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ABSTRACT 
We investigate automatic detection of teacher questions from audio 
recordings collected in live classrooms with the goal of providing 
automated feedback to teachers. Using a dataset of audio recordings 
from 11 teachers across 37 class sessions, we automatically 
segment the audio into individual teacher utterances and code each 
as containing a question or not. We train supervised machine 
learning models to detect the human-coded questions using high-
level linguistic features extracted from automatic speech 
recognition (ASR) transcripts, acoustic and prosodic features from 
the audio recordings, as well as context features, such as timing and 
turn-taking dynamics. Models are trained and validated 
independently of the teacher to ensure generalization to new 
teachers. We are able to distinguish questions and non-questions 
with a weighted F1 score of 0.69. A comparison of the three feature 
sets indicates that a model using linguistic features outperforms 
those using acoustic-prosodic and context features for question 
detection, but the combination of features yields a 5% improvement 
in overall accuracy compared to linguistic features alone. We 
discuss applications for pedagogical research, teacher formative 
assessment, and teacher professional development. 
 
CCS Concepts 
• Social and professional topics~K-12 education • Computing 
methodologies~Discourse, dialogue and pragmatics  
• Computing methodologies~Supervised learning by 
classification • Information systems~Information extraction 
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Automatic Speech Recognition; Natural Language Processing; 
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1. INTRODUCTION 
Teachers employ a variety of pedagogical practices in their 
classrooms. Instructional activities may include lectures, asking 
questions and evaluating student responses, or assigning students 
individualized seatwork or group work. A growing body of 
research indicates that certain activities, such as asking particular 
types of questions or engaging in classroom-wide discussion, 
predicts increased levels of student engagement and achievement 
gains net of socio-demographics [4, 20, 42]. Furthermore,  
providing teachers with training [18] and data-driven analysis [23] 
about their use of such instructional strategies can have positive 
downstream effects on student achievement.  
But just how do we generate this feedback to share with teachers? 
Currently, efforts to assess classroom practices rely on observations 
by trained human judges [19]. For example, the Nystrand and 
Gamoran coding scheme [14, 30] provides a general template for 
documenting teachers’ activities and can be used to analyze their 
instructional strategies. Unfortunately, this is an expensive and 
time-consuming practice that cannot be deployed uniformly at 
scale. 
In order to facilitate wide-scale analysis of teachers’ practices, 
computational methods that can automatically analyze classroom 
instruction are needed. We take a step in this direction by 
automatically detecting teacher questions in live classrooms. We 
focus on questions because they are a central component of dialogic 
instruction, often serving as a catalyst for in-depth classroom 
discussions and so called ‘dialogic spells’, characterized by student 
questions that spawn reflection, debate, and deviation from pre-
scripted lesson plans [31]. We acknowledge that all questions are 
not created alike. The so called authentic questions (questions 
without prescripted answers) and questions with uptake (follow-up 
on the respondent’s answer) are much more highly predictive of 
achievement compared to test questions, where the answers are 
known apriori [30, 31]. Nevertheless, we focus on detecting all 
teacher questions in this early stage of work with an eye for 
categorizing among different types of questions in future work (as 
we have begun to do from text transcripts [36]). 
Classrooms provide a unique set of challenges for automatic 
detection of questions. Questions in the classrooms often vary from 
traditional information-seeking questions in other contexts, such as 
office meetings or conversational speech. For instance, teachers ask 
different types of questions, such as managerial questions (e.g., 
“who hasn’t finished the assignment yet?”), rhetorical questions 
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(e.g., “that is indeed relevant, isn’t?”), closed questions (“what is 
the capital of Pakistan?”), and open questions (“why do you think 
the author makes this argument?”) [7]. Some of these questions, 
such as attendance-taking or teacher test questions, often do not 
exhibit the prosodic rises in inflections typically associated with 
question-asking and may instead sound like declarative statements 
when taken out of context. 
Furthermore, a system designed to automatically analyze teachers’ 
practices must fulfill a number of practical constraints [10]. For 
one, it cannot be disruptive to either teacher or students. Secondly, 
the approach must be cost-effective and easy to setup in order to 
enable widespread adoption. Additionally, for privacy concerns, 
video recordings are not possible unless students can be de-
identified. 
We attempt to overcome these challenges by designing a system 
that includes a low cost, wireless headset microphone to record 
teachers as they freely move about the classroom. Our system 
accommodates various seating arrangements, classroom sizes, and 
room layouts, and attempts to mitigate complications due to 
ambient classroom noise, muffled speech, or classroom 
interruptions [5], factors that reflect the reality of real-world 
environments. 

