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ABSTRACT 

AutoTutor is an intelligent tutoring system that helps students learn science, technology, and other 

technical subject matters by holding conversations with the student in natural language. AutoTutor’s 

dialogues are organized around difficult questions and problems that require reasoning and explanations 

in the answers. The major components of AutoTutor include an animated conversational agent, dialogue 

management, speech act classification, a curriculum script, semantic evaluation of student contributions, 

and electronic documents (e.g., textbook and glossary). This chapter describes the computational 

components of AutoTutor, the similarity of these components to human tutors, and some challenges in 

handling smooth dialogue. We describe some ways that AutoTutor has been evaluated with respect to 

learning gains, conversation quality, and learner impressions. AutoTutor is sufficiently modular that the 

content and dialogue mechanisms can be modified with authoring tools. AutoTutor has spawned a 

number of other agent-based learning environments, such as AutoTutor-lite, Guru, and Operation Aries!.     

 

INTRODUCTION AND BACKGROUND 

Intelligent Tutoring Systems (ITS) are computerized learning environments that incorporate computational 

models in the cognitive sciences, learning sciences, artificial intelligence, computational linguistics, and other 

fields that develop intelligent systems (Sleeman & Brown, 1982; Woolf, 2009). In a process called student 

modelling, the ITS tracks the psychological states of learners, such as subject matter knowledge, cognitive 

skills, strategies, motivation, and emotions. An ITS adaptively responds with activities that are sensitive to 

these psychological states, the history of the student-tutor interaction, and the instructional agenda. An ITS is 

very different from more rigid, insensitive, and inflexible learning environments such as reading a book or 

listening to a lecture.  

 ITS environments were originally developed for mathematically well-formed subject matters. 

Impressive systems have been developed and tested for algebra, geometry, and programming languages 

(the Cognitive Tutors: Anderson et al., 1995; Koedinger et al., 1997; Ritter et al., 2007, ALEKS: Doignon 

& Falmagne, 1999), for physics (Andes, Atlas: VanLehn et al., 2002), for electronics (SHERLOCK: 

Lesgold, Lajoie, Bunzo, & Eggan, 1992), and for information technology (KERMIT: Mitrovic, Martin, & 

Suraweera, 2007). More recently the ITS enterprise has evolved to handle conversational interaction in 

natural language on verbal topics that require conceptual reasoning. This chapter focuses on AutoTutor 

(Graesser, Lu et al., 2004), but other systems have been developed with similar goals: ITSPOKE (Litman 

et al., 2006), Spoken Conversational Computer (Pon-Barry, Clark, Schultz, Bratt, Peters, & Haley, 2005), 

Tactical Language and Culture Training System (Johnson & Valente, 2008), Why-Atlas (VanLehn et al., 

2007), and iSTART (McNamara, Levinstein, & Boonthum, 2004). These systems automatically analyze 

language and discourse by incorporating recent advances in computational linguistics (Jurafsky & Martin, 

2008) and statistical representations of world knowledge (Landauer, McNamara, Dennis, & Kintsch, 

2007).  

 Most ITS fit within VanLehn’s (2006) analyses of the outer loop and the inner loop when 

characterizing the scaffolding of solutions to problems, answers to questions, or completion of complex 

tasks. The outer loop involves the selection of topics and problems to cover, assessments of the student’s 

topic knowledge and general cognitive abilities, and global aspects of the tutorial interaction. The inner 



2 

 

loop consists of covering individual steps within a problem at a micro-level. Adaptivity and intelligence 

are necessary at both the outer loop and the inner loop in a bona fide ITS.  

 This chapter describes the computational components of AutoTutor and some of the challenges faced 

when simulating smooth and pedagogically effective dialogue. AutoTutor’s architecture incorporates 

dialogue mechanisms of human tutors in addition to ideal tutoring strategies. We describe evaluations of 

AutoTutor with respect to learning gains, conversation quality, and learner impressions. The modular 

architecture of AutoTutor allows developers to develop new content and dialogue strategies with 

authoring tools. We end the chapter by identifying some of AutoTutor’s progeny that also have 

conversational agents, such as AutoTutor-lite, Guru, and Operation Aries!.     

  

AUTOTUTOR MECHANISMS  

AutoTutor simulates a tutor by holding a conversation in natural language (Graesser, Chipman, Haynes, 

& Olney, 2005; Graesser, Jeon, & Dufty, 2008; Graesser, Graesser, Lu et al., 2004; Graesser, Person, & 

Harter, 2001). Students type in their contributions through a keyboard in most applications. However, we 

have developed a version that handles spoken input from the student through the Dragon Naturally 

Speaking ™ (version 6) speech recognition system (D’Mello, King, Chipman, & Graesser, in press). 

AutoTutor communicates through an animated conversational agent with speech, facial expressions, and 

some rudimentary gestures.  

 Figure 1 shows a screen shot of AutoTutor on the topic of computer literacy. Most versions of 

AutoTutor have the three major areas shown in Figure 1. Area 1 (top of screen) is the main question (or 

problem) that stays on the computer screen throughout the conversation that collaboratively constructs an 

answer to the question. Area 2 (left middle) is the animated conversational agent that speaks the content 

of AutoTutor’s turns. Area 3 (right middle) is either blank or has auxiliary diagrams on the subject matter. 

