaussian cur-

vature of the WFE surface at the point of origin of the ray

that produced the spot. High WFE curvature (positive or

negative) indicates more blurring, so retinal irradiance is

low. Conversely, low WFE curvature (positive or negative)

indicates less blurring, so retinal irradiance is high. Thus to

proceed we need a general way to compute the principal

curvatures of the WFE surface at any (x,y) location for any

orientation of the local principal meridians. The method of

choice, described next, is based on the vergence error

matrix derived from a second-order Zernike approxima-

tion to the local WFE surface.

The previous section included an example of astigmatic

wavefronts with principal meridians oriented horizontally

and vertically, in which case horizontal slope depends only

on pupil coordinate x and vertical slope depends only on y.

More generally, when the astigmatic axis is oriented obli-

quely the horizontal and vertical components of WFE slope

at the pupil location (x,y) both depend on both x and y

coordinates of the point of interest according to Equa-

tions 8 and 9. In the analogous context of describing the

refraction of rays of light by sphero-cylindrical lenses with

arbitrary axis, Long used Prentice’s rule to formulate the

problem and its solution mathematically by constructing a

dioptric power matrix.16 Later, Keating4,7 and Harris5,8
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built on Long’s foundation to develop dioptric power

matrices useful for tracing rays and wavefronts through

thick astigmatic systems. Although optical power and wave-

front vergence are distinctly different entities, they are inti-

mately related because lenses have the power to change the

vergence of light. Consequently, refraction of an incident

plane wave by a thin lens (or single refracting surface) pro-

duces a wavefront with reduced vergence matrix equal to

the dioptric power matrix of the lens. Although thick astig-

matic systems may require an asymmetric dioptric power

matrix to describe the transference of rays, the emerging

wavefront can be still be described by a symmetric vergence

error matrix equal to the back-vertex dioptric power matrix

of the thick system.7 When written in power vector nota-

tion, this vergence error matrix V is6

V ¼ M þ J0 J45
J45 M � J0

� �
: ð12Þ

For ordinary sphero-cylindrical refractive errors, the

matrix element M + J0 is the vergence of the WFE in the

horizontal meridian of the pupil and the element M�J0 is

the WFE vergence in the vertical meridian of the pupil.

When the axis of the astigmatism is obliquely oriented (i.e.

is neither vertical nor horizontal), a skew component of

wavefront vergence also exists for points on the x- and y-

axes. The matrix element J45 represents this skew compo-

nent of vergence.

The vergence error matrix plays a key role in determining

the geometric PSF because, as Keating (1980) showed, the

determinant of a dioptric power matrix equals the product

of principal powers of a lens regardless of lens orientation

relative to the x, y coordinate systems. This is true also for

the vergence error matrix V, which has a determinant

jV j ¼ M2 � J20 þ J245
� �

; ð13Þ

jV j ¼ M2 � J2 ¼ ðM þ JÞðM � JÞ; ð13aÞ

Converting from rectangular (Equation 13) to polar

(Equation 13a) forms of the power vector notation is based

on the Pythagorean relationship J2 ¼ J20 þ J245, which con-

firms that the determinant |V| equals the product of princi-
pal vergence errors.

In summary, the determinant of the vergence error matrix

V equals the product of principal vergence errors, i.e. the

Gaussian curvature of the WFE surface. Thus, in the absence

of higher-order aberrations, the area of the blur ellipse is

proportional to |V|, and irradiance is inversely proportional

to |V|, regardless of the orientation of the astigmatic axis.

