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Abstract

Recent investigations on how people derive meaning from language have focused on task-dependent
shifts between two cognitive systems. The symbolic (amodal) system represents meaning as the statisti-
cal relationships between words. The embodied (modal) system represents meaning through neurocog-
nitive simulation of perceptual or sensorimotor systems associated with a word’s referent. A primary
finding of literature in this field is that the embodied system is only dominant when a task necessitates
it, but in certain paradigms, this has only been demonstrated using nouns and adjectives. The purpose
of this paper is to study whether similar effects hold with verbs. Experiment 1 evaluated a novel task
in which participants rated a selection of verbs on their implied vertical movement. Ratings correlated
well with distributional semantic models, establishing convergent validity, though some variance was
unexplained by language statistics alone. Experiment 2 replicated previous noun-based location-cue
congruency experimental paradigms with verbs and showed that the ratings obtained in Experiment 1
predicted reaction times more strongly than language statistics. Experiment 3 modified the location-
cue paradigm by adding movement to create an animated, temporally decoupled, movement-verb judg-
ment task designed to examine the relative influence of symbolic and embodied processing for verbs.
Results were generally consistent with linguistic shortcut hypotheses of symbolic-embodied integrated
language processing; location-cue congruence elicited processing facilitation in some conditions, and
perceptual information accounted for reaction times and accuracy better than language statistics alone.
These studies demonstrate novel ways in which embodied and linguistic information can be examined
while using verbs as stimuli.

Keywords: Embodied cognition; Verbs; Semantic judgment; Modal; Amodal; Language processing;
Distributional semantic models

Correspondence should be sent to John Hollander, Department of Psychology, University of Memphis, Psy-
chology Building, 400 Fogelman Drive, Memphis, TN 38111, USA. E-mail: jmhllndr@memphis.edu


https://orcid.org/0000-0002-3270-7495
mailto:jmhllndr@memphis.edu

2 0f43 J. Hollander, A. Olney/ Cognitive Science 48 (2024)
1. Introduction

The processes by which people extract meaning from language are essential subjects of
psycholinguistics and cognitive science. Advancements in the cognitive study of seman-
tic processing have unfolded along two trajectories: an account based on the principles of
embodied cognition, and an account based on distributional language statistics. The theo-
retical frameworks that have developed around these accounts often do not parsimoniously
accommodate one another. In fact, some consider them to be in theoretical opposition (see
De Vega, Glenberg, & Graesser, 2008; Shapiro, 2014 for multiple perspectives). However,
both distributional and embodied accounts are generally considered to be essential parts of
cognitive processing (Barsalou, Santos, Simmons, & Wilson, 2008; Louwerse & Jeuniaux,
2008; Vigliocco, Meteyard, Andrews, & Kousta, 2009) such that empirical support for one is
not necessarily evidence against the other. Recent developments in cognitive science suggest
that these two seemingly incongruous accounts may be parallel, complimentary, or inter-
twined, and have sought to reconcile the theoretical and methodological gaps between them
(Andrews et al., 2014; Barsalou, 2010, 2016; Bruni, Tran, & Baroni, 2014; Louwerse, 2011,
2018; Willems & Francken, 2012; Zwaan, 2014). Integrated theories recognize that contex-
tual demands during language comprehension may necessitate the usage of embodied or sym-
bolic systems in concert: both types of systems may be necessary to fully account for human
language processing, but the degrees to which either is dominant may be contextually medi-
ated. The challenge that remains is determining when, how, and why linguistic and embodied
information interact during language processing.

However, integrated theories must synthesize from two bodies of literature and evidence
that tend to conflict theoretically and methodologically, which constrains behavioral investi-
gations in some ways, sometimes resulting in homogenized stimulus sets and experimental
designs. In particular, previous experimentation in integrated language processing theory has
neglected to include verbs, both in isolation and as components of predicates in proposi-
tional accounts. While experiments in embodied and symbolic literature have accounted for
verbs independently, many of the designs involved are often methodologically incompatible
or insufficient to test integrated theories. As a result, researchers seeking to experimentally
reconcile these two theories have done so primarily with nouns, resulting in an incomplete
account of language processing. Accordingly, it is important to examine the evidence in sup-
port of embodied and symbolic theories with respect to verbs so that the current state of
integrative theories can be more comprehensively evaluated.

1.1. Embodied theory

The fundamental assertion of an embodied theory of language processing is that meaning
is constituted by simulations of the perceptual states that have been present in previous expe-
rience with the referents of words. This strength of this premise varies between threads of
embodied language processing research (Meteyard, Cuadrado, Bahrami, & Vigliocco, 2012),
which incorporate evidence developed along a few trajectories of neuropsychological and
cognitive experimental paradigms.
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Neurocognitive researchers have observed motor cortex activation and embodied process-
ing facilitation effects with action words and sentences. For example, word recognition studies
have revealed that when people read the word kick, some of the areas of the brain responsi-
ble for movement of the feet and legs activate higher than baseline despite no leg movement
taking place (Pulvermiiller, Shtyrov, & Ilmoniemi, 2005; Tettamanti et al., 2005). In another
study, participants were instructed to hold their hands in certain configurations (either open
palm or in a fist) while performing sentence sensibility judgments. When the sentences con-
tained phrasing which matched participants’ hand configurations (e.g., containing the word
applauded matched with an open palm), participants were faster to complete their judgments
than when the word was incongruous to their hand shape (Aravena et al., 2010). Further,
increased neural activity (via Event Related Potentials, or ERP) was observed at nodes near
the motor cortex during incongruous trials, suggesting that the hand shape manipulation could
induce facilitative preactivation or interference of the accurate neuromotor simulation. Similar
studies involving neuroimaging and physical posturing have found effects using abstract lan-
guage (Guan, Meng, Yao, & Glenberg, 2013) and idioms (Boulenger, Hauk, & Pulvermiiller,
2009). This type of evidence demonstrates that language processing does not happen just in
“language centers” of the brain, but in many regions, including the sensorimotor cortex.

Cognitive researchers have also devised ways to observe embodied effects without relying
on the manipulation of gross motor movements. Matlock (2004) found that participants were
slower to make judgments about sentences in which fictive motion (e.g., the road runs through
the valley) was depicted in difficult terrain as compared to more easily traversable terrain. This
effect was further replicated in an eye-tracking study, suggesting that, while participants were
not instructed to make gross motor movements, and the sentences did not refer to any real
motion, the language in the studies influenced processing to an impeded pace analogous to
navigation of the implied topography (Richardson & Matlock, 2007). A review by Zwaan
and Madden (2005) details other evidence of implicit perceptual simulation during language
processing. One study tasked participants to read individual sentences and then name related
pictures that exhibited either congruent or incongruent features as implied, but not explicitly
stated, by each sentence. For example, after reading The ranger saw the eagle in the sky, the
subsequent picture of an eagle would either have its wings outstretched (sentence congruent)
or folded (incongruent). Participants were faster to name sentence congruent pictures (Zwaan,
Stanfield, & Yaxley, 2002). According to the tenets of embodied theory, the best explanation
of this effect is that sentence comprehension involves interactive representations that con-
tain perceptual information, such as shape and orientation, which is otherwise not explicitly
conveyed.