When the students type in their contributions, there is an area at the bottom that displays what the student 

types in. In versions with speech recognition, there are two buttons on the keyboard that the learner 

presses to start speaking and stop speaking. The interface can also include a dialogue area that presents 

the history of the turn-by-turn tutorial dialogue; students can scroll back as far as they want in this 

dialogue history.  

 

Figure 1. A screen Shot of AutoTutor. 
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 The outer loop of AutoTutor consists of a serious of didactic lessons and challenging problems or 

questions (such as why, how, what-if). The example main question in Figure 1 is “When you turn on the 

computer, how is the operating system first activated and loaded into RAM?”  The order of lessons, 

problems, and questions can be dynamically selected based on the profile of student abilities, but the 

order is fixed in most versions of AutoTutor we have developed. The interactive dialogue occurs during 

the problems/questions but not the didactic delivery of information (e.g., reading text, viewing a 

diagram). The answer to a question (or solution to a problem) requires several sentences of information in 

an ideal answer. AutoTutor assists the learner in constructing their answer after the student enters their 

initial response. The inner loop of AutoTutor consists of this collaborative interaction while answering a 

question (or solving a problem). It is this inner loop that is the distinctive hallmark of AutoTutor. The 

tutor draws out more of the student’s knowledge (through hints and prompts), helps fill in missing 

information, repairs misconceptions, and answers student questions. The inner loop dialogue between 

AutoTutor and the student takes approximately 100 dialogue turns to answer a single challenging 

question, approximately the length of a conversation with a human tutor.  

 There are augmented versions of AutoTutor with special features that are designed to enhance the 

learning experience. Several versions of AutoTutor have been developed since 1997, when the system 

was created. One version of AutoTutor, called AutoTutor-3D, guides learners on using interactive 

simulations of physics microworlds (Graesser, Chipman et al., 2005; Jackson et al., 2006). For each of the 

physics problems, there is an interactive simulation world with people, objects, and the spatial setting 

associated with the problem. The student manipulates parameters of the situation (e.g., mass of objects, 

speed of objects, distance between objects), asks the system to simulate what will happen, and then gets 

prompted by the tutor to describe what the student sees. AutoTutor manages the dialogue with hints and 

suggestions that scaffold the learning process with dialogue. Another version is sensitive to the student’s 

emotions, which are tracked automatically by detecting particular dialogue patterns, facial expressions, 

and body motions (D’Mello & Graesser, in press; chapter XX in this volume). Yet another version adds 

game features with feedback and points that are contingent on the student’s performance (Jackson & 

Graesser, 2007). However, it is the conversational interaction of AutoTutor’s inner loop that is the 

signature contribution of AutoTutor.   

 

What does AutoTutor do?  

 Perhaps the best way to convey what AutoTutor does in the inner loop is through an example 

conversational dialogue. The excerpts below were extracted from an actual conversation with a student on 

the topic of conceptual physics. The conversation begins with a main question selected by AutoTutor.  

       

AutoTutor: When a car without headrests on the seats is struck from behind, the passengers 

often suffer neck injuries? Explain why. (MAIN QUESTION) 

Student: I don't know. (This expression by the student is classified as a Metacognitive 

speech act because it conveys what the student knows about his/her own knowledge.)  

AutoTutor: Could you at least try to give me an answer? That way, we'll have something as 

a starting place to work from. (PUMP. This dialogue move encourages the student to 

say more, but does not direct the student to express particular information.) 

 

As the dialogue continues, AutoTutor detects that an important expected piece of information is 

missing (i.e., the impact of the collision on the neck). 

   

AutoTutor: Let's try this together. (DISCOURSE MARKER. This is a discourse marker that 

introduces or connects dialogue moves within a turn.)   
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When the collision provides a large force to accelerate the head, what could happen 

to the neck? (HINT. This dialogue move leads the student to articulate a particular 

sentence, clause, or proposition.) 

 

At one point in the dialogue, the student asks a question, so AutoTutor needs to provide an 

answer. AutoTutor can answer some classes of questions (such as definitional questions), but not 

all questions, so AutoTutor needs to productively manage the dialogue surrounding student 

question asking.  

 

Student: What is a force?  

AutoTutor: I'll take a crack at answering your question. (DISCOURSE MARKER)   

 Force is any influence that tends to accelerate an object; a push or pull; measured 

in newtons. Force is a vector quantity. (ANSWER. AutoTutor answers the student’s 

direct question. Answers are either accessed from electronic glossaries or a paragraph 

is dynamically selected from a textbook.)  

Was that what you were looking for? (QUESTION SOLICITATION. AutoTutor 

allows the student the opportunity to rephrase his question.) 

 

As the dialogue continues AutoTutor believes it has detected a misconception.  

 

AutoTutor: See if you know the answer to this. (DISCOURSE MARKER. AutoTutor 

prepares the student for a direct question.)   