When higher-order aberrations are present, we envision

subdividing the WFE surface into a mosaic of small, circu-

lar areas (or tiles) of uniform spacing and diameter rather

like the action of a Hartmann screen used in wavefront

aberrometers.17 At the centre of each tile lies a ray indicat-

ing the direction of propagation of light in that local area

towards the image plane according to the mapping Equa-

tions 8 and 9. The local shape of the WFE surface for a tile

centred on the point (x,y) is approximated by a sphero-

cylindrical wavefront with vergence error matrix V(x,y) that

produces a local blur ellipse with area proportional to the

local Gaussian curvature G(x,y) = |V(x,y)| and irradiance

inversely proportional to G(x,y). In this way a sampled

WFE surface represented by a uniformly-spaced mosaic of

circular tiles in the exit pupil, each characterised by the

local Gaussian curvature G(x,y), yields a sampled retinal

image comprised of non-uniformly spaced blur ellipses,

each of which has an irradiance that is inversely propor-

tional to G(x,y). Assigning this irradiance value to the cor-

responding ray yields the geometric PSF as an enhanced

spot diagram for which each spot represents the position

and local irradiance in the image produced by light from

the corresponding part of the pupil.

In principle, the area of each tile in the WFE surface can

shrink to infinitesimal size while the number of tiles and rays

grows infinitely large. In the limit, as tile size goes to zero, the

result is a spatially continuous retinal image formed by the

propagation of a spatially continuous wavefront. Light distri-

bution in this continuous PSF may be determined analyti-

cally using Equation 13a if the matrix elements are written as

continuous functions of pupil coordinates (x,y). Optically we

envision the aberrated wavefront becoming distorted trans-

versely as it propagates because local regions are steeper or

flatter than the reference sphere, which is why the wavefront

will not converge to a perfect point image. This transverse

distortion is perpendicular to the direction of light propaga-

tion and therefore affects the irradiance (light flux/unit area)

produced by each infinitesimal, blurred contribution to the

retinal image. To envision this phenomenon, imagine a rub-

ber sheet that thins when stretched and thickens when com-

pressed. If thin regions represent low flux density (i.e.

irradiance) and thick regions representing high flux density,

then the distribution of thickness in the rubber sheet is analo-

gous to the geometric PSF formed by a wavefront distorted

by propagation from pupil to retina.

Practical application of the method described above

requires knowledge of the local vergence error matrix V at

a multitude of sample points in the exit pupil. If we write

the vergence error matrix generically as

Vðx; yÞ ¼ A B
C D

� �
; ð14Þ

then the elements A, B, C, D are all functions of (x,y) and

each may be determined three ways, depending on how the

wavefront aberrations are specified:
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A ¼ @a
@x

¼ @2W

@x2
¼ M þ J0

¼ horizontal rate of change in horizontal slope;

B ¼ @b
@x

¼ @2W

@x@y
¼ J45

¼ horizontal rate of change in vertical slope;

C ¼ @a
@y

¼ @2W

@y@x
¼ J45

¼ vertical rate of change in horizontal slope;

D ¼ @b
@y

¼ @2W

@y2
¼ M � J0

¼ vertical rate of change in vertical slope:

The top row [A B] of matrix V is thus the gradient of

horizontal slopes, ∇(@W/@x), and the bottom row [C D] of

V is the gradient of vertical slopes, ∇(@W/@y).

For numerical calculations using a finite number of rays

sampling the WFE surface, each of the quantities A, B, C, D

needs to be specified at every (x,y) location in the grid of

pupil locations. These numerical values may be conveniently

stored in a matrix the same size as the matrix of pupil sample

locations. The PSF irradiance at the retinal point (a, b) corre-
sponding to ray location (x,y) is proportional to 1/|V| = 1/

(AD�BC). Evaluating the determinate explicitly as the scalar

product (e.g. A.*D � B.*C in MATLAB (www.mathworks.c

om)) efficiently computes the Gaussian curvature of WFE for

all sample points in a single operation. Mapping the inverse

of these Gaussian curvature values onto the spot diagram

determined by the mapping Equations 8 and 9 thus yields the

geometric PSF. The only caveat is that, in general, a uni-

formly-spaced grid of sample points in the pupil plane pro-

duces non-uniformly spaced spots in the spot diagram. If a

uniform image grid is needed for subsequent use, then inter-

polation or a weighted histogram are two possible solutions.