The research described so far typically involves verbs, action phrases, or physically interac-
tive experiments. However, nouns and adjectives have played a role in embodied experiments
as well, and have come to dominate certain influential experimental paradigms, such as spatial
iconicity or location congruency experiments. In an illustrative example of these experiments,
two nouns are simultaneously presented on a computer screen in a vertical arrangement,
meaning that one word appears in the upper part of the screen, and one appears lower. Some-
times, these words referred to object pairs that are canonically found in a fixed vertical order
(e.g., an attic is higher than a basement). Zwaan and Yaxley (2003) originally devised this
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paradigm, and tasked participants to determine whether word pairs were semantically related.
When pairs that possessed a canonical order were positioned in that order (e.g., attic above
basement), participants were faster to respond than when the order was reversed (e.g., base-
ment above attic). This effect was found to extend to more abstract relationships, including
words indicating power differentials between people (e.g., master above apprentice) (Schu-
bert, 2005). Additional experiments by both sets of researchers suggest that this effect was
due only to the vertical positioning manipulation, as opposed to linguistic factors like typical
word order. These researchers concluded that the facilitative effect of word-referent organiza-
tion congruency could be explained by the application of a perceptual simulation and not by
language statistics.

A similar line of experiments involves the presentation of single words at specific locations
on the screen. Seti¢ and Domijan (2007) designed an experiment using a set of words referring
to either animals or inanimate objects and were associated with either high or low positions
in a typical visual setting (e.g., a bird is often in the upper visual field, while a carpet is often
low). These words were presented individually in either high or low positions on a screen, and
participants were asked to judge whether the word referred to a living or nonliving thing. As
an embodied account would predict, word-referent location congruency facilitated judgment
speed. This facilitation effect was replicated in another series of experiments, including one
in which participants only classified the font colors of words, implying that deep processing
is not necessary to observe this effect (Lachmair, Dudschig, De Filippis, de la Vega, & Kaup,
2011). A vertical congruency facilitation effect was found with the classification of ocean-
dwelling versus sky-dwelling animals (Pecher, Van Dantzig, Boot, Zanolie, & Huber, 2010)
and the positive-negative classification of emotional valence words (Meier & Robinson, 2004;
Zhang, Hu, Zhang, & Wang, 2015). Estes and Barsalou (2018) contains a meta-review of the
methods used by these and similar studies of the influence of spatial information on word
processing. These types of experiments would go on to provide a crucial foothold for the
integration of symbolic language processing theory in embodiment-oriented experiments.

1.2. Symbolic theory

The symbolic approach to language processing contends that meaning is derived from
the statistical relationships between words and the contexts in which they occur. These
theories are generally guided by the principle that perceptual input from listening and
reading activate rule-governed symbolic representations, and the interaction of these symbols
animates language processing. Modern distributional semantic models often include vector
space representations, in which words are extracted and represented as numerical vectors in
high dimensional space. The use of these types of models in cognitive research implies a
degree of commitment to the theory that words are purely arbitrary symbols that are given
meaning by their relational properties (Griffiths, Steyvers, & Tenenbaum, 2007; Landauer,
McNamara, Dennis, & Kintsch, 2007). These models, which do not incorporate perceptual
experience within representation, correlate strongly with human performance on a variety
language-based tasks (Jones, Willits, & Dennis, 2015; Lenci, 2008). On these grounds, it can
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be argued that embodied systems are rendered insufficient and unnecessary in an explanation
of human semantic processing.

Symbolic models of language processing based on language statistics begin with a large
corpus of linguistic input. Once a corpus is selected, researchers program algorithms which
count or predict words in context. One of the earliest models, the Hyperspace Analogue
to Language (HAL), uses these data to comparatively represent words as vectors in a high
dimensional space (Lund & Burgess, 1996). By comparing the distance between vectors in
this semantic space, the similarity of words can be quantified. Other models, such as Latent
Semantic Analysis (LSA; (Landauer & Dumais, 1997), Bound Encoding of the Aggregate
Language Environment (BEAGLE; Jones & Mewhort, 2007), and Topic Model (Griffiths
et al., 2007) perform similar computational processes, but with different approaches, assump-
tions, and parameters. Despite the algorithmic differences between these models, their success
in language-based tasks and association with human performance contributes to the implica-
tion that they represent cognitively plausible models of human language processing.

One immediate benefit of the use of distributional types of symbolic semantic models is
that they can readily incorporate a variety of linguistic input, regardless of grammatical class.
In fact, HAL has been able to categorize parts of speech since its inception (Burgess, Livesay,
& Lund, 1998). LSA has been a particularly progenitive model in this regard. Its usage of
higher-order co-occurrences has been demonstrated to correlate well with human perfor-
mance on many psycholinguistic tasks, such as the Test of English as a Foreign Language
(Landauer & Dumais, 1997), text cohesion judgments (Foltz, Kintsch, & Landauer, 1998;
Mcnamara et al., 2007), and document classifications (Louwerse, McCarthy, McNamara, &
Graesser, 2004). LSA also boasts a strong correlation with human performance (e.g., accu-
racy and reaction times) in laboratory studies, particularly in semantic categorization tasks,
though these types of tasks predominantly feature nouns (Siakaluk, Buchanan, & Westbury,
2003). As a result, LSA and similar models have been used as tools in increasingly effective
and complex educational and learning technologies in many domains (Graesser, McNamara,
& Kulikowich, 2011), including adult literacy (Graesser et al., 2016). More recently, endeav-
ors to map semantic vectors onto neurologically analogous featural concept representations
have informed the degree to which vector space models may reflect human cognitive pro-
cesses regarding both semantic and grammatical classes, including nouns, adjectives, and
verbs (Utsumi, 2020). As researchers continue to innovate distributional semantic models
(e.g., Bidirectional Encoder Representations from Transformers, or BERT; Devlin, Chang,
Lee, & Toutanova, 2019), our ability to approximate human language processing with com-
putational methods has increased exponentially.