2. RELATED WORK 
There has been a large-body of work on detecting questions from 
text-based corpora spanning several decades [1]. However, there 
has been comparably little research on question detection from 
audio recordings. A few key studies are discussed below. 
Boakye et al. [8] examined the ability of machine learning models 
to automatically detect questions from the ICSI Meeting Recorder 
Dialog Act (MRDA) corpus [40], a dataset of 75 hour-long 
meetings recorded with headset and lapel microphones. Using the 
SRI CTS automatic speech recognition (ASR) engine, they 
achieved a word error rate (WER), a measure of edit distance 
comparing the ASR hypothesis to the original transcript, of 0.38 on 
the corpus. They then trained an AdaBoost classifier to detect 
questions from the corpus using word, natural language, and parse 
tree features derived from the ASR transcriptions, achieving F1 

scores of 0.52, 0.35, and 0.50, respectively. Adding contextual and 
acoustic features improved the F1 score to 54.0. This modest 
improvement suggests that linguistic information may be more 
important for question detection compared to contextual or acoustic 
information.  
Stolcke et al. [41] presented a statistical approach for modeling 
dialogue acts in conversational telephone speech. The authors used 
a hidden Markov model on the Switchboard corpus [15] to identify 
speech acts, such as questions, statements, or apologies, achieving 
an accuracy of 65% on ASR transcriptions (WER 0.41) and 71% 
based on human transcriptions (chance level 35%; human 
agreement 84%).  
The authors also attempted to distinguish questions from 
statements, two dialogic components often confused by their 
model. The authors improved their accuracy to 75% on a subset of 
their dataset containing equal proportions of questions and 
statements. This result, based on a balanced dataset limited to a 
small number of pre-specified topics and segmented by human 
observers, achieved only modest accuracy, highlighting the 
difficulty of question detection in real world environments.  
More recently, Orosanu and Jouvet [33] used ASR transcriptions to 
train models to differentiate between statements and questions 
using three French language corpora consisting of 7,005 statements 
and 831 questions. They classified 72.6% of questions and 77.7% 

of statements correctly using linguistic and prosodic features 
derived from human transcriptions. However, when they 
substituted ASR transcriptions in two corpora (WERs of 0.22 and 
0.28), they found a 3% reduction in classification accuracy. 
Additionally, the F1 score was only 0.40 for questions compared to 
a weighted F1 score of 0.63, demonstrating greater difficulty in 
identifying questions compared to statements. The authors found 
that models trained on linguistic features significantly 
outperformed those trained with prosodic features, and the 
combination of both provided only trivial improvements. 
Furthermore, the models trained on ASR transcriptions of 
unscripted, spontaneous speech from the third corpus was slightly 
less accurate (accuracy of 70%) compared to a corpus of scripted 
dialogue from radio interviews (73%) (chance=50%). This 
underscores the potential added difficulty of automatically 
detecting questions based on spontaneous speech, as in our study.  
Additionally, Orosanu and Jouvet examined classification using 
imperfect sentence boundaries. The authors manipulated the 
boundaries of the human segmented utterances based on the longest 
silence preceding or following an utterance. Following this 
perturbation of the manual segmentation, they observed a 3% drop 
in accuracy. This reveals an additional difficulty in question 
detection based on imperfectly segmented utterances, a challenge 
we also confront in this work.  
Other studies have attempted to identify questions using prosodic 
information, often in tonal languages such as Chinese [45] or 
Vietnamese [34, 44]. Another study used prosodic features and a 
decision tree to detect questions from a dataset of Arabic language 
audio lectures containing an equal number of questions and 
statements [21]. Although the authors reported 76% accuracy 
(chance = 50%), the dataset consisted of only three speakers and 
the results were not validated independent of the speaker. 
Nevertheless, the authors found that the fundamental frequency and 
the energy level were the most useful features, features we also 
consider in this work.  
One English language study combined acoustic, lexical, and 
syntactic features to identify questions from Wikipedia talk pages 
[24]. The authors noted that models using lexical and prosodic 
features (AU-ROC 0.92) only slightly outperformed models using 
lexical features alone (AU-ROC 0.91). This study benefited from 
perfect transcripts and their corpus did not contain properties of 
spontaneous speech (e.g., backchannels, disfluencies, or 
interruptions), as in our study.  
In preliminary work, we explored question detection from 
automatically-segmented utterances derived from live-recordings 
of classroom audio. Using leave-one-speaker-out cross-validation, 
we achieved an overall weighted F1 score of 0.69 using only lexical 
and syntactic features [28] demonstrating that question detection 
was possible from noisy classroom audio. Presently, we expand 
upon this work to explore the potential of acoustic and contextual 
features in conjunction with linguistic features.  

3. CONTRIBUTIONS AND NOVELTY 
We describe an approach to automatically identify teacher 
questions solely from an audio recording of the teacher in a real-
world classroom. Given the noisy environment, we face a number 
of technical challenges. Classroom speech is particularly noisy as 
there are disruptions, accidental microphone contact, sounds of 
students shuffling papers or moving desks, alarms, background 
media, and so on. Classroom speech is also more informal and 
conversational compared to more formal settings such as meetings. 
Furthermore, we must automatically segment utterances from the 



audio stream, an analysis itself that is prone to error. Lastly, ASR 
transcription is imperfect, thereby adding additional noise. 
We make several contributions while addressing these challenges. 
First, we examine a dataset of full length recordings of real world 
class sessions, drawn from multiple teachers and schools. Second, 
we only use teacher audio because it is the most practical option 
given privacy and scalability concerns. Third, we automatically 
segment audio recordings into individual teacher utterances in a 
fully automated pipeline. Fourth, we combine multiple ASR 
engines at the feature level to ameliorate errors.  Fifth, we consider 
high-level linguistic features, acoustic and prosodic features, and 
contextual features, all derived from the audio stream. Finally, we 
design our models to generalize across teachers rather than 
optimizing to individual teachers. 