When the head and body are moving at the same acceleration, they are moving at the 

same ________? (PROMPT. This dialogue move encourages the student to fill in a 

particular word or phrase of information, in this case the word “rate.”  Prompts are 

frequently needed for students who have low verbal fluency in order to elicit a 

particular noun, verb, or adjective that is missing in an answer.) 

Student: distance 

AutoTutor: Moving at the same rate. (PROMPT COMPLETION. AutoTutor splices in the 

correct information if the student provides an incorrect answer to its prompt.)  

 

At this point, the dialogue continues until all of the relevant expected answers are covered in the 

conversation. The conversation then ends with a summary answer by the tutor.  

 The example illustrates the mixed-initiative dialogue of AutoTutor. AutoTutor attempts to interpret 

or otherwise handle any question, assertion, comment, or extraneous speech acts that the student 

expresses. Each turn of AutoTutor requires the generation of one or more dialogue moves that adaptively 

respond to what the student expresses, that advance the conversation in a constructive manner, that covers 

good answer information, or that corrects misconceptions. The tutor’s dialogue moves within a turn are 

connected by discourse markers, as illustrated in the example. Some dialogue moves are responsive to the 

student’s preceding turn, such as short feedback (positive, neutral, versus negative), answers to student 

questions, and corrections of student misconceptions. Other dialogue moves push the dialogue forward in 

an attempt to cover the expected answers to the main question.  

 

Dialogue Structure  

 The dialogue structure of AutoTutor is similar to the dialogue patterns of human tutors. Graesser and 

Person analyzed dialogue patterns of typical human tutors in middle school and in college (Graesser & 

Person, 1994; Graesser, Person, & Magliano, 1995). Similar analyses have been conducted by other 

researchers on naturalistic tutoring corpora (Chi et al., 2004; Evens & Michael, 2006; Litman et al., 

2006). The following dialogue structures are implemented in AutoTutor and are prominent in human 

tutors: (a) a curriculum script with didactic content and problems (i.e., difficult tasks or questions), (b) a 
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5-step Tutoring Frame, (c) Expectation and Misconception Tailored (EMT) dialogue, and (d) 

Conversational Turn Management.  

 (a) Curriculum script. The tutor covers a curriculum with didactic content and a set of questions or 

problems that address the content. Didactic content can be presented in a mini-lecture, hopefully at the 

appropriate time for each individual learner. The questions/problems require the student to actively apply 

their knowledge. The curriculum script includes expected answers, misconceptions, hints, prompt 

questions, and other inner loop information.   

 (b) 5-Step Tutoring Frame. When a challenging main question (or problem) is selected to work on, the 

question is answered through an interaction that is structured by a 5-Step Tutoring Frame. The 5 steps are:  

(1) Tutor presents a main question, (2) Student gives an initial answer, (3) Tutor gives short feedback on the 

quality of the Student’s initial answer, (4) the Tutor and Student collaboratively improve on the answer in a 

turn-by-turn dialogue that may be lengthy, and (5) the Tutor evaluates whether the Student understands (e.g., 

asking “Do you understand?” or testing with a follow-up task). This 5-step tutoring frame involves 

collaborative discussion, joint action, and encouragement for the student to construct knowledge rather than 

merely receiving knowledge.  

 (c) Expectation and Misconception Tailored (EMT) Dialogue. Human tutors typically have a list 

of expectations (i.e. anticipated good answers or steps in a procedure) and a list of anticipated 

misconceptions (incorrect information) associated with each main question. They want the expectation 

content covered in order to handle the main question that is selected. The tutor guides the student in 

articulating the expectations through a number of dialogue moves, namely pumps (“What else?”), hints, 

prompt questions to extract specific information from students, assertions that capture particular 

expectations, and answers to students’ questions. As the dialogue progresses, tutors tend to lead more 

while trying to get the student to articulate an expectation. They start with a pump and then move to a hint 

if the pump fails, followed by a prompt question and an assertion if students fail to articulate the 

expectation. The pump  hint  prompt  assertion cycle is implemented by AutoTutor to encourage 

the student to articulate the answer and cover expectations. The correct answers are eventually covered 

and the misconceptions are hopefully corrected. 

 (d) Conversational Turn Management. Human tutors structure their conversational turns 

systematically. Nearly every turn of the tutor has three information slots. The first slot of most turns is 

feedback on the quality of the learner’s last turn.  This feedback is either positive (very good, yeah), 

neutral (uh huh, I see), or negative (not quite, not really). The second slot advances the interaction with a 

prompt for specific information, a hint, an assertion with correct information, a correction of 

misconceptions, or an answer to the student’s question. The third slot is a cue for the floor to shift from 

the tutor as the speaker to the learner. For example, the human ends each turn with a question or a gesture 

to cue the learner to do the talking. Otherwise the student and AutoTutor are at a standstill waiting for the 

other to take the next turn.  

 

Student Modeling   

 One of the central questions is how well the tutor can track the psychological states of the student as 

the tutor implements tutoring strategies. Available evidence suggests that human tutors are not able to 

conduct student modeling at a fine-grained level (Chi, Siler, & Jeong, 2004; Graesser, D’Mello, & Person 

2009). They are limited to performing approximate assessments rather than fine-grain assessments. 