While symbolic language processing models built without sensorimotor or perceptual input
continue to improve, their continued use in cognitive science implies an interesting suppo-
sition: if vector space models covary so strongly with human performance, then human lan-
guage processing could work in a similar way. However, Giinther, Rinaldi, and Marelli (2019)
argue that a claim of total amodality in conceptual processing is a misrepresentation of this
research which is borne from the methodological limitations of distributional semantic mod-
els. Due to the lack of multimodal input channels, most distributional semantic models often
cannot be used to make claims about multimodal processing in linguistic tasks. Rather, they
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can only account for linguistic experience, which is typically sufficient to complete the tasks
involved. This implies that embodied processing is not necessary to complete some tasks,
which is not the same as claiming that there is no embodiment in language processing. As
a result, the issue of task specificity makes it difficult to reconcile symbolic and embodied
accounts.

However, distributional semantic models do not necessarily preclude the use of nonlin-
guistic information on either a methodological or theoretical basis. In fact, there have been
successful attempts in creating distributional semantic models by merging linguistic and
nonlinguistic information, especially by using computer vision techniques (Bruni et al.,
2014; Giinther, Petilli, Vergallito, & Marelli, 2022). While distributional models often do not
account for multimodal information, it is entirely possible for them to do so. The challenge
for integrated distributional models, then, is to account for the myriad and interconnected
input streams of human perception. An additional challenge is to do so while performing
both linguistic and nonlinguistic tasks, as task goals may affect the relative dominance of
symbolic and perceptual information (Dudschig & Kaup, 2017).

Unfortunately, many of the tasks employed by embodied and symbolic orbits of research
have such little overlap that they provide little information about the interplay between sym-
bolic and embodied information during language processing. For instance, manipulating bod-
ily positions during lexical judgments has no analog in a semantic co-occurrence model.
These types of methodological gaps between the two theories are exacerbated by certain types
of language, such as verbs, which often require bodily interaction in embodied experiments.
Thus, independent lines of embodied and symbolic research have been unable to address the
possibility that embodied and symbolic processing are interdependent in ways that are not
always captured due to limitations in experimental methods. This possibility provides a key
conceptual foothold for integrated theories of language processing.

1.3. Integrated theories

While substantial evidence has accumulated in support of both symbolic and embodied
accounts, researchers have also advanced theories integrating the two. Integrated theories
have faced the difficult challenge of reconciling hypotheses which are separated by method-
ological incompatibilities. These discrepancies are largely responsible for the polarization
of method and theory between symbolic and embodied theories of language processing.
Studies seeking to test embodied theory tend to employ embodiment-focused methods while
neglecting (or suboptimally accounting for) symbolic processing, and vice versa, iteratively
increasing separation between the two frameworks. Seeking a resolution to these differences,
researchers have posited a few integrated theories. Representational pluralism theory sug-
gests that some words are codified modally, while others are amodal (Dove, 2009). This
would attribute the responsibility of embodied or symbolic effects on the words themselves,
rather than the tasks one performs with them. Language and situated simulation theory posits
that both embodied and symbolic information are used in conceptual processing, which itself
is manipulated by language processing (Barsalou, Santos, Simmons, & Wilson, 2012). One
integrated theory that has generated particularly relevant research is Louwerse’s (2007, 2011)
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symbol interdependency hypothesis, which emphasizes that language processing primarily
consists of symbol manipulation that serves as a code of embodied, perceptual information.

These types of integrated theories have been generally summarized as linguistic shortcut
hypotheses (Banks, Wingfield, & Connell, 2021; Connell, 2019), in which language serves
as symbols that are cognitively cheaper but rougher approximations of sensorimotor and per-
ceptual representations. As such, symbolic processing affords fast, imprecise representations
to a language user. These quick representations are then sharpened, enhanced, or specified
by embodied systems when necessary. In line with Paivio’s (1971) dual coding theory, the
contextual demands of language use do not always necessitate the specificity of embodied
representation. In these cases, the symbolic system is sufficient, and the embodied system
need not be recruited. A distinguishing factor in this theory, however, is that the embodied
system ultimately provides a representational grounding for the symbolic system, which is
situationally recruited to facilitate processing. Linguistic shortcut hypotheses accommodate
most of the evidence previously attributed to either embodied or symbolic theories because
they account for the task-dependent nature of language processing. Previous investigations
of embodied processing theories typically involved tasks which required or elicited embod-
ied language processing, while symbolic processing studies did not. Importantly, this theory
generates predictions about what may happen if embodied and symbolic processes were to be
experimentally manipulated in a single methodological paradigm. Devising a way to incorpo-
rate such a manipulation across incompatible methodologies is one of the primary challenges
facing integrated theories.

Some researchers have taken a data-driven, computational approach to this challenge. For
example, Petilli, Giinther, Vergallito, Ciapparelli, and Marelli (2021) compared the relative
association of language-based and computer vision-based referent similarity metrics to human
semantic priming performance and found that visual similarity between referents facilitates
semantic processing even in purely linguistic tasks. Other researchers have approached this
challenge with behavioral experimentation, especially by adapting the aforementioned spatial
iconicity and localization paradigms.

These experiments often feature nouns that were presented on a computer screen in
positions congruous with their typical referent positions (e.g., monitor above keyboard),
which elicit processing facilitation in semantic judgments. The results of these experiments
were originally interpreted as support for an embodied account of language processing, as
the facilitative effect of congruency could be explained by the application of a perceptual
simulation and not by language statistics. Louwerse and Jeuniaux (2010) brought this
explanation under scrutiny by applying two methodological innovations to the experimental
design. First, the question being asked of participants was changed; in one condition, people
were asked whether the two nouns were semantically related, while in another condition,
people were asked whether the nouns were presented in their iconic arrangement (i.e., in
their typical vertical orientation). By comparing a semantic judgment to an iconic one,
the role of task context could be directly observed and contrasted. Second, embodied and
linguistic processing factors were operationalized and quantified in order to observe their role
in each task. In this case, the symbolic factor was quantified as word order frequency (e.g.,
how often attic appears immediately before basement in a text corpus), and the embodied
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factor was quantified as ratings of the iconicity of word pair presentations in a separate
survey. The symbolic factor was significantly predictive of reaction times for the semantic
judgment task, while the embodied factor was not. Additionally, both the embodied factor
and the symbolic factor significantly predicted reaction times for the iconicity judgment task.
Finally, the symbolic factor’s ability to predict iconic judgment speed was weaker than its
ability to predict semantic judgment speed. The results of this study support an integrated
theory, where symbolic and embodied systems are recruited for different tasks and over
different time courses. The semantic judgment task only requires quick, linguistic, shallow
information, and thereby only recruits symbolic language processing systems. In contrast, the
iconicity judgment requires perceptual representation, so embodied processing is recruited.
Recently, further support of symbol interdependency has been found by innovating this
paradigm through the introduction of ERP recordings (Louwerse & Hutchinson, 2012), as
well as with the implementation of both concrete and abstract nouns.