The foregoing development assumed the distribution of

light in the pupil plane is uniform but in general the exit

pupil irradiance should be scaled by the eye’s transmission

function T(x,y). For example, a cataract may attenuate light

non-uniformly across the pupil, or the Stiles-Crawford

effect may attenuate the visual intensity of light more near

the pupil margins. Thus the general expression for the geo-

metric PSF is

Iða; bÞ ¼ Tðx; yÞ
jVðx; yÞj ¼

Tðx; yÞ
Aðx; yÞDðx; yÞ � Bðx; yÞCðx; yÞ

¼ Tðx; yÞ
Gðx; yÞ ;

ð15Þ

where the implicit image coordinates (a(x,y), b(x,y)) are

computed from the gradient of the wavefront aberration

function as indicated by the mapping Equations 8 and 9.

As indicated by Equation 14, there are four options for

computing the elements A, B, C, D used to populate the

vergence matrix V so that its determinate can be calculated

for mapping irradiance onto the spot diagram. This report

has emphasised the use of dioptric power vector compo-

nents (M, J0, J45) of the wavefront error because of their

familiarity in the field of optometric and visual optics. In

practice, however, it may be more convenient to populate

the matrix V with the gradients of the mapping functions

in Equations 8 and 9. The result is known as the Jacobian

matrix18

J ¼
r @W

@x

� �
r @W

@y

� �" #
¼

@a
@x

@a
@y

@b
@x

@b
@y

" #
: ð16Þ

In our optical application, the determinant of the Jaco-

bian matrix quantifies how the area of a local region in the

pupil plane changes when rays of light map the region to

the image plane.19 It is this change in area that is responsi-

ble for non-uniform distribution of light in the geometrical

PSF even when the distribution of light in the pupil plane is

uniform. Mahajan used the Jacobean matrix in his textbook

Equations 4–10 for the geometric PSF.20

Rather than using the ray mapping equations, we can

compute the gradients of horizontal and vertical slopes in

Equation 16 directly from the wavefront error function to

obtain a matrix of second derivatives, which is recognized

as a Hessian matrix

Hðx; yÞ ¼
@2W
@x2

@W
@x@y

@W
@x@y

@2W
@y2

" #
: ð17Þ

Hessian matrices are commonly used in image process-

ing, computer vision, and other applications21 and in

Mahajan’s textbook Equations 4–11 for the geometrical

PSF.20 The determinant of the Hessian matrix H can be

taken as a definition of Gaussian curvature, which we have

interpreted optically as the area of the blur ellipse attribu-

ted to a local patch of wavefront when that patch is approx-

imated by a sphero-cylindrical surface.

In summary, the Jacobian matrix J formulated from the

gradients of WFE slopes in Equation 16 and the Hessian

matrix H formulated from WFE curvature in Equation 17

are both equal to the vergence error matrix V formulated

from ray vergence in Equation 14. The determinants of all

three of these matrices are equal to the Gaussian curvature

of the WFE function and therefore the PSF can be written

in terms of each of them,
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Iða; bÞ ¼ Tðx; yÞ
Gðx; yÞ ¼

Tðx; yÞ
jVðx; yÞj ¼

Tðx; yÞ
jJðx; yÞj ¼

Tðx; yÞ
jHðx; yÞj :