4. METHODS 
We begin by reviewing our data collection procedure (Section 4.1), 
followed by discussion of our approach to automatically segment 
the audio streams (Section 4.2). Next, we describe the process used 
to manually label the detected speech as containing a question or 
not (Section 4.3) and transcribe the audio using ASR (Section 4.4). 
Finally, we discuss our feature sets (Section 4.5) and machine 
learning approach (Section 4.6).  

4.1 Data Collection 
A dataset of audio recording was collected at six rural Wisconsin 
middle schools during literature, language arts, and civics classes 
taught by 11 different teachers (three male; eight female). A total 
of 37 class sessions were recorded over 17 separate days in the 
course of a year. The length of each class session varied depending 
on the school, lasting between 30 and 90 minutes. The dataset 
contains a total of 32 hours and five minutes of audio. 
In order to capture unbiased samples of discourse in real-world 
classrooms, each teacher was asked to carry out their normal lesson 
plan. The teachers were recorded using a wireless microphone, 
which allowed them to move about the classroom freely. A Samson 
77 Airline wireless microphone (Figure 1) was chosen based on 
previous work [10] and for its noise-canceling abilities and 
relatively low-cost ($300 in 2014). The recording of the teacher’s 
speech was saved as a 16 kHz, 16-bit single channel audio file 
(Figure 2).  

 
Figure 1. Samson 77 Airline Microphone 

 
Each class session was live coded by observers trained in the 
Nystrand and Gamoran coding scheme (see below), using 
specialized software developed for this task (Figure 3) [25]. Coders 
were also trained on proper recording techniques to ensure 
consistent levels of quality in the recordings. Following the class 
session, the coded annotations were reviewed and refined by the 
original coder until reaching full agreement with a second coder.  
The Nystrand and Gamoran coding scheme [14, 30] tracks 
classroom activity across the following (in order of increasingly 
fine granularity) three parallel levels:  (1)  episodes, which denote 

 
Figure 2. Excerpt of classroom recording marked with 

utterances, instructional segments, and dialogic questions  
 

  
Figure 3. Screenshot of the Class 4 program 

 
the current activity/topic; (2) instructional segments, 17 categories 
that represent possible classroom activities (e.g., Lecture, Group 
Work, Discussion) used to implement an episode; and (3) certain 
questions (e.g., non-procedural, non-rhetorical) asked by teachers 
and students [30]. We focus on questions asked by the teacher here.  

4.2 Teacher Speech Extraction 
Recordings of the teacher’s speech was segmented into utterances 
using a voice activity detection (VAD) technique [5]. First, a low-
pass filter was applied to the recordings. Next, the amplitude 
envelope of the signal was examined in non-overlapping 20-
millisecond windows. Whenever the amplitude of the signal 
exceeded a preset threshold, it was assumed that the teacher was 
speaking, otherwise, silence was assumed. Consecutive windows 
of teacher speech were considered part of a potential teacher 
utterance until silence was detected continuously for 1 second.  
We set the VAD threshold low enough to prioritize capturing all 
instances of the teachers’ speech. However, this caused a high rate 
of false alarms in the form of non-speech utterances, such as 
classroom noise, body movements, coughing, or heavy breathing. 
In order to filter out these false alarms, we processed the potential 
utterances with the Bing ASR system [27]. We considered any 
potential utterances rejected by the ASR as non-speech. 



Additionally, utterances shorter than 125 milliseconds were 
removed as they were unlikely to contain meaningful speech. 
We evaluated the effectiveness of this utterance detection approach 
in prior work [10]. Briefly, we extracted a random subset of 1,000 
potential utterances and manually coded them as containing speech 
or not speech. We observed high levels of both precision (96.3%) 
and recall (98.6%) and an F1 score of 0.97, which we deemed 
sufficient for our purpose. We extracted a total of 10,080 utterances 
from the 37 classroom recordings. The average utterance length 
was 5.01 seconds with a standard deviation of 7.64 seconds.  