The presentation of noun pairs provides an intuitive foothold for the application of both
symbolic and embodied processes because word co-occurrence is easy to calculate, and nouns
are relatively easy to visualize and use as stimuli in computerized experiments. Researchers
have also conducted integrated spatial congruency experiments involving the presentation of
single nouns. In response to proembodiment interpretations of these experiments, researchers
have determined that linguistic factors may indeed explain some of these observations due
to the relationships between the words presented and the words used to label the response
options (Lakens, 2011; Louwerse, 2011). For instance, bird may be more quickly categorized
as sky or ocean dwelling when seen in the upper part of the screen because it has stronger
linguistic co-occurrence statistics with the words sky and up than it does with ocean and down
because these symbolic relationships create rapid representational activation. In an empirical
follow-up, Hutchinson and Louwerse (2013) adapted a similar task from Pecher et al. (2010),
instructing participants to judge whether the words represented living or nonliving things.
Although nouns were presented singularly on the screen, bigram frequency of words used
in sequential trials was recorded in order to quantify a linguistic factor for use in predictive
models. While the concept-location facilitation effect was observed, bigram frequency also
explained a significant portion of reaction time variance, suggesting that both embodied and
symbolic systems contribute to the processing required in this task. While this study did
not manipulate embodied and symbolic task conditions or explore beyond the domain of
nouns, it does provide an example of how results previously considered to be in favor of
either embodied or symbolic theory unilaterally can be empirically redefined as support for
integrative theories.

Another potential explanation for some of these effects is polarity correspondence (R.
Proctor & Cho, 2006), in which the alignment of dichotomous category valences facilitates
classification processing. According to polarity correspondence, the facilitative effects in
these sorts of tasks may be due to the structural overlap between binarily coded perceptual,
conceptual, and response conditions (e.g., good/up/yes vs. bad/down/no). This alternative
explanation appears to be substantiated specifically in tasks that may be classified as binary
choice judgments, which include location-cue congruency tasks (see Lakens, 2012 for a
review), but contrary evidence raises further questions about the mechanism of facilitation
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in these studies (Pecher et al., 2010). To illustrate, Lakens (2012, p. 8) states that polarity
literature would suggest “fastest responses for +polar words presented UP, followed by
+polar words presented DOWN, in turn followed by the hypothesized equally fast catego-
rization times for —polar words presented either UP or DOWN.” In other words, the word
bird presented high may elicit processing facilitation not necessarily because of perceptual
simulation, but because both it and the upward direction are positively valanced in opposition
to negatively valanced objects and the downward direction. However, additional experiments
by Dudschig and Kaup (2017) further explored task dependency with this paradigm and
found location congruency facilitation effects for nouns to be robust in nonbinary decision
tasks, further suggesting cognitive simulation as the likeliest explanation.

These experiments are important for the development of integrated language processing
theories because their effects were found by successfully merging paradigmatic methodolo-
gies from each theory into designs that allow for their direct comparison. For example, in
the previously mentioned study by Louwerse and Jeuniaux (2010), effects of the individual
semantic and iconic judgment tasks may be interpreted separately to support either symbolic
or embodied theories unilaterally. In tandem, however, inferences can be made about dual
systems language processing. Other studies have used similar methods to examine processing
interdependency with noun-adjective property congruency judgments (Louwerse & Connell,
2011; Tillman & Louwerse, 2018). However, the set of stimuli and tasks found in this body
of experimental literature is relatively small and homogenous. So far, integrated experiments
like these tend to involve semantic judgments about series of words, usually nouns and some-
times adjectives, presented on a screen. This makes sense given that nouns and adjectives can
map straightforwardly onto modal representations (especially concrete ones). However, the
role of other parts of speech (particularly verbs) in integrated language processing theory is
underexplored.

There are several explanations for the lack of verbs in integrated studies. Despite their pres-
ence in foundational embodied and symbolic research individually, verbs have elicited the
most methodological incompatibility between frameworks. As previously discussed, embod-
ied studies of verbs often manipulate participants’ bodily positions, require large movements
for responses, or observe sensorimotor cortex activation while listening to action sentences
(Zwaan, van der Stoep, Guadalupe, & Bouwmeester, 2012). Symbolic theories simply do not
have an analog to these kinds of manipulations. Even in more physically constrained studies,
such as fictive motion (Matlock, 2004) and sentence processing experiments (Zwaan & Mad-
den, 2005), the use of verbs has typically required response behaviors that require embodied
language processing, and further, multimodal sensory and response systems (e.g., a human
body).

Verbs are critical to recent debates of the role of iconicity in signed and spoken language
(Lupyan & Winter, 2018; Perlman, Little, Thompson, & Thompson, 2018; Perniss, Thomp-
son, & Vigliocco, 2010). Researchers have even devised and conducted norming surveys of
animated, iconic visual representations of abstract verbs (Scicluna & Strapparava, 2020). Per-
tinently, distributional semantic models often provide weaker accounts of the semantic rela-
tions between verbs than some other parts of speech (Brown et al., 2023), which may be
explained by a reliance on embodied processing integration. Therefore, addressing the “verb
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gap” methodological conundrum in embodied language processing studies is necessary for a
more comprehensive account of human language processing. The purpose of the following
experiments is to extend symbolic-embodied language processing research to include verbs.

2. Experiment 1

In the studies highlighted above, some researchers have collected data regarding the ver-
tical spatial localization of noun-based concepts to use as a representation of perceptual or
embodied information encoded in language for use in analyses. In fact, a trend in the cre-
ation of perceptually based lexical norming databases has included survey ratings of vertical
spatial localization as a key measurement (Miklashevsky, 2018). Therefore, to establish an
analog between noun- and verb-based research in this domain, this experiment explores ver-
tical directionality ratings for verbs for use in similar designs.

Distributional semantic models have been used to model lexical norms obtained via rating
surveys, typically in common practice dimensions like concreteness, imagery, and affect. This
research has been useful in validating the importance and utility of both distributional seman-
tic models and lexical norm data in psycholinguistic research. As perceptually based norms
become more popular in research, it has become important to investigate the relationships
they have with other semantic models. The analysis of vertical directionality norms using dis-
tributional semantic models may provide convergent validity to the methods described here.

Additionally, making a direct comparison between different kinds of distributional seman-
tic models may reveal information about the nature of the information involved in the pro-
cessing of these judgments. To illustrate, we consider a set of distributional semantic models:
higher-order models such as LSA (Landauer & Dumais, 1997) and Word2vec (Mikolov et al.,
2013), lower-order approaches such as Google’s Web 1T 5-gram (Brants & Franz, 2006) and
Pointwise Mutual Information (PMI, Church & Hanks, 1990), and transformer-based models
such as BERT (Devlin et al., 2019).

