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Abstract

This paper presents GnuTutor, an open source intelli-
gent tutoring system (ITS) inspired by the AutoTutor
ITS. The goal of GnuTutor is to create a freely available,
open source ITS platform that can be used by schools
and researchers alike. To achieve this goal, significant
departures from AutoTutor’s current design were made
so that GnuTutor would use a smaller, non-proprietary
code base but have the major functionality of Auto-
Tutor, including mixed-initiative dialogue, an animated
agent, speech act classification, and natural language
understanding using latent semantic analysis. This pa-
per describes the GnuTutor system, its components, and
the major differences between GnuTutor and AutoTu-
tor.

Introduction
Just as human tutors arguably provide the most effective
form of human instruction (Bloom 1984), intelligent tutor-
ing systems (ITS) arguably provide the most effective form
of e-learning (Dodds and Fletcher 2004; Wisher and Fletcher
2004). While ITS may tutor different topics or have differ-
ent underlying implementations (cf. Falmagne et al. (2006)
and VanLehn et al. (2002)), they share a common concep-
tual base: model the student and tailor instruction based on
that model (VanLehn 1988).

But that is not the only thing ITS have in common: ITS
are usually closed source systems that are available for a fee
(e.g. Cognitive Tutor (Koedinger et al. 1997), Aleks (Fal-
magne et al. 2006), AutoTutor (Graesser et al. 2005a)) if
they are available at all. While fee-based distribution may
be successful for implementing curriculum change in pri-
mary and secondary education, it is less successful at cre-
ating an fertile environment for continued research on ITS
(including teaching the design of ITS as well as academic
research) and the adaptation of ITS by end-users to specific
educational contexts. This paper addresses the need for a
freely distributable ITS by presenting GnuTutor1, an ITS in-
spired by AutoTutor. GnuTutor therefore shares the com-
mon conceptual base of its predecessors while differing in
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its approach to distribution: GnuTutor is available to all un-
der the Gnu Public License2 and is cross-platform. To the
author’s knowledge, GnuTutor is the only open-source re-
lease of an ITS.

The sections that follow describe how significant depar-
tures from AutoTutor’s current design were made so that
GnuTutor would use a smaller, non-proprietary code base
but still have the major functionality of AutoTutor, includ-
ing mixed-initiative dialogue, an animated agent, speech act
classification, and natural language understanding using la-
tent semantic analysis. This paper describes the GnuTutor
system, its components, and the major differences between
GnuTutor and AutoTutor.

AutoTutor
The AutoTutor system simulates a human tutor’s natural lan-
guage interaction with a student, so a student learns by hav-
ing a conversation with AutoTutor (Graesser et al. 2001;
VahnLehn et al., 2007). Pedagogical dialogue is therefore
the core element of AutoTutor. In order to ensure that
AutoTutor’s pedagogical dialogue was appropriate and ef-
fective, the dialogue was modeled after novice human tu-
tors at the University of Memphis (Graesser and Person,
1994; Graesser, Person, and Magliano, 1995; Person et al.,
1994). Multiple subject domains of AutoTutor have been
developed since its inception, including conceptual physics
(Graesser et al. 2005a; VanLehn et al. 2007), computer liter-
acy (Graesser et al. 2001b), and critical thinking (Cai et al.
2009), with corresponding learning gains in users of roughly
.8 sigma, depending on the version and on the control con-
ditions (e.g. read textbook, do-nothing, etc.).

Over the past ten years, versions of AutoTutor have been
created not only for different subject matters but also for dif-
ferent platforms, including desktop (Graesser et al. 2001b),
web browser (Olney et al. 2002), and an Internet version
using .NET remoting (Graesser et al. 2005a). The target
platform has become increasingly complex over time, from
a standalone installation to one requiring multiple servers
and databases. As a result, while the current architecture
of AutoTutor is the most powerful (Graesser et al. 2005a;
2005b), it is also the most complex.