Computers can potentially show advantages over humans to the extent that artificial intelligence can 

accurately conduct student modeling and generate intelligent responses.  

 Student modeling in the inner loop consists of comparing what the student express in language with 

the list of expectations and misconceptions associated with a main question. For example, supposed that 

expectations E1 and E2 and misconceptions M1 and M2 are relevant to a particular physics question that 

involves a head-on collision between a large and small vehicle.  

     E1. The magnitudes of the forces exerted by A and B on each other are equal. 

E2. If A exerts a force on B, then B exerts a force on A in the opposite direction. 
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M1: A lighter/smaller object exerts no force on a heavier/larger object. 

M2: Heavier objects accelerate faster for the same force than lighter objects 

AutoTutor guides the student in articulating the expectations through pumps, hints, and prompts. Hints 

and prompts are carefully selected by AutoTutor to produce content in the answers that fills in missing 

content words, phrases, and propositions. For example, a hint to get the student to articulate expectation 

E1 might be “What about the forces exerted by the vehicles on each other?”; this hint would ideally elicit 

the answer “The magnitudes of the forces are equal.” A prompt to get the student to say “equal” would be 

“What are the magnitudes of the forces of the two vehicles on each other?”  If the student fails to 

articulate E1 after many attempts, then AutoTutor asserts the expectation at the end of the pump  hint 

 prompt  assertion cycle. However, there is an early exit from the cycle when the student articulates 

the information in E1. As the learner expresses information over many turns, the list of expectations is 

eventually covered and the main question is scored as answered. 

 Complete coverage of the answer requires AutoTutor to have a pool of hints and prompts in the 

curriculum script that are available to extract all of the content words, phrases, and propositions in each 

expectation. AutoTutor adaptively selects those hints and prompts that fill missing constituents and 

thereby achieves pattern completion. For example, the following family of candidate prompts is 

available for selection by AutoTutor to encourage the student to articulate words in expectation E1. 

(a) The magnitudes of the forces exerted by two objects on each other are ____. 

(b) The magnitudes of forces are equal for the two ______. 

(c) The two vehicles exert on each other an equal magnitude of _____. 

(d) The force of the two vehicles on each other are equal in _____. 

If the student has failed to articulate one of the four content words (equal, objects, force, magnitude), then 

AutoTutor selects the corresponding prompt (a, b, c, and d, respectively).  

 Student modelling is executed after every student turn by comparing the verbal contributions of the 

student with the list of expectations and misconceptions. This requires semantic matching algorithms that 

compare the student input with AutoTutor’s Es and Ms. However, it is widely acknowledged that natural 

language is imprecise, fragmentary, vague, ungrammatical, and elliptical, so it would not be prudent to 

rely entirely on semantically well-formed semantic matches. AutoTutor therefore incorporates several 

semantic evaluation algorithms when performing these matches, but notably Latent Semantic Analysis 

(Landauer et al., 2007), regular expressions (Jurafsky & Martin, 2008), content word overlap metrics (that 

have higher weight for low frequency words than high frequency words), and occasionally logical 

entailment (Rus & Graesser, 2006).  

 As an example, early versions of AutoTutor relied exclusively on LSA in its semantic evaluation of 

student input. The LSA algorithm computed the extent to which the information within the student turns 

(i.e., an individual turn, a combination of turns, or collective sequence of turns) matches each expectation 

in the ideal answer. Expectation Ei is considered covered if the content of the learner’s cumulative set of 

turns meets or exceeds a threshold T in its LSA cosine value (which varies from near 0 to 1). That is, Ei is 

covered if the cosine match between Ei and the student input I (including turns 1 though N) is high 

enough: cosine (Ei, I) ≥ T. The threshold has varied between .40 and .75 in previous instantiations of 

AutoTutor. Each expectation Ei has an associated family of prompts and hints to get the student to fill in 

most or all of the content words and propositions in Ei. Prompts and hints are selected to maximize an 

increase in the LSA cosine match score (hereafter called the match score) when answered successfully. 

Stated differently, hints and prompts are selected to maximize pattern completion. Sometimes the student 

expresses misconceptions during the dialogue. This happens when the student input I matches a 

misconception M with a sufficiently high match score. At that point AutoTutor corrects the 

misconception and goes on.  

 During the course of the dialogue and student modeling, the system periodically identifies a missing 

expectation and posts the goal of covering the expectation. When expectation Ei is missed (and therefore 

posted), AutoTutor attempts to get the student to articulate it by generating hints and prompts affiliated 

with Ei to encourage the student to fill in missing words and propositions. The selection of the next Ei to 

cover follows the principle of the zone of proximal development or what some call frontier learning:  
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AutoTutor builds on what the student has managed to articulate. More formally, AutoTutor selects the 

next Ei from the set of expectations that (a) has the highest match score and (b) has a subthreshold match 

score. This subthreshold expectation selection algorithm assumes that the expectations should not be 

covered in a prescribed sequential order. However, ordering constraints may also be considered in a 

sequential expectation selection algorithm. Some subject matters have ordering constraints but others do 

not.  