LSA counts the frequency with which words appear in a set of documents. The result is
a large matrix with rows representing unique words, columns representing documents, and
word frequencies in documents within each cell. This word-by-document matrix undergoes
singular value decomposition, reducing the dimensionality of this matrix while preserving as
much of the original information as possible. This transformation produces a vector in the
lower dimensional space, and the cosine similarity of these vectors can be used to assess the
semantic relatedness of corresponding words. Due to its ability to compare words within and
across flexibly defined contexts, LSA encodes global contextual information and is represen-
tative of higher-order models.

LSA has been used to great effect in several linguistic tasks. It can account for vocabulary
acquisition in children, earn a passing grade on the Test of English as a Foreign Language
(Landauer & Dumais, 1997), and it correlates strongly with human performance on semantic
categorization tasks (Siakaluk et al., 2003). It has also been used to successfully predict sev-
eral lexical norms as rated by human participants, including age of acquisition, concreteness,
imagery, valence, arousal, and dominance (Bestgen & Vincze, 2012; Mandera et al., 2015).
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LSA can be applied to any number of corpora, but the most frequently used is known as the
General Reading up to 1st year college corpus, which contains about 12 million words (Zeno,
Ivens, Millard, & Duvvuri, 1995).

Word2vec is an alternative high-order natural language processing algorithm that generates
word embeddings by training a neural network on a large corpus of text. The algorithm uses a
sliding window to look at a small context of words around each word in the corpus and learns
to predict the probability of each word given its context. Its neural network is then trained
to minimize the difference between the predicted probability distribution and the actual dis-
tribution of words in the context. Research using Word2vec has shown that it is often better
than count-based models LSA in predicting human data, and builds on cognitively plausible
principles (Hollis, 2017; Mandera, Keuleers, & Brysbaert, 2017).

The Web 1T 5-gram corpus is not an algorithmic model itself; rather, it is a massive collec-
tion of text data containing over one trillion word tokens taken from English language web
pages (Brants & Franz, 2006). The text from these web pages is collected using a 5-word
sliding window, creating chunks known as 5-grams. The frequency of each unique 5-gram
within the entire corpus is simply accumulated and indexed. Due to its relatively tight obser-
vational window and large corpus size, the performance of 5-gram models is representative
of lower-order semantic models, which encode local, contextual relationships and syntacti-
cally dependent information. Like LSA, the Web 1T 5-gram corpus has been used as a tool
to approximate and explore human semantic processing in several different paradigms. Islam
and Inkpen (2010) found that an unsupervised 5-gram model performed better on a near-
synonym choice task than other, higher-order models (like LSA). Co-occurrence statistics
using 5-grams have also been used to successfully predict human reaction times on semantic
relatedness tasks (Louwerse & Jeuniaux, 2010), sensory modality judgment tasks (Louwerse
& Connell, 2011), and emotional feature association tasks (Tillman & Louwerse, 2018).

Another measure of word association which is primarily based on local dependences is
PMI(Church & Hanks, 1990). However, PMI also accounts for the relative frequency of the
individual words within a pair, which penalizes the associative strength of common words
and emphasizes rarer words. PMI has been implemented in influential distributional models
and corpus studies (e.g., Recchia & Jones, 2009), and has demonstrated strong associations
with behavioral measures of word association (Paperno, Marelli, Tentori, & Baroni, 2014).

BERT represents a more modern approach to Natural Language Processing and uses a
multilayer bidirectional Transformer encoder. Functionally, this means that the immediate
linguistic context surrounding a word is used as information to help disambiguate multiple
word senses while remaining sensitive to long-range, higher-order linguistic dependencies.
BERT has been applied to numerous linguistic tasks, including word pair similarity, summa-
rization, and question answering (Devlin et al., 2019). Due to its innovative approach, BERT
represents an upgraded distributional semantic model that accounts for sense specificity by
providing a vector for a word in context as opposed to a single vector for all occurrences of a
word.

While LSA and Word2vec encode global relationships which are based more strongly on
overall gist and meaning, the 1T 5-gram corpus co-occurrence technique and PMI are more
proximity-driven and encode local relationships which are based more strongly on syntactic



12 of 43 J. Hollander, A. Olney/ Cognitive Science 48 (2024)

Table 1

Average word properties per direction, M (SD)

Direction Length AoA Concreteness Frequency (1T 5-gram corpus)
up 5.38 (1.75) 6.88 (2.64) 3.48 (.69) 13205304 (1312739)
down 6.06 (1.49) 7.98 (2.50) 3.47 (.62) 10778870 (2404516)

dependencies. BERT encodes higher-order relations while accounting for context specificity.
If any of these models exhibit an association with human performance on a given task, then
any implications or assumptions of cognitive processes reflected by that model should be
investigated. The results of this study may, therefore, reveal some information about how
language encodes spatial information. Note that the goal of this study is to compare these
symbolic models to the embodied norms and not robustly compare these models to each
other.

Registration information, as well as materials, data, and source code for all elements of all
experiments in this study, can be found on the project’s Open Science Framework repository
found in the Supplementary Material.

2.1. Method

2.1.1. Participants

Thirty-five undergraduate students from the University of Memphis (M, = 20.02, SD =
5.69) participated in exchange for course credit in an undergraduate psychology course. All
participant activity was conducted online using Qualtrics.

2.1.2. Materials

Thirty-two English words were selected for their association with either upward or down-
ward motion (16 for each direction). Words associated with up included: add, ascend, boost,
climb, elevate, escalate, float, fly, grow, increase, inflate, jump, levitate, lift, raise, and rise.
Words associated with down included: decline, decrease, deflate, descend, diminish, dive,
drop, fall, plummet, plunge, shrink, sink, slump, subtract, topple, and tumble. Table 1 displays
the average properties of the words for each direction, including length, age of acquisition
(Kuperman, Stadthagen-Gonzalez, & Brysbaert, 2012), concreteness (Brysbaert, Warriner, &
Kuperman, 2014), and frequency in the 1T 5-gram corpus. Independent #-tests revealed that
the two groups of words did not significantly differ on any of these metrics.

2.1.3. Procedure

2.1.3.1. Directional norms: Participants completed a survey to determine the strength of
association between each word and its vertical movement. An example of the items used
in the survey are included in Fig. 1. To assess vertical movement, words were presented
individually with the text what vertical movement do you associate with this word? Responses
were given on a 7-point, vertically arranged Likert-type scale ranging from very downward to
very upward.
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Rise

What vertical movement do you associate with this word?
Very upward
Moderately upward
Somewhat upward
No vertical movement
Somewhat downward
Moderately downward

Very downward

Fig. 1. Example of the movement association survey.