4.3 Question Coding 
Many of the previous studies in automatic question detection used 
datasets that contained questions and statements that had been 
segmented manually by humans. However, in our study we rely on 
automatic, and thus imperfect, segmentation. We also used fixed 
amplitude envelope and silence thresholds while segmenting 
utterances as opposed to learning teacher-specific thresholds in 
order to increase generalizability to new teachers. A side-effect of 
this procedure is that each utterance may contain multiple 
questions, or conversely, a question may be spread across multiple 
utterances [22].  
To address this concern, we manually coded the 10,080 extracted 
utterances as either “containing a question” or “not containing a 
question” rather than “question” or “statement.” This distinction, 
although subtle, addressed the cases in which a question phrase was 
embedded within a longer utterance, coding these as “containing a 
question.” Similarly, we also handled cases in which a question 
phrase spans one or more consecutive utterances, also coding these 
utterances as “containing a question.” 
We define a “question” following a coding scheme that was 
specifically designed to analyze questions in classroom discourse 
[31]. Here, questions are defined as utterances in which the teacher 
solicits information from a student either procedurally (e.g., “Is 
everyone ready?”), rhetorically (e.g., “Oh good idea James, why 
don’t we just have recess instead of class today”), or for knowledge 
assessment/information solicitation purposes (e.g., “What is the 
capital of Indiana, Michael?”). Likewise, the teacher calling on a 
different student to answer the same question (e.g., “Nope. 
Shelby?”) would also be considered a question. In some coding 
schemes, the previous example would be classified as “turn 
eliciting” questions [3]. Cases in which the teacher reads from a 
novel in which a character asked a question or calls on a student for 
other reasons (e.g., such as to discipline them) would not be 
considered questions.  
The coders were seven research assistants and researchers whose 
native language was English and who had no experience with the 
Nystrand and Gamoran [25] coding scheme. The coders first 
engaged in a training task by labeling a common evaluation set of 
100 utterances. These 100 utterances were manually selected to 
exemplify questions that were difficult to identify. Once coding of 
the evaluation set was completed, the expert coder who initially 
selected and coded the example utterances reviewed the codes for 
any discrepancies. Coders were required to achieve a minimal level 
of agreement with the expert coder (Cohen’s kappa, κ = 0.80). If 
the agreement was lower than 0.80, mistakes were identified and 
explained to the coders.  
After this training task was completed, each coder coded a subset 
of utterances from the complete dataset across multiple sessions. 
Coders listened to the utterances in temporal order and assigned a 
label to each, based on the words spoken by the teacher, the 
teachers’ tone (e.g., prosody, inflection), and the context of the 

previous utterance. Coders could also flag an utterance for review 
by the expert, although this occurred only rarely.  
Of the 10,080 utterances, 3,584 were labeled as “containing a 
question” (36%) and 6,496 as “not containing a question” (64%), 
across teachers. To ensure reliability, a random subset of 117 
utterances from the full dataset were selected and coded by the 
expert coder, which resulted in high agreement (Kappa κ = 0.85). 

4.4 Automatic Speech Recognition 
In previous work [6, 28] we examined three different automatic 
speech recognition (ASR) systems for this task: Bing [27], AT&T 
Watson [16] and the Azure [26]. Both the Bing and AT&T ASR 
systems transcribed individual utterances segmented as described 
in Section 4.2. The Azure system, however, processed full-length 
classroom recording to produce a set of time-stamped words, from 
which we reconstructed the individual utterances. 
We evaluated performance of the three ASR systems on a subset of 
1,000 utterances chosen randomly without replacement, 
considering two metrics commonly used in speech recognition: 
word error rate (WER) and simple word overlap (SWO) [28]. WER 
accounts for word order between ASR and human transcripts and 
was computed by summing the number of substitutions, deletions, 
and insertions required to transform the human transcript into the 
ASR transcript, divided by the total number of words in the human 
transcript. SWO, however, does not account for word order and was 
computed by dividing the number of words that appear in both the 
human and ASR transcripts by the total number of words in the 
human transcript.  
In Table 1 we show the WER and SWO for the three different ASR 
systems. We note that all three systems achieved moderate 
accuracy, despite the complexity of the task of automatically 
transcribing noisy conversational speech recorded in a real-world 
environment. 
  

Table 1. ASR word error rate (WER) and simple word 
overlap (SWO) averaged by teacher for 1,000 utterances, with 

standard deviations shown in parentheses 
ASR WER  SWO 
Bing Speech 0.45 (0.10) 0.55 (0.06) 
AT&T Watson 0.63 (0.11) 0.42 (0.11) 
Azure Speech 0.49 (0.07) 0.64 (0.16) 

 
The Azure ASR engine failed to return transcriptions for 201 of 
these 1,000 utterances. This resulted in a WER of 1.0 and SWO of 
0.0 for those utterances. Discarding those instances improves WER 
for Azure to 0.37 (SD = 0.07) and SWO to 0.68 (0.06). Thus Azure, 
when able to transcribe an utterance, is the best performing ASR. 
However, this failure to return a transcription for 20% of utterances 
requires that we consider it only in conjunction with another ASR 
engine.  
We also compared ASR transcriptions with each other across our 
full dataset of 10,080 utterances. The results in terms of SWO were 
as follows: Bing versus AT&T (0.43), Bing versus Azure (0.51), 
and Azure versus AT&T (0.48). On average the ASR engines only 
agree on half of the words in each transcript. Therefore, the 
combined use of multiple ASR systems could provide additional 
information, as the strengths and weaknesses of individual ASRs 
may vary across teachers, class sessions, and instruction types. We 
combined them at the feature-level as discussed in the next section. 