ð18Þ

Caustics in the geometric PSF

Caustics are image features with very high irradiance.22,23

The simplest example of a caustic is the geometric point

image created by a perfect optical system. The next sim-

plest example is the line image formed by an astigmatic

system for which the image plane is located at one

extreme of the interval of Sturm. According to the geo-

metrical optical theory outlined above, such caustics form

when the area of a local blur ellipse in the image plane

approaches zero. Local irradiance in the image is inver-

sely proportional to the ellipse area, which we have

shown is proportional to the product of principal curva-

tures of the WFE, i.e. the Gaussian curvature of the

wavefront aberration function. When Gaussian curvature

goes to zero at some location on the wavefront, its

inverse (image irradiance) grows infinitely large at the

image location where the associated ray intersects the

image plane. Zero Gaussian curvature in the WFE func-

tion will occur when one of the principal curvatures is

zero, in which case the WFE surface is locally cylindrical

with zero curvature in a direction parallel to the cylin-

der’s axis. An example is shown in Figure 5a for the sim-

plest possible case of globally cylindrical WFE without

higher-order aberrations. In clinical notation, this exam-

ple is for an eye with refractive error 0 D sphere, �4 D

cylinder, axis 22.5° counter-clockwise from the horizon-

tal. The short white lines overlaid on the WFE map indi-

cate the local axis of the WFE at multiple sample points.

Since there are no higher-order aberrations in this exam-

ple, every patch of wavefront has the same axis as every

other patch, so all of the axes are oriented 22.5° to the

horizontal.

Since the spherical component of refractive error is zero

in this example, one of the local principal curvatures is zero

at every sample point, so the Gaussian curvature is zero

everywhere on the WFE surface. Thus the entire wavefront

will contribute to the formation of caustics in the retinal

image plane. We may envision the formation of that caustic

by considering a small patch of wavefront that propagates

to the image plane along a direction associated with the

associated ray. No spreading of light will occur in a direc-

tion parallel to the local astigmatism axis because there is

zero wavefront curvature along that axis. Since all the axes

are parallel in this example, no part of the wavefront will

produce spreading of light in the 22.5° direction. To the

contrary, wavefront curvature is maximum in the

orthogonal direction of 112.5° so all parts of the WFE func-

tion will produce blurring in that direction. Thus we

should expect the retinal image to be a narrow focal line

inclined at 112.5° (the direction of maximum blurring),

which is confirmed by the computed geometric PSF as

shown in Figure 5b.

Applying this patch-wise model of image formation to

imaging systems with higher-order aberrations leads to the

conclusion that any portion of the WFE surface for which

Gaussian curvature = 0 will contribute to the formation of

caustics in the image. An example of radiating ‘starburst’

caustics produced in a system with coma and spherical

aberration in addition to sphero-cylindrical refractive error

is shown in Figure 6. Maps of the two principal curvatures

over the domain of a circular pupil are shown in the top
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Figure 5. Wavefront error (panel a, top) and geometric optical point-

spread function (PSF) (panel b, bottom) for an astigmatic system with

line focus in the image plane. In order to render the PSF for publication,

logarithmic compression of the irradiance scale is used to display the

four orders of magnitude range in this example. Zernike aberration

coefficients are C2-2 = - 0.65, C20 = 0.65, C2+2 = - 0.65, pupil

diameter = 3 mm.
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Figure 6. Wavefront error (c), principle curvatures (a,b), and Gaussian curvature (d) maps for an optical system with Zernike spherical aberration

(C0
4 = �0.15l), vertical coma (C1

3 = 0.3l), astigmatism (C2
2 = 1l), and defocus (C0

2 = 0.5l). Pupil diameter = 6 mm.
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Figure 7. (a) Geometric PSF for system in Figure 6. (b) Physical optics optical point-spread function (PSF) for the same system. Both PSFs are shown

on the same spatial scale but different intensity scales to improve the display of the geometric PSF. (c) Geometric PSF obtained when light transmission

is blocked for the right-hand side of the dashed line in Figure 6c. (d) Geometric PSF obtained when light transmission is blocked for the left-hand side

of the dashed line in Figure 6c. Panels a, c, d use logarithmic compression of computed irradiance values. Maximum and minimum PSF values

assigned to the maximum and minimum pixel luminances in those panels were adjusted to render details of interest.
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row of panels and their product, the Gaussian curvature, is

shown in the bottom right panel. A sample of critical loca-

tions for which Gaussian curvature = 0 are indicated by

white dots. In this example, the dots separate naturally into

two groups, an oval of dots on the right side of the pupil

and a vertical string of dots on the left. The local axis of

astigmatism associated with each of these critical locations

is displayed in the lower left panel, on a backdrop of the

wavefront error function. This lower left panel shows that

all of the axes associated with the oval locus of critical

points are oriented vertically, so they will contribute to hor-

izontally oriented caustics. To the contrary, the axes associ-

ated with the vertical string of critical points are tilted at

approximately �45° to the horizontal, so they will con-

tribute to obliquely oriented caustics.