2.1.3.2. LSA: Cosine similarities between the vector of each word and the vector of its
respective direction (e.g., rise and up) were obtained using LSA’s General Reading up to 1st
year college corpus, also known as the TASA corpus (T. K. Landauer & Dumais, 1997; Zeno
et al., 1995).

2.1.3.3. Web IT 5-gram: Co-occurrence statistics between each word and its respective
direction (e.g., rise and up) were obtained from the Web IT 5-gram corpus, which is com-
prised of text samples from English language websites, and contains over one trillion word
tokens (Brants & Franz, 2006). To achieve this, the corpus was analyzed by observing a slid-
ing window of five words at a time. Any time both a listed word and its respective directional
word were present within that window, the frequency of that 5-gram within the corpus was
cumulatively added. As a result, word order does not play a role in these analyses. Log fre-
quencies were then computed, which are typically preferred for analyses over raw frequencies
due to skew (Baayen, 2001).

2.1.3.4. BERT: Cosine similarities were obtained between each word and its respective
direction word using pretrained embeddings with DistilBERT (Sanh, Debut, Chaumond, &
Wolf, 2019). The context was specified as The motion of [word] is what direction?, which
approximates the Likert question and provides context on both sides of the target word. By
using a contextual embedding such as this, the problems that LSA may have with multiple
word senses and the problems that 5-gram may have with syntactic dependencies may each
be mitigated. We also generated cosines with alternates (available on the project’s OSF page),
which did not meaningfully impact our results.
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Fig. 2. Relative frequencies of responses per word.

2.1.3.5. Word2vec: Cosine similarities were obtained between each word and its respec-
tive direction word using Mandera et al. (2017) CBOW web interface. This model was trained
on the British Web (UKWAC) and subtitles corpus.

2.1.3.6. PMI: Semantic similarity was calculated between each word and its respective
direction word using PMI on the same Web IT corpus used to derive 5-gram co-occurrences.
To scale this metric similar to cosine values, which are bounded at [0, 1], we calculated
normalized PMI (Bouma, 2009), which is bounded at [—1, 1], where —1 represents no co-
occurrences, 0 represents independence, and 1 represents complete co-occurrence.

2.2. Results

Fig. 2 displays a graphical representation of the norm ratings data. To adequately compare
the language statistics data (i.e., within-direction groups), transformations were applied to the
norm ratings data. Because antonyms like up and down appear in similar contexts, most dis-
tributional models will represent them with similar vectors. Accordingly, the response scale
was broken into up and down components to avoid collinearity in cosines between target
words and up and down. The up component is represented by 4 to 7 on the Likert scale and
transformed to 0 to 3 correspondingly. The down component is represented by 1 to 4 on the
Likert scale and transformed to 3 to O correspondingly (reverse scale). This transformation
of the norm ratings represents the strength of the relationship between a word and its respec-
tive direction, which is more comparable than the untransformed data to the similarity values
obtained using the language models. The word levitate was not present in the LSA TASA
corpus and was excluded pairwise from these analyses.

Table 2 displays Spearman’s rho correlations between the norm ratings obtained and the
language statistics calculated. Overall, only BERT yielded a significant positive association
with the norm ratings. When correlations for up and down components were analyzed sepa-
rately, the norm ratings were significantly associated with BERT similarities for down words.
Table 3 displays Spearman’s rho correlations between all measures within direction groups.
A visualization of these relationships is displayed in Fig. 3.
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Table 2
Spearman’s rho correlations between measures (overall)
Norms BERT LSA 5-gram w2v PMI
Norms
BERT 0.44%*
LSA 0.18 0.41%*
5-gram 0.30 0.59%%%* 0.71%%*
w2v 0.20 0.21 0.73%%* 0.617%**
PMI —.01 0.16 0.57%%%* 0.29 0.62%%*

*p < .05; #¥p < .01; *¥**p < .001.

Table 3
Spearman’s rho correlations between measures within direction groups

Norms BERT LSA 5-gram w2v PMI
Norms 0.25 0.03 0.1 —0.02 —0.01
BERT 0.58* 0.25 0.54* 0.14 0.19
LSA 0.27 0.56* 0.63* 0.63* 0.48
S-gram 0.41 0.71%+* 0.85%** 0.58* 0.38
w2v 0.30 0.30 0.72%%* 0.61* 0.73%*
PMI —0.12 0.11 0.52%* 0.35 0.55%*

Note. Cells above the diagonal contain analyses on only up words, cells below the diagonal contains analyses
on only down words.
*p < .05; *¥¥p < .01; ***p < .001.

2.3. Discussion

The cosine similarities obtained using BERT were significantly associated with the vertical
movement ratings, providing convergent validity to the methods described in this study. To
this point, the ratings provide a chance to observe both the overall directional grouping and the
relative strength with which people associate each word with its primary vertical movement.
LSA, 5-grams, Word2vec, and PMI statistics, however, were not significantly associated with
the norms, though they were associated with each other and BERT. This result may indicate
that the ratings are not solely explainable by simple language statistics. In other words, nei-
ther lower-order model like 5-gram nor a higher-order model like LSA fully encapsulates
the directional motion of the words as represented by our participants. Even BERT was not
successful in explaining variability within the up directional group. These results are con-
gruent with recent studies which have found verbs to be a relative weakness of distributional
semantic models (Brown et al., 2023). The ratings were designed to assess vertical movement
associations as determined by semantic memory, which contains perceptual and sensorimotor
information (Yee, Jones, & McRae, 2018). Since language statistics have only a loose associ-
ation with these ratings, the ratings may be interpreted as uniquely representative of embodied
information.
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Fig. 3. Relationships between norm ratings and word-direction similarities as calculated by (a) LSA, (b) 5-gram,
(c) BERT, (d) Word2vec, and (e) PMI.

The source of the weakness of some of these language models in relation to the ratings may
provide additional insight. One potential explanation of the nonsignificant effects is the use
of up and down as adverbial particles in English. For example, the phrase add up is relatively
frequent, but this is a phrasal verb which implies little, if any, physical motion. In fact, add
is the third most frequently co-occurring listed word with up in the 5-gram corpus, but of
the upward items, it is the third least upwardly rated word by participants. While this exam-
ple applies most strongly to lower-order models like 5-gram, discrepancies like this demon-
strate how human-rated associations differ from those derived by some distributional semantic
models. Syntactic bindings (like add up) can cause a mismatch between distributional seman-
tic models and semantic knowledge derived from perceptual, multimodal, embodied human
experience. Accordingly, these results underscore the value of human ratings as indicative of
perceptually derived semantic associations.