4.5 Features 
We extracted 218 linguistic, acoustic, and contextual features to 
train our classification models.  
Linguistic Features. We considered a set of natural language 
features generated from ASR transcripts for each utterance 
obtained from Bing Speech, AT&T Watson, and Azure Speech 
engines. The majority of these features (n=34) were obtained by 
processing each utterance with the Brill Tagger [9] and analyzing 
each token with a question type classifier [32]. The question type 
classifier, developed for speech act classification in educational 
systems, used a cascaded finite state transducer to tag utterances 
according to a taxonomy of potential question types, as well as part 
of speech tags. Features included the presence of particular 
question words (e.g., what, why, how), simple disambiguation rules 
(e.g., the presence of words that start with wh-), part of speech tags 
(e.g., presence of nouns, presence of adjectives), and hypothesized 
categories based on simple keywords (e.g., definition, comparison, 
procedural). We used these features in prior work to detect domain-
independent question properties from human-transcribed questions 
[36] and for automatic classification of teacher questions [6, 28]. 
We included three additional features: proper nouns (e.g., student 
names), pronouns associated with uptake (teacher questions that 
incorporate student responses), and pronouns not associated with 
uptake, as recommended by a domain expert on teacher questions. 
In all, we extracted 37 binary linguistic (NLP) features for each 
ASR’s transcription. Next, we computed a combined NLP feature 
set by taking the mean of the individual ASR binary features. For 
example, if the what feature was detected by Bing and AT&T, but 
not Azure, then it would take on a value of 0.67. All subsequent 
analyses focus on this combined feature set as it has been shown to 
be superior to the individual feature sets in our prior work [28] 
Acoustic Features. We extracted prosodic, spectral, and voice 
quality features with the OpenSmile audio feature extraction tool 
[13] using the feature set from the Interspeech Emotion Challenge 
[38]. The low-level audio descriptors were: zero-crossing-rate 
(ZCR) from the time signal, root mean square (RMS) frame energy, 
Mel-frequency cepstral coefficients (MFCC) 1-12, fundamental 
frequency computed from the cepstrum (normalized to 500 Hz), 
and a voicing probability computed from the autocorrelation of the 
power spectrum. For each feature, 12 statistical functionals were 
computed: mean, standard deviation, kurtosis, skewness, minimum 
and maximum value, relative position of the minimum and 
maximum values (in frames), range, two linear regression 
coefficients (slope, offset), as well as the linear regression mean 
square error (MSE). Additionally, for each feature, we considered 
the smoothed moving averaged window (length 3) and the 1st order 
delta coefficient (differential) of the smoothed low-level descriptor. 
This results in 16 · 2 · 12 = 384 features for each utterance. Given 
the large number of acoustic features compared to our other feature 
sets, we used tolerance analysis to eliminate features with high 
multicollinearity (variance inflation factor > 5) [2], after which, 168 
acoustic features remained. 
Context Features. We considered a number of context features for 
each utterance. These included: the length of utterance, lengths of 
the previous and subsequent utterances, the duration of the pause 
preceding and following the utterance, the position of the utterance 
within the class session normalized to (0,1), verbosity (the number 
of words from the Bing ASR transcript), and the rate of speech 
(number of words in the Bing ASR transcript divided by the length 
of the utterance in seconds).  
We also considered the likelihood that each utterance occurred 
during one of the instructional segments from the Nystrand and 

Gamoran coding scheme [30]. We considered the five most 
commonly occurring instructional segments in the dataset: 
Question & Answer, Procedures & Directions, Group Work, 
Supervised Seatwork, and Lecture. In prior work, we predicted the 
occurrence of the segments by training supervised machine 
learning models using timing, acoustic, and linguistic features, 
resulting in F1 scores ranging from 0.64 to 0.78 [12]. For each 
utterance, the probability it is contained within each of the 
instructional segments was considered, resulting in five additional 
context features. In total, we extracted 13 context features.  

4.6 Classification Models 
We trained and tested supervised classification models to predict if 
an utterance contained a partial or complete question (question), or 
did not contain a question at all (non-question). The model building 
process involved the following steps. 
Feature Standardization. We z-scored standardized all 218 
features, resulting in a mean of 0.0 and a standard deviation of 1.0 
for each feature. Features were standardized within each teacher. 
Classification Models. We explored a number of common 
machine learning classifiers using implementations from the 
WEKA toolkit [43]: Naïve Bayes, logistic regression, random 
forest, J48 decision tree, J48 with Bagging, Bayesian network, k-
nearest neighbor (k = 7, 9, and 11). We also combined the 
classifiers with MetaCost [11], which penalized misclassifications 
of the minority class (weights of 2 and 4).  
Validation. We validated the classification models with leave-one-
teacher-out cross-validation. Each model was built on data from 10 
teachers (the training set) and validated on the held-out teacher (the 
testing set). The process was repeated for 11 folds so that each 
teacher appeared in the testing set once and the results were 
calculated from a confusion matrix aggregated across teachers. 
This cross-validation technique tests the potential of our models to 
generalize to new teachers despite variations in speaking patterns, 
word-choice, and rate of question-asking.  