 Sometimes there are errors in AutoTutor’s semantic matching. This can be disconcerting to the 

student when the students believe they have provided good, relevant contributions, yet it seems 

AutoTutor is not listening, or the short feedback is negative. The AutoTutor research teams have spent 

considerable efforts in improving the semantic match algorithms with techniques that go beyond LSA 

(see Graesser, Penumatsa, Ventura, Cai, & Hu, 2007; Rus & Graesser, 2006), but it is beyond the scope of 

this chapter to describe these improvements. AutoTutor’s feedback and dialogue move generator also face 

limitations when the curriculum script does not have a full family of hints and prompts to cover all of the 

content words in each expectation Ei. A lazy lesson planner or knowledge engineer may cut corners and 

fail to specify prompts for important content words. When this happens, there is the risk of the threshold 

T never being met in the semantic match computations, which spawns two unfortunate consequences: 

AutoTutor generates irrelevant or redundant prompts and hints, or AutoTutor generates assertions that 

echo what the student has already expressed (which seems like AutoTutor is not listening). AutoTutor 

works quite well, however, when the curriculum script is adequately constructed and the semantic 

matching algorithms are on the mark.  

 AutoTutor computes a number of metrics of psychological characteristics during the course of 

student modeling. These metrics are collected from information in a log file that records a rich amount of 

information about the AutoTutor-student interaction after each conversational turn. This chapter 

concentrates on the cognitive metrics whereas the chapter by D’Mello and Graesser (Chapter xx) covers 

metrics of emotions and motivation. The cognitive metrics vary in grain size and apply to either the inner 

loop, the outer loop, or both.  

 The quality of student contributions is computed at all levels of grain size: each turn, each 

expectation, each main question/problem, and the set of main questions in the curriculum script. The 

student modeling, therefore, is assessed from inner to outer loop, or local to global spans. The metric is 

similar at all levels.  Specifically, the semantic match score computes what the student contributes 

compared with the expectations. Stated differently, does the student or AutoTutor have to articulate the 

content when answering the question?  At the level of the turn, the match score is computed between the 

student’s contribution and the expectation, with values varying from 0 to 1.  A large number of scores are 

computed, including highest match score for all of the turns that address an expectation Ei, and the mean 

match score over all the expectations for a main question.  Global student knowledge for the subject 

matter is the mean match score when averaging over all of the previous questions/problems the student 

has worked on. Alternatively, relatively high match scores to misconceptions reflect low knowledge. 

Besides match scores, AutoTutor computes the volume of the student’s contributions, which is called 

verbosity. A high-verbosity student expresses a large amount of information (measured in words or 

alphanumeric characters) compared with fellow students. 

   The accuracy of the student model algorithms have been evaluated over the years. In one analysis of 

conceptual physics, we collected pretest scores on a psychometrically validated test by Hestenes, Wells, 

and Swackhamer (1992), called the Force Concept Inventory. If AutoTutor is performing effective user 

modeling, then the dialogue moves selected by AutoTutor should be correlated with the students’ prior 

knowledge of physics. Such predictions held up when we analyzed the dialogue moves of AutoTutor as a 

function of students of varying ability (Jackson & Graesser, 2006). For example, the short feedback that 

AutoTutor provides after the student’s turns is either positive, neutral, or negative. The students’ physics 

knowledge had a significant positive correlation with proportion of short feedbacks that were positive (r = 

.38) and a negative correlation with negative feedback (r =  -.37). Another example applies to the 

corrections that AutoTutor made when identifying student errors and misconceptions. The correlation was 

negative (r = -.24), and marginally significant when compared with the corrections by AutoTutor. Yet 
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another example considers the four dialogue move categories that attempt to cover the content of the 

expectations in the curriculum script: Pumps, hints, prompts, and assertions. The proportion of dialogue 

moves in these categories should be sensitive to the student’s knowledge of physics.  There is a 

continuum from the student-provided information to tutor-provided information as we move from pumps, 

to hints, to prompts, to assertions. The correlations with student knowledge reflected this continuum 

perfectly, with values of .49, .24, -.19, and -.40, respectively. Thus, for students with more knowledge of 

physics, all AutoTutor needs to do is primarily pump and hint, thereby encouraging or nudging the 

student to supply the answer to the question and articulate the expectations. For students with less 

knowledge of physics, AutoTutor needs to generate prompts for specific words or to assert the correct 

information, thereby extracting knowledge piecemeal or telling the student the correct information.  These 

results support the claim that AutoTutor performs user modeling with some degree of accuracy and 

adaptively responds to the student’s level of knowledge. 

 

AutoTutor Architecture   

 Figure 2 presents the major components of AutoTutor’s architecture. The bottom left depicts the 

student entering information via the user interface. The information in each student turn is segmented into 

speech acts, based on punctuation and (in some systems) a syntactic parser. Each speech act is assigned to 

one of approximately 20 speech act categories. These categories include assertions, 16 different 

categories of questions, short responses (yeah, right), meta-cognitive expressions (I don’t understand, I 

see), and meta-communicative expressions (What did you say?). The accuracy of classifying the student 

speech acts into categories varies from .87-.96 (Olney et al., 2003), which is almost, but not quite, perfect. 