2http://www.gnu.org/licenses/gpl.html



Although the architecture has changed greatly over the
years, the appearance and core interactivity of AutoTutor
has remained much the same3. The interface contains at
least one animated agent with synthesized speech, a text en-
try box for student input, a dialogue history that displays all
the conversation between tutor and student, and a multime-
dia panel that displays images, movies, etc.

An AutoTutor session begins when the tutor presents a
problem or asks a deep reasoning question, and the session
concludes when the student gives a complete, essay-length
answer. In between beginning and end, the tutor and the stu-
dent engage in a conversation in which the tutor helps the
student construct the best possible answer to the question
or problem. In order to achieve this goal, AutoTutor must
correctly interpret the student’s input, compare the student’s
input to its internal representation of the correct answer, and
plan what to say next. These functions map on to speech
act classification, natural language understanding, and dia-
logue planning respectively. These three components, to-
gether with the user interface, are the common core of vari-
ous versions of AutoTutor.

Therefore GnuTutor, as an open source reimplementation
of AutoTutor, must have the functionality captured in these
four components. The following sections describe GnuTu-
tor’s implementations in turn, noting in particular the differ-
ences between them and the corresponding implementations
in AutoTutor.

Speech Act Classification
The speech act classifier used in GnuTutor is based on an
early open source version of the AutoTutor speech act classi-
fier (Olney et al. 2003). The primary objective of the speech
act classifier is to detect initiative, i.e. is the student con-
tinuing the conversational topic of the tutor or introducing
a new topic of discussion. Analysis of human tutoring ses-
sions shows that students introduce a new topic by asking a
question, and these questions can be categorized according
to their content and the type of information sought (Graesser,
Gordon, and Brainerd 1992). Table 1 presents 16 question
categories from this analysis.

The speech act classifier determines the category of the
student input by matching it against a set of regular expres-
sions. Each category of input has one or more corresponding
regular expressions, which may match keywords associated
with that category, patterns of keywords, or syntactic pat-
terns (Olney et al. 2003). Heuristics are used to select a
category when multiple regular expressions match the stu-
dent input. The current version of the AutoTutor speech act
classifier uses the original categories (Graesser et al. 2005a;
2005b), but also uses a parser to analyze student input before
classification.

In contrast, GnuTutor’s speech act classifier uses the Brill
part of speech tagger (Brill 1992) instead of a parser. Con-

3Versions of AutoTutor have been reported that use speech
recognition, question answering, interactive simulations, and emo-
tion detection, amongst others. However, it is argued that the core
approach of constructivist dialogues has held constant.

veniently a GPL version of the Brill tagger exists for C# and
meshes well with the .NET implementation of GnuTutor4.
Finally, though no extensive evaluation of AutoTutor’s cur-
rent speech act classifier has been carried out, the version
upon which the GnuTutor speech act classifier is based, Ol-
ney (2003), has a weighted F-measure performance of 97%,
arguably sufficient for most purposes.

Natural Language Understanding
In GnuTutor, as in AutoTutor, the meaning of student input
is analyzed after speech act classification occurs. If a student
is continuing with the tutor’s topic, i.e. gives a contribution,
the tutor will analyze their response in terms of what the stu-
dent was expected to say. These “expectations” of the tutor
represent correct answers by the student. Thus the closer the
student’s answer is to an expectation, the more the student
has mastered that part of the material and the more positive
the tutor’s feedback will be.

This notions of “closeness” can be captured using Latent
Semantic Analysis (LSA), a machine learning technique ca-
pable of representing world knowledge (Deerwester et al.
1990; Dumais 1991; Landauer and Dumais 1997). The LSA
process begins with a corpus, or collection of text, which
is converted into a term document matrix by counting the
number of times a termi is present in a documentj . This
term document matrix is then decomposed into a lower di-
mensional approximation using singular value decomposi-
tion, such that text from the corpus may be projected into
the lower dimensional space as vectors. Moreover, it can be
shown that similar words in the corpus correspond to close
vectors in the lower dimensional space; for more informa-
tion on the mathematical details of LSA, see (Manning and
Schütze 1999).