5. RESULTS 
5.1 Classification Accuracy 
The best performing model was the J48 decision tree with bagging 
and MetaCost (miss weight of 2) and used all features. This model 
achieved the highest F1 score for the classification of utterances 
containing questions and was consistent with respect to precision 
(0.69) and recall (0.70). We selected the best performing model 
based on the F1 score for questions to prioritize the model’s ability 
to detect the class of interest, which was always the minority, rather 
than prioritizing the dominant class label (i.e. non-questions). 
Figure 4 shows the results of the J48 decision tree with bagging and 
MetaCost for each set of features: linguistic (NLP; n = 37), acoustic 
(n = 168), and contextual (n = 13), as well as the combination of all 
features (n = 218). The remainder of the results given in this work 
use this classifier.  
With respect to individual feature sets, we found that linguistic 
features outperformed acoustic and context features in the 
classification of both questions and non-questions, a result that is 
consistent with previous studies in question detection from 
automatic transcriptions from audio [8, 24, 33]. However, we note 
that while acoustic-prosodic features were not particularly 
successful in identifying questions (0.36), they were significantly 
more successful in identifying non-questions (0.67). This suggests 
that acoustic-prosodic features may be useful in identifying other 
types of statements compared to questions themselves, albeit less 
useful than the linguistic features alone.  



 

 

 

Table 2. Confusion matrix showing agreement and disagreement between the three feature sets: linguistic (NLP),  
acoustic (Aco), and context (Con) in classifying questions (Q) and non-questions (NQ) 

 Predicted 
 

Agreement 
 

Disagreement 
 

NLP Q NLP NQ 
 

NLP Q NLP Q NLP Q NLP NQ NLP NQ NLP NQ 
 

Aco Q Aco NQ 
 

Aco Q Aco NQ Aco NQ Aco NQ Aco Q Aco Q 

Actual Con Q Con NQ 
 

Con NQ Con Q Con NQ Con Q Con NQ Con Q 

Q 0.64 0.36 
 

0.37 0.35 0.40 0.32 0.35 0.35 

NQ 0.36 0.64 
 

0.63 0.65 0.60 0.68 0.65 0.65 

 
 

 
 

 

Figure 4. Results for question detection comparing linguistic (NLP), acoustic (Aco), and context (Con) features, pairwise 
combinations of feature sets, and the combination of all features 



For the question class, the combined model demonstrated no 
improvement compared to using only linguistic features (both F1 = 
0.56). However, we found that the additional features did result in 
improvement for the classification of non-questions (0.76 vs. 0.71), 
a 7% improvement. This resulted in a 5% improvement to the 
overall weighted F1 score (0.69 vs. 0.66). Table 2 provides a 
confusion matrix that shows agreement and disagreement between 
the three feature sets. In general, there was no clear pattern and the 
results were similar to the base rates in the dataset (see Section 4.2).  
Our best performing classification model (J48 with bagging and 
MetaCost) returns a confidence rate with each prediction, allowing 
comparison of the confidence of predictions between feature sets 
(Pearson’s r): acoustic vs. linguistic (0.15), context vs. linguistic 
(0.22), and acoustic vs. context (0.30), indicating a lack of 
consensus between the individual feature set models. 
Unsurprisingly, given our findings on the importance of the 
linguistic features, the prediction confidence of the linguistic model 
and the combined model was strongly correlated (r =.80) compared 
to acoustic (r = .25) and context (r = .27).  
Additionally, we compared pairwise combinations of the three 
feature sets, shown in Figure 4. We found that combining linguistic 
features with acoustic (0.55) or context (0.55) features resulted in 
no improvement over linguistic features alone (0.56) for the 
detection of questions. However, the combination of acoustic 
(0.76) or context (0.73) features with linguistic features did yield a 
7% and 3% improvement, respectively, over linguistic features 
alone (0.71) for the detection of non-questions. When taken 
together, these results indicate that a combination of acoustic and 
linguistic features may be sufficient for this task, with the context 
features not contributing much more.  

5.2 Feature Analysis 
Motivated by the observation that linguistic features were the most 
useful in identifying questions, we analyzed the diagnosticity of 
each feature individually. We hypothesized that linguistic features 
documenting the use of certain question words (e.g., what, why, 
how) will be the most useful to discriminate between questions and 
non-questions. We re-ran our models by considering only a single 
feature, one at a time, using a J48 decision tree with bagging and 
Meta-Cost. In Figure 5 we show the F1 scores for each individual 
feature ranked by the overall weighted F1 score. For completeness, 
we focused on all 218 features rather than the NLP features alone. 