The dialogue coherence breaks down when some misclassification errors occur, which ends up confusing 

students. However, these problems are rare because the vast majority of student contributions are 

statement contributions or short responses, as opposed to questions. Students rarely take control in 

tutoring environments by asking questions, recommending problems to work on, or changing topics 

(Graesser, Person, & Magliano, 1995; Graesser, McNamara, & VanLehn, 2005). Instead, it is the tutor 

who controls the agenda.  

 

 

Figure 2. Architecture of AutoTutor.

AutoTutor Architecture
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 The speech acts expressed by the student on any given turn N constrain AutoTutor’s conversation 

management of turn N+1. If the student asks a question, AutoTutor needs to answer it if it has an answer, 

or otherwise (a) generate dialogue moves to put the onus on the student to find an answer (“Good 

question. How would you answer it?”) or (b) generate dialogue moves that evade getting an answer 

(“Good question, but I cannot answer it now. Let’s move on.”). If the student asks a metacognitive 

question (“I’m lost, I don’t know”), which are normally frozen expressions, then AutoTutor 

acknowledges this and presents a hint to advance the dialogue in productive avenues. Student statement 

contributions are evaluated on quality, which drives the pump  hint  prompt  assertion cycles.  The 

conversation dynamically flows from the student turns on the basis of the Conversation Manager module 

that is sensitive to the student’s speech acts. The Conversation Manager module consists of a set of 

IF<state>THEN <action> production rules (Anderson & Gluck, 2001) or of a finite-state transition 

network (see Graesser, Person, & Harter, 2001). However, it is beyond the scope of this chapter to 

describe the computational mechanism of the Conversation Manager in more detail (see chapter xx by 

Olney & Graesser). The Conversation Manager subsequently passes information to the Response 

Generator, which is a sequence of dialogue moves and discourse markers. This content is expressed either 

in text or by an animated conversational agent that is displayed on the interface. 

 Animated conversational agents have become ubiquitous in recent advanced learning environments 

(Baylor & Kim, 2005; Gholson et al., 2009; McNamara, Levinstein, & Boonthum, 2004; Moreno & 

Mayer, 2007). The agents express themselves with speech, facial expression, gesture, posture, and other 

embodied actions. AutoTutor has used a wide array of agents that vary in quality of the speech and visual 

display. However, the learning gains of AutoTutor are not affected much by these agent characteristics 

(Graesser et al., 2003), whereas the impact of the dialogue content is extremely robust. Therefore, most of the 

AutoTutor team’s efforts have concentrated on the content and conversation rather than the aesthetics of the 

talking head. We anticipate that the flashy dimensions of the animated agents will be developed by other 

research teams and eventually integrated with AutoTutor. 

 As depicted in Figure 2, AutoTutor has a repository of different static data structures that can be created 

and updated with authoring tools. First, all versions of AutoTutor represent world knowledge as LSA spaces 

(see Chapter xx by Kintsch & Kintsch), but some versions of AutoTutor or its progeny have incorporated 

other forms of world knowledge representation, such as textbooks, glossaries, and conceptual graph 

structures. Second, there are Conversation Rules that are represented as production rules, finite-state 

transition networks, or recursive augmented state transition networks (see chapter by Olney, Graesser & 

Person, chapter xx). Third, there are different categories of Frozen Expressions that have different discourse 

functions. For example, there are different ways for AutoTutor to express positive feedback (yes, yeah, good, 

great, fantastic, right on) and different ways that the student can express Metacommunicative speech acts 

(What did you say? Please repeat. I did not hear that.) Fourth, there is the Curriculum Script, as described 

earlier.  

 All of the information collected during the AutoTutor-student  interaction is stored in the Log files. 

These files are fed into the Log Analyzer that can be inspected by the researcher and can inform the lesson 

planner or knowledge engineer who uses the Authoring Tools. These modules are, of course, standard for all 

learning management systems.  

 

Evaluation of AutoTutor   

 AutoTutor has been evaluated on its psychological impact on the student. Perhaps the most important 

question is whether AutoTutor helps students learn. The learning gains of AutoTutor have been evaluated 

in over 20 experiments since its inception in 1997. Assessments of AutoTutor on learning gains have 

shown effect sizes of approximately 0.8 standard deviation units in the areas of computer literacy 

(Graesser et al., 2004) and Newtonian physics (VanLehn, Graesser et al., 2007). These effect sizes place 

AutoTutor somewhere between an untrained human tutor (Cohen, Kulik, & Kulik, 1982) and an 

intelligent tutoring system with ideal tutoring strategies (Corbett, 2001). AutoTutor improves learning 

between 0 and 2.1 sigma (a mean of 0.8), depending on the learning performance measure, the 
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comparison condition, the subject matter, and the version of AutoTutor. Measures of learning have 

included: (1) multiple choice questions on shallow knowledge that tap definitions, facts and properties of 

concepts, (2) multiple choice questions on deep knowledge that taps causal reasoning, justifications of 

claims, and functional underpinnings of procedures, (3) essay quality when students attempt to answer 

challenging problems, (4) a cloze task that has students fill in missing words of texts that articulate 

explanatory reasoning on  the subject matter, and (5) performance on problems that require problem-

solving.  