LSA has been shown to closely approximate vocabu-
lary acquisition in children (Landauer and Dumais 1997),
grade essays as reliably as experts in English composition
(Foltz, Gilliam, and Kendall 2000), and understand student
contributions in tutorial dialogue (Graesser et al. 2000;
Olde et al. 2002). These results are particularly impressive
considering that LSA creates its knowledge representation
without human intervention.

GnuTutor’s open source implementation of AutoTutor’s
LSA functionality has two major components, matrix cre-
ation and singular value decomposition (SVD). Unlike Au-
toTutor, which uses the closed source Bellcore LSI tools for
these two steps, GnuTutor uses its own C# classes for matrix
creation and manipulation and an outside program, currently
an open source Matlab clone called Octave5, to perform
the SVD; however, any number of SVD programs could be
used interchangeably, including GTP (Giles, Wo, and Berry
2003), PROPACK (Larsen 1998), SVDLIBC (Rohde 2007),
or ARPACK (Lehoucq, Sorensen, and Yang 1998), amongst
others. In terms of functionality, the LSA implementations
of GnuTutor and AutoTutor are identical.

4Csharp NLP tagger version 1.0.
http://markwatson.com/opensource/

5http://www.gnu.org/software/octave/



Category Example
Questions
Verification Does the pumpkin land in his hands?
Disjunctive Is the pumpkin accelerating or decelerating?
Concept Completion Where will the pumpkin land?
Feature Specification What are the components of the forces acting on the pumpkin?
Quantification How far will the pumpkin travel?
Definition What is acceleration?
Example What is an example of Newton’s Third Law?
Comparison What is the difference between speed and velocity?
Interpretation What is happening in this situation with the runner and pumpkin?
Causal Antecedent What caused the pumpkin to fall?
Causal Consequence What happens when the runner speeds up?
Goal Orientation Why did you ignore air resistance?
Instrumental/Procedural How do you calculate force?
Enablement What principle allows you to ignore the vertical component of the force?
Expectational Why doesn’t the pumpkin land behind the runner?
Judgmental What do you think of my explanation?
Frozen Expressions
Metacognitive I don’t understand.
Metacommunicative Could you repeat that?
Contribution The pumpkin will land in the runner’s hands.

Table 1: AutoTutor’s Speech Act Classification Scheme (Olney et al. 2003).

Dialogue Planning
Because AutoTutor is dialogue-centric, computational mod-
eling of dialogue is critically important. There are a number
of ways to model dialogue, and different versions of Auto-
Tutor have incorporated aspects of the major methodologies:
finite state, frame based, and plan based (McTear 2002).
These methodologies and their AutoTutor implementations
will be briefly described before progressing to GnuTutor’s
dialogue model.

Finite state approaches (Nuance 1996; McTear 1998) al-
low users to progress through the dialogue in a fixed order.
Dialogues are represented by a set of states, and each state
is connected to other states via a valid user input. Accord-
ingly, finite state models can be easily visualized as a graph
or flowchart. The common example is a voice menu, e.g.
“Press zero to hear more options.” Finite state systems have
the advantage that user options are limited, thus the num-
ber of possible (valid) utterances the user could produce are
very small. The smaller the number of possible utterances,
the smaller the search space for the dialogue understander,
and the more efficient and robust the system is.

Frame-based systems (Graesser et al. 2001a; Olney et al.
2002) are similar to finite state systems in that the number of
valid options is limited, but the user can access these options
in any order. A common example is that of an automated
travel agent. The system must elicit the dates of travel, the
departure and arrival cities, etc., but the speaker can produce
this information in any order. The system matches user input
to slots in a frame, or table, and then this frame is typically
used to complete a database query.