  
Figure 5. Analysis of individual features ranked by overall 

weighted F1 score 

Of the top 100 features, 91 were acoustic features, eight were 
linguistic features, and only one was a context feature (the length 
of the utterance; ranked 13th). The dominance of acoustic features 
is unsurprising as they constitute 79% of the features. However, the 
top seven features were all linguistic, perhaps explaining the 
success of models trained with linguistic features alone compared 
to models using acoustic or context features. We show the top 10 
features sorted by their overall weighted F1 scores in Table 3. 
The top ranked feature was the presence or absence of the question 
word “what” in the ASR transcript. We note that this feature alone 
achieved an overall F1 score of 0.68, rivaling the model’s 
performance using all features (0.69). However, this feature only 
achieved a F1 of 0.46 for the question class compared to 0.56 using 
all features. An analysis of the ASR transcriptions showed that the 
“what” feature appeared in 5.9% of non-questions and 12.8% 
questions, indicating this one word alone was insufficient to 
distinguish questions from non-questions. Contrary to our 
expectations, we found that no other question-word features were 
as successful: how (ranked 198th), why (ranked 203rd), wh- (ranked 
207th), should (ranked 218th). We also note that no single feature 
model exceeded an F1 of 0.50 for question detection, implying that 
the combination of features was needed. 
 

Table 3. Top ten features ranked by overall F1 score 

 

5.3 Analysis by Class Session 
The models were trained using leave-one-teacher-out cross-
validation, but we performed additional post-hoc analyses 
exploring the model’s accuracy across the 37 individual class 
sessions. These analyses allow an investigation of the stability of 
our models for individual class sessions, which will be essential for 
generalizability to future class sessions with different topics.  
In Figure 6 we show histograms of F1 scores for questions, non-
questions, and the overall weighted average by individual class 
session. We note that model accuracy was distributed across class 
sessions, rather than a bimodal distribution of successes and 
failures. The model yielded an interquartile range 0.44 to 0.65 for 
the question class. In the classification of questions, we observed 
that the model had greater difficulty with some class sessions, and 
that this was most often associated with classes that contained 
relatively fewer questions. For example, the best performing class 
session (0.76) contained 57% questions while the poorest-
performing class session (0.19) contained only 29% questions. 
Over the 37 class sessions, the rate of questions and the F1 scores 
for questions was strongly correlated (Pearson’s r = 0.76). This 
demonstrates that our model had greater difficulty in identifying 
questions for class sessions that contained a low proportion of 

Type Feature F1  
NLP Presence of word "what" 0.68 
NLP Presence of phrase "do…have" 0.60 
NLP Presence of a pronoun 0.59 
NLP Presence of word "be" 0.59 
NLP Presence of a proper noun 0.57 
NLP Pronouns associated with uptake 0.57 
NLP Presence of a verb 0.55 
Acoustic MFCC [1] - maximum value 0.54 
Acoustic Voice probability - maximum position 0.54 
Acoustic MFCC [11] - linear regression MSE 0.54 



questions to non-questions. detection of questions might have 
important consequences for both research on effective instructional 
strategies and on teacher professional development. Thus, our 
current work centers on a fully-automated process for predicting 
teacher questions in a noisy real-world classroom environment, 
using only a full-length audio recording of teacher speech. 

6. DISCUSSION 
The importance of teacher questions in classroom discourse is 
widely acknowledged in both policy (e.g., [39]) and research [4, 29, 
31]. Teacher questions play a central role in promoting student 
engagement and achievement, suggesting that automating the  

6.1 Summary of Contributions 
We present encouraging results with our automated processes, 
consisting of voice activity detection to automatically segment 
teacher speech, combining three different ASR transcriptions, three 
different features sets (linguistic, acoustic-prosodic, and context), 
and machine learning with teacher-independent validation.  
A key contribution of our work over previous research is that our 
models were trained and tested on automatically, and thus 
imperfectly, segmented utterances. This builds upon the work of 
Orosanu and Jouvet [33] which artificially explored perturbations 
of a subset of utterance boundaries using automatic detection of 
silence within human-segmented spoken sentences. We note that 
despite automatic segmentation, which may split individual 
questions across utterances, we outperformed the previous work 

(weighted F1 scores 0.69 vs. 0.63). To our knowledge, our work is 
the first to detect spoken questions using a fully automated process.  
Our best performing model using all features achieved an F1 score 
of 0.56 for the question class and an overall weighted F1 score of 
0.69. Furthermore, we demonstrated that models built using only 
linguistic features outperformed those built using either acoustic or 
context features, consistent with similar findings in the literature [8, 
24, 33]. Although models built using a combination of features did 
not improve the identification of questions, they were more 
successful at detecting non-questions. Here, also linguistics and 
paralinguistics seemed to suffice; contextual features had little 
more to add – at least for the small set investigated here. 
Additionally, we investigated the utility of each feature. We found 
that the top seven individual features were all linguistic features, 
underscoring the importance of the specific content of the spoken 
utterances compared to paralinguistic or contextual clues for 
identifying questions.  
We validated our models using leave-one-teacher-out cross-
validation, demonstrating generalizability of our approach across 
teachers in this dataset. Furthermore, we analyzed model 
performance by class session, finding that our model was consistent 
across class sessions, an encouraging result supporting our goals of 
class session-independent question detection.  