 Assessments of learning gains obviously depend on the comparison conditions. The learning gains 

are approximately .8 for AutoTutor compared to a pretest and a condition of reading from a textbook on 

the same topics for an equivalent amount of time. The learning gains are approximately the same for 

AutoTutor and an expert human tutor who interacts with the student by computer-mediated 

communication (as opposed to face-to-face). The largest learning gains from AutoTutor have been on 

deep-reasoning measures rather than measures of shallow knowledge. AutoTutor is most effective when 

there is an intermediate gap between the student’s prior knowledge and the ideal answers of AutoTutor; 

AutoTutor is not particularly effective in facilitating learning in students with high domain knowledge, 

nor when the material is too much over the student’s head. It should be noted that the effectiveness of 

AutoTutor is less prominent in comparison conditions that attempt to control for the content that students 

are exposed to. The conversational AutoTutor has (a) a 0.22 sigma compared with reading textbook 

segments directly relevant to the AutoTutor’s main questions/problems, (b) a 0.07 sigma compared with 

reading a script that succinctly answers the questions posed by AutoTutor, and (c) a 0.13 sigma compared 

with AutoTutor presenting speech acts in print instead of the talking head. The interactive AutoTutor-3D 

version has a .22 effect size over the normal conversational AutoTutor. 

 The conversations managed by AutoTutor are not perfect, but they are adequate for guiding students 

through the sessions with minimal difficulties. In fact, the dialogue is sufficiently tuned so that a 

bystander who observes tutorial dialogue in print cannot tell whether a particular turn was generated by 

AutoTutor or by an expert human tutor of computer literacy (Person & Graesser, 2002). A series of 

studies were conducted that randomly sampled AutoTutor’s turns. Half of the turns were generated by 

AutoTutor and half were substituted by a human expert tutor on the basis of the dialogue history. 

Bystander participants were presented these tutoring moves in a written transcript and asked to decide 

whether each was generated by a computer or a human. The bystanders were unable correctly identify 

which moves were generated by the human tutor versus AutoTutor. Thus, AutoTutor successfully passed 

the bystander Turing test for individual tutoring turns. However, a bystander can eventually tell whether a 

sequence of turns was part of a dialogue with AutoTutor versus a human tutor. In conclusion, AutoTutor 

is close enough to human tutorial dialogue to keep the conversation going and also to promote learning.  

 Student ratings of AutoTutor have also been collected in order to get their impressions of the tutoring 

environment. The ratings lean toward the positive side, but there have been no systematic comparisons 

with human tutors or alternative learning environments. We have compared different versions of 

AutoTutor, but a provocative finding has made us somewhat skeptical about relying on ratings of student 

impressions. Specifically, Jackson and Graesser (2007) documented that there was a negative relationship 

between deep learning and enjoyment: students least preferred those versions from which they learned 

most. Students’ metacognition of learning is limited (Graesser, D’Mello, & Person, 2009), so it is perhaps 

not surprising that their ratings of liking were not positively correlated with learning. Deep learning is 

challenging and sometimes painful, which may clash with an enjoyable experience for some groups of 

students. 

 These assessments point to the successes of AutoTutor, but it is important also to acknowledge some 

of its limitations. One limitation is that the conversational dialogue may have minimal incremental gains 

on learning when the exchange is time-consuming and the knowledge covered is shallow rather than deep. 

The conversational interaction is tedious for some students and even irritating far a small percentage. A 

second limitation is that students lose patience with AutoTutor when the conversation breaks down. As 

mentioned throughout this chapter, such breakdowns occur when the student modeling is imperfect, the 

curriculum script is incomplete, student speech acts are misclassified, and AutoTutor is viewed as being 
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unresponsive to what the student is saying. A third limitation is that AutoTutor can correctly answer only 

a modest proportion of student questions (Graesser, McNamara, & VanLehn, 2005) so students 

eventually stop asking them. This puts a damper on self-regulated learning and also mixed-initiative 

dialogue.   

 

FUTURE RESEARCH DIRECTIONS AND AUTOTUTOR EXTENSIONS 

One important future direction is to improve the student modeling and conversational facilities of 

AutoTutor in order to minimize some of its persistent blemishes. This can be accomplished in a number 

of ways. There can be checks in the authoring tools to make sure that the content is complete when it is 

prepared by the author of the curriculum scripts. We have tried to correct this by developing facilities to 

improve the ease and quality of authoring the curriculum scripts, but this has not been an easy road. The 

best authors of content have some nontrivial expertise in information technologies, language, and 

discourse rather than being an instructor without such expertise. There needs to be a more intense 

research effort on understanding the process of authoring content in AutoTutor as well as other advanced 

learning environments. 

 A second direction is to develop systems that analyze language and discourse at deeper levels. 