Plan-based systems have been largely guided by the the-
ories of speech acts (Austin 1962; Searle 1975). Amongst
other things, speech act theory recognizes that conversa-
tional utterances can have an intended effect, or illocu-
tionary force, independent of the literal meaning of the

utterance. For example, “Can you please pass the salt”
is not intended as a yes/no question but rather as a re-
quest. The intended effect of a utterance is largely syn-
onymous with a goal, thus understanding an utterance can
be considered as a problem of inferring the speaker’s goal.
This goal based perspective creates a bridge between utter-
ance understanding and the artificial intelligence tasks of
planning and theorem proving, and allows the methods of
planning and theorem proving (Fikes and Nilsson 1971) to
be applied to utterance understanding and dialogue model-
ing. Early systems (Cohen and Perrault 1979; Cohen 1984;
Litman and Allen 1987) utilized AI planning methods both
for understanding single utterances and for understanding
utterances as part of complex dialogues.

In various versions, AutoTutor has used finite-state,
frame-based, and plan based models of dialogue (Graesser et
al. 2001a; Olney et al. 2002; Graesser et al. 2005b). Phases
of tutoring, e.g. introduction and summary, have been mod-
eled using both finite-state machines and plans, with plans
giving the additional power to implement recursive mixed-
initiative dialogues. Frames are used to represent progress
towards AutoTutor’s goals. In AutoTutor, the goal is to have
the student provide a multi-part, essay-length answer to a
deep-reasoning question. Each answer part fills a slot in a
frame until the answer is complete.

AutoTutor’s plans are hierarchically decomposable
recipes for action, with associated termination conditions.
For example, a plan might consist of the following sequence
of actions: update coverage, feedback, hint. Or a plan might
be an iteration, or loop, with some given termination con-
dition, e.g. keep trying to cover expectations until they are
all covered. These two examples illustrate how AutoTutor’s
plans, while properly called plans, are markedly different
from the theorem-proving style planners mentioned earlier.

Each of these approaches to dialogue modeling have ad-



vantages and disadvantages with respect to ease of use, ease
of implementation, and ability to scale up (for a general re-
view of advantages and disadvantages, see McTear (2002)).
Ideally a dialogue modeling approach should optimize all of
these capabilities. It is worthwhile to consider the current
dialogue management of AutoTutor in terms of these capa-
bilities. First, this dialogue manager created a little language
for describing dialogues together with a corresponding in-
terpreter to execute dialogues in this language (Graesser et
al. 2005b). This ability to author dialogues using dialogue
“widgets” supported more rapid creation of tutorial dialogue
patterns than previous finite-state approaches (Graesser et al.
2001a; McTear 1998). Secondly, AutoTutor’s dialogue man-
ager does not have backtracking, which sometimes results
in poor dialogue. The following example occasionally oc-
curred in question answering. The student would ask a ques-
tion, AutoTutor would say “That’s an interesting question,
I’ll try to answer it with this,” and then AutoTutor would ex-
ecute a question answering routine to generate the answer.
However, sometimes AutoTutor could not answer the ques-
tion, and so it would say“That’s an interesting question, I’ll
try to answer it with this, I’m sorry I can’t answer your ques-
tion.” To avoid this kind of problem, GnuTutor’s dialogue
manager needs to be able to backtrack to another plan when
the current plan fails.

Both backtracking and a language describing dialogues
can be accomplished by using Prolog, a declarative language
that has been widely used for artificial intelligence research
and dialogue systems (Bratko 1986; Larsson et al. 2000;
Shoham 1994; Sterling and Shapiro 1994; Zinn, Moore, and
Core 2002). In GnuTutor, an open source C# implementa-
tion of Prolog6 has been used to replicate the dialogue func-
tionality of AutoTutor in only 250 lines of Prolog. To du-
plicate the information state approach to dialogue modeling
(Larsson and Traum 2000) currently used by AutoTutor, the
GnuTutor dialogue manager uses a C# hash table as a global
object for holding dialogue state across turns. This global
object is created in C# and passed to the Prolog interpreter,
which then can perform lookups on the table and also call
methods in the C# code. This functionality allows declar-
ative, or rule-based, aspects of the dialogue to be coded in
Prolog, while delegating the procedural aspects, e.g. find
the expectation with the lowest LSA score, to the C# code.
A fragment of the GnuTutor dialogue manager is shown in
Figure 1.