As predicted, the geometric PSF computed from the

inverse of the Gaussian curvature map contains caustics

that are oriented horizontally and obliquely as shown in

Figure 7a. The range of PSF irradiance values spans six

orders of magnitude in this example but, in reality,

diffraction effects will keep irradiance finite as may be

seen in the physical optics PSF displayed in Figure 7b. To

verify the mapping of critical points in the pupil plane to

caustics in the image plane, the transmission factor T(x,y)

in Equation 18 was set to zero on one side or the other of

the dashed line in Figure 6c. Transmitting just the left side

of the pupil blocks the horizontal caustics, leaving just

the obliquely oriented caustics in Figure 7c. Similarly,

transmitting just the right side of the pupil blocks the

oblique caustics, leaving just the horizontal caustics in

Figure 7d.

Discussion: practical implementation

Ophthalmic wavefront aberrometers that measure wave-

front slopes in the horizontal and vertical direction (e.g.

the Hartmann-Shack method17) provide the raw data

needed to rapidly compute the geometric PSF from the

Jacobian matrix. However, the discrete PSF will have the

same number of samples as the raw measurements,

which may be inadequate for some applications. In that

case, derivatives of Zernike polynomials fit to the slope

measurements may be used to interpolate the slope data,

thereby increasing the size of the Jacobian matrix and

the density of points in the geometric PSF at the cost of

increased computational time.

For theoretical work, it may be more convenient to

express the WFE function by its Zernike expansion as a

weighted sum of polynomials, for which the Jacobian

matrix may be computed using symbolic mathematical

software [e.g. Mathematica (www.wolfram.com), Maple

(www.maplesoft.com), or MATLAB symbolic toolbox

(www.mathworks.com)]. For complex optical systems with

many elements, a more comprehensive computational

method may be preferred.24

Acknowledgements

I am indebted to E. Sarver and J. Rubinstein for valuable

discussions regarding the relationship between the Hessian

matrix, the Jacobian matrix, and Gaussian curvature.

Disclosure

The author reports no conflicts of interest and has no pro-

prietary interest in any of the materials mentioned in this

article.

References

1. Thibos LN, Hong X, Bradley A & Applegate RA. Accuracy

and precision of objective refraction from wavefront aberra-

tions. J Vis 2004; 4: 329–351.
2. Thibos LN. Formation and sampling of the retinal image.

In: Seeing (Handbook of Perception and Cognition), (De

Valois K, ed.). Academic Press: London, 2000; pp. 1–54.
3. Prentice CF. Optical Lenses, Dioptric Formulae for Combined

Cylindrical Lenses: The Prism-Dioptry, and Other Optical

Papers. Keystone: Philadelphia, PA, 1907.

4. Keating MP. Dioptric power in an off-axis meridian: the

torsional component. Am J Optom Physiol Opt 1986; 63:

830–838.
5. Harris WF. Wavefronts and their propagation in astigmatic

optical systems. Optom Vis Sci 1996; 73: 606–612.
6. Thibos LN, Wheeler W & Horner DG. Power vectors: an

application of Fourier analysis to the description and statistical

analysis of refractive error. Optom Vis Sci 1997; 74: 367–375.
7. Keating MP. A system matrix for astigmatic optical systems:

I. Introduction and dioptric power relations. Am J Optom

Physiol Opt 1981; 58: 810–819.
8. Harris WF. Dioptric power: its nature and its representation

in three- and four-dimensional space. Optom Vis Sci 1997;

74: 349–366.
9. Xu R, Kollbaum P, Thibos L, Lopez-Gil N & Bradley A.