6.2 Limitations and Future Work 
This study is not without limitations. We were also unable to record 
individual students for practical reasons and extraction of student 
speech was not feasible from the teacher’s microphone. This 
precluded us a potentially key feature that signals a question – the 
student response. Fortunately, additional data collection includes a 
second microphone that captures general classroom activity. This 
second channel of audio when combined with the recording of the 
teacher, will afford modeling patterns of teacher-student 
interactions, potentially revealing question-response patterns 
between teachers and students. 
We designed our approach to avoid overfitting to specific classes, 
teachers, or schools. However, all of our recordings were collected 
in Wisconsin, a state that has adopted the common core standard 
[39]. It is possible that the common core may impose aspects of a 
particular style of teaching that our models may overfit to. 
Similarly, although we used speaker-independent ASR and teacher-
independent validation techniques to improve generalizability to 
new teachers, our sample of teachers were from a single region with 
traditional Midwestern accents and dialects. Therefore, broader 
generalizability across the U.S. and beyond remains to be seen [17]. 
Finally, our models are likely English language specific. However, 
because we limited the linguistic features to high-level part of 
speech features, it may be possible to adapt these features to other 
languages that share similar linguistic structures. Our finding that 
the most useful features are linguistic features is encouraging as 
these features could be readily tagged in many languages. 
We acknowledge that our method for teacher utterance 
segmentation may potentially be improved using proposed 
techniques in related works. For example, Komatani et al. [22] 
explored detecting and merging utterances segmented mid-
sentence, allowing analysis to take place on a full sentence, rather 
than a fragment, which may improve detection of questions split 
across utterances. An alternative approach would be to 
automatically detect sentence boundaries within utterances, and 
extract features from each detected sentence. Furthermore, Raghu 
et al. [35] explored using context to identify non-sentential 
utterances (NSUs), defined as utterances that are not full sentences 

 

 

 Figure 6. Histogram of F1 scores by class session 
 



but convey complete meaning in context. Identification of NSUs 
may improve our model’s ability to differentiate between difficult 
cases (e.g., calling on students, saying a student’s name to 
discipline them).  
In this work, we compared the performance of three different 
features sets (linguistic, acoustic-prosodic, and context). While this 
approach allowed us to compare the utility of individual feature 
sets, the ideal set of features may derive from a subset drawn from 
different feature types. More sophisticated fusion methods in lieu 
of the simple feature level fusion explored here might also be 
needed. In future work, we will examine empirical feature selection 
as well as explore decision- and model-based fusion techniques that 
combine the three feature sets. We will also explore temporal 
models, such as hidden Markov models and conditional random 
fields, that might better capture questions in the larger context of 
the classroom dialogue. Such a temporal analysis may help find 
sequences of consecutive questions, such as those present in 
question and answer sessions or in classroom discussions.  
Lastly, informed by our observation of the utility of linguistic 
features, and more specifically those that capture certain question 
words, we will explore additional linguistic feature to identify 
additional words important to the detection of questions. Because 
the topics varied between individual class sessions, a traditional 
bag-of-word analysis may not be useful since the course material is 
not likely to repeat between teachers and sessions. However, this 
approach may yield insight into additional key words which could 
be aggregated into high-level features that may be useful to detect 
questions, similar to our binary question word features. 
Finally, as noted in the Introduction, it is not merely the amount of 
questions asked but the types of questions that correlate with 
achievement. Thus, future work will focus on classifying question 
properties defined by Nystrand and Gameron [25], such as 
authenticity, uptake, and cognitive level. We have explored these 
properties in previous work [36, 37] using perfectly segmented and 
human transcribed text. We will continue this work using our 
approach that employs automatic segmentation, ASR 
transcriptions, and question detection. 

6.3 Applications 
The ability to identify questions asked by teachers in the classroom 
is necessary in order to generate personalized formative feedback 
for the teacher about their use of class time. Our approach would 
permit automating such analysis, enabling a cost-effective scalable 
deployment that would be accessible to many schools and teachers. 
Using our system, teachers could record their class and receive 
automated feedback following the class session. Such feedback will 
afford teachers reflection on their teaching style and better enable 
collaboration with professional development personnel towards 
improvement of their pedagogy with the ultimate goal of increasing 
student engagement and achievement. It will also facilitate research 
into effective pedagogy by providing educational researchers with 
an automated approach to collect and code classroom discourse. 

6.4 Concluding Remarks 
We took steps towards fully-automated detection of teacher 
questions in noisy real-world classroom environments using 
linguistic, acoustic-prosodic, and context features. The present 
contribution is one component of a broader effort to automate the 
collection and coding of classroom discourse.  
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