Correlations between the language models and the ratings were generally weaker within the
up word group than those of the down word group. There are several possible explanations
for this effect. First, the participants’ ratings of down words appear to be more likely to be
concentrated around a particular response option, while up words tend to be more broadly
distributed. This may be related to a second explanation, that up and down words are subject
to different linguistic tendencies. While the two words are direct opposites in their most literal
sense, their many uses in the English language may skew or blur their “opposite” nature
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in representations as calculated by distributional semantic models, which often struggle to
distinguish between contextually substitutable antonyms. Finally, this selection of up and
down words is far from exhaustive, so the asymmetrical correlations may be simply due to
word choice in a small sample.

The vertical movement ratings obtained in this study may provide a preliminary example
of their validity and possible utility in various psycholinguistic paradigms. This is especially
true in that the words used in this study are verbs, which are neglected in many laboratory
studies of symbolic-embodied integrated semantic processing. These types of norms should
provide a quantified factor that may be apt for use in models seeking to explain effects found
in behavioral studies, particularly those testing semantic processing within an embodied cog-
nition framework. Additionally, the verbs used in this study vary along many other dimen-
sions, perhaps most interestingly in abstractness. The word list includes both bodily action
words and words that only indicate motion in an abstract sense. These norms may encourage
the underrepresented symbolic-embodied integrated study of verbs in two ways. First, these
kinds of data may be used to model human performance in laboratory procedures, generating
new testable hypotheses. Second, these and similar verbs that are not yet represented in labo-
ratory paradigms may be occasioned to be included in future, innovative designs. Further, the
method for obtaining these ratings may be adapted to build a database of similar norms for
larger sets of words.

3. Experiment 2

One of the most fruitful lines of integrated language processing research involves vertical
word positioning experiments. These studies have primarily included nouns (mostly concrete,
but some abstract). To most closely match designs in previous literature, this experiment
extends single-word high-low presentation experiments (Meier & Robinson, 2004; Pecher
et al., 2010; Seti¢ & Domijan, 2007) to include verbs. These types of studies produced a
word-referent congruency facilitation effect, in which words presented in a position that is
congruent with their referent’s associated location (e.g., bird presented high) are processed
faster than when this relationship is incongruent (e.g., bird presented low). In this study,
participants were asked to make similar judgments about verbs, which include words that
indicate motion either upward (e.g., rise) or downward (e.g., fall). To seek replication of the
congruency facilitation effect, conditions were created in which the verbs were presented
either congruently or incongruently with the endpoint of their implied direction. The primary
goal of this experiment is to attempt to replicate the stimulus-location congruency facilita-
tion effect found in previous literature with nouns. This effect generally supports embodied
language processing theories. Replicating this effect is a preliminary step toward using verbs
to examine symbolic-embodied integrated theories because it would establish whether verbs
elicit similar processing effects as nouns in comparable paradigms. If so, follow-up experi-
mental manipulations using verbs can help untangle the relationship between embodied and
symbolic processing.
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3.1. Method

3.1.1. Participants

Sixty-nine participants (Mg, = 22.90, SD = 8.99) were recruited from the University of
Memphis undergraduate research pool by offering course credit. Participants completed the
study online, in-browser, using their own computers.

3.1.2. Materials

Verbs indicating either upward or downward movement were presented to participants. The
words used in this experiment are identical to those used in Experiment 1. The experiment
was programmed using the jsPsych library (de Leeuw, 2015).

3.1.3. Design
The experiment utilized a single factor, two-level (high- and low-presented stimuli), within-
subjects design. Primary dependent measures included reaction times and error rates.

3.1.4. Procedure

After the informed consent procedure, participants received instructions, a series of prac-
tice trials, and testing trials. During testing trials, participants were presented with individual
words from the list. All words were used twice, once in a congruent position (e.g., rise pre-
sented high), and once in an incongruent presentation (e.g., rise presented low). Words and
congruency condition were selected randomly, without replacement. Words were presented
in black, 40-point Arial font on a white full-screen background. High and low presentations
were placed at the Sth and 95th percent of each participant’s screen from the top, horizontally
centered. A fixation cross appeared in the center of the screen for 500 ms, followed by an ISI
jitter of 500—700 ms. The words remained on the screen until the response. After each trial, a
blank screen intertrial jitter of 800—1200 ms took place. Before testing, participants received
instructions for the task and 12 practice trials using the words up and down. The practice
trials contained feedback and were discarded from analyses. Participants repeated the prac-
tice trial block until they achieved at least 80% correctness on a repetition of the 12-trial
sequence.

Participants were instructed at the beginning of the task to indicate whether the word was
presented in a location that matches the direction represented by the word. Responses were
made using f and j keys on the keyboard, which corresponded to congruent and incongru-
ent responses randomly assigned for each participant. These keys were selected due to their
vertical evenness on a typical keyboard, as research shows that vertically disparate response
options may confound location-cue congruency effects (Petrova et al., 2018).

3.2. Results and discussion

Consistent with similar analyses by Louwerse and Jeuniaux (2010), trials in which reaction
time (RT) was below 200 ms and more extreme than 2.5 standard deviations from an indi-
vidual’s mean were removed from analyses (3.0% of the data). The average error rate (9.4%)
was well below exclusion thresholds used in similar studies (Hutchinson & Louwerse, 2013;
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Pecher et al., 2010). As there were no outliers in participants’ error rates; all participants were
included in these analyses.

3.2.1. Expected effects—Results

In order to determine the individual and combined effects of location-cue congruency
on reaction time, a linear mixed-effects model was constructed in R (Team R Develop-
ment Core, 2021) using the Ime4 (Bates, Michler, Bolker, & Walker, 2015) and ImerTest
(Kuznetsova, Brockhoff, & Christensen, 2017) packages. The model comparison process
and final model selection were designed to comply with the recommendations of Barr,
Levy, Scheepers, and Tily (2013) to use the maximal random effects structure supported
by the data, as well as guidelines from Meteyard and Davies (2020) for best practices
in reporting mixed-effects modeling. Like many similar studies analyzing reaction time
data, only correct trials were included in this analysis. R code for all analytic procedures
can be found on the project’s OSF repository in the Supplementary Material. Reaction
times, the dependent variable, were highly skewed even after filtering for outlier trials as
described above (skewness = 4.64), and were logarithmically transformed (logRT skew-
ness = —1.02). Visual inspection of Q-Q and residual plots (available as Supplementary
Material on the project’s OSF repository) suggest that this transformation improved the
model’s homoskedasticity and normality of residuals. Fixed effects in this model included
cue location (high or low), word direction (up or down), and their interaction. The ran-
dom effect structure was determined by entering the maximal structure (including sub-
ject and item intercepts) and systematically removing slope terms until convergence was
achieved. If models with equally complex structures converged, Akaike Information Crite-
rion (AIC) was used to select between them. This analysis revealed a significant interaction,
as well as significant main effects of cue location (see Table 4 for model summary). Pair-
wise contrasts (Tukey-HSD) indicate that this interaction is driven by the significant differ-
ence between high and low presentations of up words (p < .001). The contrasts between
up and down words presented high were also significant (p < .001), as was the contrast
between high up words and low down words (p < .001); no other contrasts were significant.
Fig. 4 graphically represents group means, using raw RT rather than log-transformed RT for
interpretability.