User Interface
The user interface of AutoTutor consists of a text entry
box, a multimedia panel, an animated agent, and text-to-
speech. For an open source, cross-platform implemen-
tation, the last two requirements are non trivial. Auto-
Tutor has used several agent technologies, including Mi-
crosoft Agent and the Haptek Player (Graesser et al. 2005b;
Olney et al. 2002). While both of these are essentially free
(either pre-installed with Windows XP or freely download-
able), neither is open source nor cross-platform.

6tuProlog.NET http://tuprolog.alice.unibo.it/

%--------------
% CONTRIBUTION
%--------------
handlesac(PLAN,TEMP):-
state(sac,contribution),
update_coverage,
feedback(PLAN,T1),
tutor_initiative(T1,TEMP).
%--------------
% QUESTION
%--------------
handlesac(PLAN,TEMP):-
state(sac,question),
answer_question(PLAN,TEMP).
%-------------------
% METACOMMUNICATIVE
%-------------------
handlesac(PLAN,TEMP):-
state(sac,metacommunicative),
repeat(PLAN,TEMP).

Figure 1: A fragment of GnuTutor’s dialogue rules in Prolog

Several open source agents and voices are currently avail-
able. XFace7 is an open source, cross-platform 3D agent
toolkit with emotional expression (Balcı 2005). Galatea8

is similarly cross-platform, open source, and 3D, though
it has a number of other features, including speech recog-
nition and creation of 3D agents from human photo por-
traits (Kawamoto et al. 2002). Greta9 is an advanced open
source 3D agent toolkit for Windows (Mancini, Bresin, and
Pelachaud 2007). iFace10, like Greta, is an open source 3D
animated agent package available for Windows (Arya et al.
2006). While all of the above are open-source, only the first
two are cross-platform.

Given that both XFace and Galatea meet the constraints of
GnuTutor, i.e. are open source and cross-platform, the next
most meaningful selection criteria is simplicity and ease of
use. XFace is significantly simpler to use than Galatea, since
XFace uses a client/server architecture by which the server
(a window containing the head) may be controlled by any
program that can successfully connect to it and send prop-
erly formatted (XML) commands. Thus XFace was selected
as the primary agent component of GnuTutor. However, to
satisfy the additional needs of researchers wishing to explore
more advanced agent capabilities in ITS, Greta was selected
as the secondary agent component of GnuTutor.

XFace is designed to work with either Flite, an open
source, cross-platform TTS (Black and Lenzo 2001), or
with Microsoft’s Speech Application Programming Inter-
face (SAPI). This duality is advantageous: users wishing
to remain open-source and cross-platform can choose Flite,
while users wishing to use a higher quality speech engine

7http://xface.itc.it/
8http://hil.t.u-tokyo.ac.jp/ galatea/
9http://www.tsi.enst.fr/ pelachau/Greta/

10http://img.csit.carleton.ca/iface/



can make use of the SAPI interface for TTS. Greta can use
the open source, cross-platform Mary TTS (Schrder and Hu-
necke 2007) which offers a variety of reasonably high qual-
ity voices.

Conclusion
GnuTutor preserves much of the original functionality of
AutoTutor and includes mixed initiative dialogue, speech
act classification, an animated agent, and natural language
understanding using latent semantic analysis. However sig-
nificant effort has been made to simplify the codebase to
address the needs of different user communities. College in-
structors will find that GnuTutor is highly suitable for AI lab
exercises. End users will find GnuTutor’s authoring simple
enough to create their own content. And researchers wish-
ing to create derivative ITS will find that GnuTutor provides
the core tools within a lightweight framework. GnuTutor
is hosted on Sourceforge11 and is cross-platform under the
Mono and .NET runtimes. It is the first open source, conver-
sational intelligent tutoring system.
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