Reducing starbursts in highly aberrated eyes with pupil mio-

sis. Ophthalmic Physiol Opt 2018; 38: 26–36.
10. Xu R, Thibos L, Lopez-Gil N, Kollbaum P & Bradley A. Psy-

chophysical study of the optical origin of starbursts. J Opt

Soc Am A Opt Image Sci Vis 2019; 36: B97–B102.
11. Smith G. Angular diameter of defocus blur discs. Am J

Optom Physiol Opt 1982; 59: 885–889.
12. Rosello S, Thibos L & Mico V. Step-along power vector

method for astigmatic wavefront propagation. Ophthalmic

Physiol Opt 2014; 34: 295–308.
13. Raasch TW. Propagation of aberrated wavefronts using a ray

transfer matrix. J Opt Soc Am A Opt Image Sci Vis 2014; 31:

964–967.

© 2019 The Authors Ophthalmic & Physiological Optics © 2019 The College of Optometrists

Ophthalmic & Physiological Optics 39 (2019) 232–244

242

Geometrical PSF L N Thibos

http://www.wolfram.com
http://www.maplesoft.com
http://www.mathworks.com


14. ANSI (American National Standards Institute). American

national standard Z80.28 for ophthalmics - methods for

reporting optical aberrations of eyes. 2010.

15. Harris WF. Aperture referral in heterocentric astigmatic

systems. Ophthalmic Physiol Opt 2011; 31: 603–614.
16. Long WF. A matrix formalism for decentration problems.

Am J Optom Physiol Opt 1976; 53: 27–33.
17. Thibos LN. Principles of Hartmann-Shack aberrometry. J

Refract Surg 2000; 16: S563–S565.
18. Buck RC. Advanced Calculus. Waveland Press, Inc.: Long

Grove, IL, 1978.

19. Wikipedia. Jacobian matrix. Available from: https://en.

wikipedia.org/wiki/Jacobian_matrix_and_determinant

(Accessed May 2019).

20. Mahajan VN. Optical Imaging and Aberrations. SPIE

Optical Engineering Press: Bellingham, Washington,

1998.

21. Wikipedia. Hessian matrix. Available from: https://en.

wikipedia.org/wiki/Hessian_matrix (Accessed May 2019).

22. Kravtsov YA & Orlov YI. Caustics, Catastrophes and Wave

Fields, 2nd edn. Springer: New York, NY, 1999.

23. Nye JF. Natural Focusing and Fine Structure of Light.

Institute of Physics Publishing: Bristol, UK, 1999;

p. 328.

24. Liu CS & Lin PD. Computational method for deriving the

geometric point spread function of an optical system. Appl

Opt 2010; 49: 126–136.
25. Tscherning M. Physiologic Optics. The Keystone Press:

Philadelphia, PA, 1904.

26. Howland HC & Howland B. A subjective method for the

measurement of monochromatic aberrations of the eye. J

Opt Soc Am 1977; 67: 1508–1518.
27. Rubinstein J. On the geometry of visual starbursts. J Opt Soc

Am A Opt Image Sci Vis 2019; 36: B58–B64.

Appendix

Envisioning the formation of the geometric optical point-

spread function (PSF) is aided by dynamic simulation of

propagating wavefronts of light using geometrical optics.

Four simulations provided as Supporting Information

(Videos S1–S4) are described briefly below. The computer

simulations were created by the same custom MATLAB

programs used to produce Figures 5–7 in the Results sec-

tion. Each simulation has two panels: the left panel shows

the wavefront and the right panel shows the corresponding

irradiance of the beam of light. Wavefront propagation is

visualised by observing changes in the grid of equally

spaced horizontal and vertical lines imprinted on the wave-

front as it passes through the exit pupil. The outer margin

of the blur patch shows how the beam changes shape as the

wavefront propagates. The dynamic simulations begin after

the wavefront has propagated two-thirds of the distance to

the focal point.