Researchers can move beyond LSA and regular expressions and into more structure-sensitive processing 

and semantic decomposition (Olney, 2009; Olney, Graesser, & Person, 2010; Rus, McCarthy, McNamara, 

& Graesser, 2008). The dialogue manager module can move beyond lists of production rules and finite-

state grammars and into the realm of recursive, complex planning and multiple-goal agendas. This 

approach of deeper natural language processing and discourse management is currently being pursued by 

Adrew Olney’s Guru (see chapter XX by Olney, Person, & Graesser, 2010) in the area of biology and by 

Vasile Rus’s DeepTutor in the area of physics. These extensions of AutoTutor are currently under 

development in the Institute for Intelligent Systems at the University of Memphis.  

 A third direction is to develop more sophisticated question answering facilities so that AutoTutor can 

answer a broad diversity of questions. This would contribute to mixed-initiative dialogue and put more 

control in the hands of the learner. There currently is a community of researchers who are exploring and 

testing computational models of question generation in learning environments (Rus & Graesser, 2009; see 

chapter xx). These efforts should contribute significantly to this direction. 

 A fourth direction is to build a version of AutoTutor that is sensitive to the learner’s emotions and 

motivational states. D’Mello and Graesser (in press, chapoter xx) discusses this exciting extension. 

Related approaches to address motivation include: improvements in the agents speech and visual displays, 

implementing dimensions of personality in the agents, and integrating game-based facilities.  

 A fifth direction is to build a system that enhances AutoTutor’s scalability. Xiangen Hu’s AutoTutor-

Lite is a minimalistic version of AutoTutor that includes the AutoTutor-style interface and interaction 

(animated agent and natural language conversation), but with a lightweight language analyzer and 

dialogue manager. AutoTutor-Lite has excellent authoring tools that lesson planners and instructors can 

use, even when they have minimal computer skills.  Moreover, AutoTutor-Lite can be applied to 

powerpoint content on any verbal subject matter, is easily customizable, and can be integrated into e-

learning environments on the web as well as the desktop. One can imagine an industry that 

“autotutorizes” the conventional eLearning content that is widely available.   

 Finally, AutoTutor has been a component in more comprehensive advanced learning environments.  

The Human Use Regulatory Affairs Advisor (HURAA) trains military personnel on research ethics in a 

web facility that has a full suite of learning modules, including an AutoTutor-like navigational guide (Hu 

& Graesser, 1994). Operation ARIES! (Millis, Cai, Graesser, Halpern, & Wallace, 2009) helps students 

learn about scientific methods in a game environment that includes an eBook with 22 chapters and case 

studies that are critiqued by students regarding scientific flaws.  This system is guided by multiple 

animated agents, including a tutor agent and a peer agent; the human student is both tutored by the human 

agent and actively tutors the student agent.  Danielle McNamara also has developed trainers with multiple 
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interactive agents, as in the case of iSTART for teaching self explanations during reading (McNamara et 

al., 2004, 2007, see chapter xx) and of W-Pal for teaching writing (McNamara et al., chapter xx).   

     We believe that researchers have only begun to scratch the surface of using animated pedagogical 

agents with natural language interaction.  Agents can have an endless number of dialogue styles, strategies, 

personalities, and physical features. We have developed one AutoTutor version that is emotionally supportive 

and another version that tries to shake up the emotions of the student by being rude and pretentiously telling 

the student what emotion the student is having.  The rude AutoTutor is very engaging for some students 

whereas others would rather interact with the polite tutor.  Student motivation may improve when the agents 

are matched to the cognitive, personality, emotional, and social profiles of individual students.  The world of 

pedagogical agents is indeed on par with communication with other humans.   
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KEY TERMS & DEFINITIONS   

Agent. A computer module that intelligently interacts with a human by detecting states of the human and 

system and by responding to the human in a fashion that achieves specific goals.   

 

Authoring tool.  A computer facility for creating and modifying content in a computerized learning 

environment 

 

Curriculum script.  The subject matter knowledge that is stored in the computer on the topic being 

tutored.  The learning management system accesses and uses this content during the course of 

producing responses to the student.   

  

Dialogue management.  The algorithms that the system uses to track the student’s knowledge, the 

dialogue history, and the state of the system, and to respond in a fashion that achieves conversational 

goals in a coherent manner.  

 

Latent semantic analysis (LSA).  A statistical representation of words and world knowledge that is based 

on the words that are used in a large corpus of documents.   

 

Metacognition.  Knowledge about nature of cognitive states and processes.   

  

Pattern matching and pattern completion.  Pattern matching is an algorithm that computes the extent to 

which student contributions match expectations.  Pattern completion is the generation of actions that 

attempt to achieve high pattern matches.   

  

Semantic matching.  A comparison between two texts on the degree to which they have similar meaning.  

For example, student expressions are compared with expectations of the tutor.   

 

Speech act.  A statement or utterance in a conversational turn that has a particular discourse function, 

such as a question, command, assertion, promise, or feedback expression.    

 

Student modeling.  The computer algorithms for tracking what the student knows about subject matter 

knowledge. 

 

 