Simulation 1: an optically perfect myopic eye

Computer simulation of wavefront propagation through an

optically perfect eye withM = �1D of myopia (6 mm pupil

diameter) is displayed in supplementary movie

waveMovie_M = �1D.avi. Appendix Figure 1 shows the first

frame of the movie, which depicts the wavefront after prop-

agating the first two-thirds of the distance to the focal point.

Without aberrations the grid of horizontal and vertical lines

attached to the wavefront remains uniformly spaced at all

propagation distances and therefore the circular beam has

uniform irradiance. As the wavefront propagates towards

the focal point, the spacing between grid lines is reduced,

and therefore the spatial density of light flux increases. After

passing through the focal point (a point-caustic), the

diverging beam produces a uniformly illuminated blur cir-

cle on the retina. This simulation demonstrates the princi-

ple of Tscherning’s subjective aberroscope25 constructed

from a wire mesh near the eye that casts a grid of shadows

on the wavefront, plus a defocusing lens to enlarge the

retinal blur patch sufficiently for the observer to report any

distortions of the grid produced by optical aberrations.

Simulation 2: an astigmatic eye (with-the-rule)

Computer simulation of wavefront propagation through a

well-focused eye (M = 0, 6 mm pupil diameter) with J0 = 1

D of with-the-rule astigmatism (axis 180°) is displayed in

supplementary movie waveMovie_J0 = 1D.avi. Because the

grid lines are parallel to the astigmatic principal meridians,

the grid lines remain vertical and horizontal as shown in

Appendix Figure 2. However, the horizontal lines are more

closely spaced than the vertical lines after propagation

because the eye’s refractive power is greater in the vertical

meridian in this eye. Nevertheless, all rectangular tiles in the

wavefront mesh have the same area, so the elliptical beam

has uniform irradiance. As the wavefront propagates, all grid

tiles collapse to zero area simultaneously, resulting in a focal

line (a line-caustic). After passing through the line focus, the

diverging light produces an elliptical beam that evolves into

a circular patch of wavefront with uniform irradiance on the

retina.
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Simulation 3: an astigmatic eye (oblique axis)

Computer simulation of wavefront propagation through a

well-focused eye (M = 0, 6 mm pupil diameter) with

J45 = 1 D of oblique astigmatism (axis 45°, to visualise

skew rays) is displayed in supplementary movie

waveMovie_J45 = +1D.avi. Appendix Figure 3 shows the

wavefront after propagating the first two-thirds of the dis-

tance to the focal point. Counter-rotation of the grid lines

produces a scissors-like action that distorts the wavefront

and produces a 90° rotation of the grid in the retinal plane.

This simulation demonstrates the principle of Howlands’

crossed-cylinder aberroscope26 constructed from a wire

mesh plus a Jackson cross-cylinder lens to produce a circu-

lar blur patch that allowed observers to report any distor-

tions of the grid produced by optical aberrations.

Simulation 4: an eye with spherical aberration (Z0
4 )

and fourth order astigmatism (Z�2
4 )

Computer simulation of wavefront propagation through an

eye with fourth order aberrations is displayed in supple-

mentary movie waveMovie_HOA.avi. Zernike coefficients

(in microns) for the wavefront error were C0
4 = 0.0745;

C�2
4 = 0.3162; C0

2 = 0.2887 C�2
2 = 1.2247 (6 mm pupil

diameter). Appendix Figure 4 shows non-uniform wave-

front distortion that produces a curved caustic at the beam

margin that evolves into line caustics in the retinal plane.

This simulation demonstrates a recently proven optical the-

orem stating that a mixture of higher-order aberrations of

the same order always produces radial line caustics in the

focal plane.27

Supporting Information

Additional Supporting Information may be found in the

online version of this article:

Video S1. Supplementary movie waveMovie_M=-1D.avi.

Video S2. Supplementary movie waveMovie_J0=+1D.avi

Video S3. Supplementary movie waveMovie_J45=+1-

D.avi.

Video S4. Supplementary movie waveMovie_HOA.avi.
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