To further determine the effects of location-cue congruency on response accuracy, we con-
structed a mixed-effects binomial logistic regression model predicting response accuracy
using all trials. Model selection procedure was conducted similarly to the procedure used
to predict reaction times. Visual inspection of residual plots did not reveal violations of the
assumptions of logistic mixed-effects modeling. This analysis also revealed a significant inter-
action (see Table 5 for model summary and formula). Again, pairwise contrasts (Tukey-HSD)
indicate that this interaction is driven by the significant difference between high and low pre-
sentations of up words (p < .01). The contrasts between up and down words presented high
were also significant (p < .01), as was the contrast between high up words and low down
words (p < .001); no other contrasts were significant. Group means and standard errors are
visualized in Fig. 5.
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Table 4

J. Hollander, A. Olney/ Cognitive Science 48 (2024)

Results of linear mixed effects model of congruency predicting log RT in correct trials

Fixed effects

Predictors Estimates CI p
(Intercept) 3.22 3.18-3.26 <.001
Cue location (0 = low) —0.02 —0.04 to —0.00 .039
Word direction (O = down) —0.01 —0.04 t0 0.01 294
Cue location x word direction —0.07 —0.09 to —0.04 <.001
Random effects
o? 0.03
Too subject 0.02
T00 word 0
T subject.cue_lochi 0
T 11 directionhi 0.00
Lot subject 0.66
P01 word —0.32
ICC 0.48
N subject 69
N word 32
Observations 3881
Marginal R*/Conditional R? .027/.491

Note. Model equation: 1ogRT ~ cuelocation * worddirection + (1 + cuelocation|subject) + (1 + direc-

tion|word).

7, estimated variance of random effects; p, correlation of random effects.
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Fig. 4. Reaction times by word direction and location for correct trials.
Note. Figure displays group means and standard errors.

3.2.2. Expected effects—Discussion

These analyses represent a generally successful verb-based replication and extension of
previous location-cue congruency experiments. More specifically, up words presented high
yielded faster reaction times and higher accuracy than up words were low. These results
suggest that semantic processing can be facilitated by location-cue congruence. This matches
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Table 5

Results of mixed effects model of congruency predicting response accuracy

21 of 43

Fixed effects

Predictors Odds ratios Cl p
(Intercept) 12.61 8.03—19.80 <.001
Cue location (0 = low) 0.98 0.67—1.43 .930
Word direction (0 = down) 1.15 0.69—1.90 .589
Cue location x word direction 2.45 1.54—-3.89 <.001
Random effects

o? 3.29
Too subject 1.2
T00 word 0.35
711 subject.cue_lochi 0.8
P01 subject -0.73
1CC 0.27
N word 32
N subject 69
Observations 4279

Marginal R?/Conditional R*

.039/.301

Note. Model equation: accuracy ~ cuelocation * direction + (1 + cuelocation [subject) + (1 |word), family =

binomial.

7, estimated variance of random effects; p, correlation of random effects.
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Fig. 5. Response accuracy by word direction and location for all trials.
Note. Figure represents group means and standard errors.

similar effects found with sets of nouns and adjectives used in previous research (including,
at times, asymmetries with words presented high), providing support for embodied lan-
guage processing theories (Dudschig, Souman, Lachmair, Vega, & Kaup, 2013; Lachmair
et al., 2011). The embodied framework generally posits that semantic processing includes
neurocognitive simulation of perceptuomotor information. Previous location-cue facilitation
experiments using nouns support this position because the typical height of objects in the
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visual field appears to influence processing speed during semantic judgment tasks. Repli-
cating this effect with verbs widens the scope of perceptuomotor information that may be
responsible for these effects. While visual information is certainly still likely a strong driver
of these effects, verbs presented in isolation without a subject or object provide less of a
readily available visual representation than concrete nouns. As a result, information from
other modalities (especially motoric and tactile) are likely involved in the effect.

Other cue-location studies have also found asymmetries between high and low or upward
and downward stimuli (Lakens, 2012; Pecher et al., 2010; Dudschig et al., 2013). One pos-
sible explanation of this effect is that this study was conducted online, in web browsers, and
without explicit instructions about viewing setup or posture. It is likely that participants may
have completed the tasks in a variety of manners that would not reflect a typical laboratory
setup. Since we can not be sure whether participants completed the study at a desk with a
typical viewing angle of their monitors, “high” and “low” stimulus presentations may not
have presented with equal viewing angle differences with respect to each other or the fixa-
tion cross. However, other studies that find this asymmetry have explained them with polarity
correspondence.

Polarity correspondence has been offered in the literature as an explanation of experi-
mental findings in several binary choice judgment tasks, including location-cue congruence
paradigms (see Proctor & Xiong, 2015 for an overview). The simplest description of this prin-
ciple is that “For a variety of binary classification tasks, people code the stimulus alternatives
and the response alternatives as + polarity and - polarity, and response selection is faster
when the polarities correspond than when they do not” (Proctor & Cho, 2006, p. 418). While
the predictions generated by this principle seem straightforward (e.g., that high up words and
low down words would elicit the most processing benefits), there are other interpretations
that offer more complex sets of predictions. For example, Lakens (2012) offers descriptions
of how +polar stimuli elicit processing benefits over —polar stimuli, which may result in all-
positive polar stimuli (#p high words) receiving more processing benefits than all-negative
polar stimuli (down low words). This is consistent with the pattern observed in this exper-
iment, suggesting that polarity correspondence may be an alternative explanation of these
findings. However, we did not observe a facilitation for low down words predicted by other
interpretations of polarity (Proctor & Xiong, 2015), and some research suggests that polarity
predictions do not account for effects found in other conceptual-perceptual alignment stud-
ies (see Dudschig & Kaup, 2017; Dolscheid & Casasanto, 2015). While a polarity alignment
account cannot be discounted based on the results of this experiment alone, future studies
should investigate whether polarity or sensorimotor simulation is the primary driver of effects
such as these by controlling for more polar dimensions or involving neurocognitive designs.

3.2.3. Exploratory analysis: Symbolic and embodied factors—Results

The preceding analyses serve to replicate and extend location-cue congruence effect to
verbs, the results of which may be used to infer evidence for embodied language process-
ing. However, a novel, influential approach in related research involves operationalizing the
perceptual and linguistic relations in an experiment and examining how they differentially
relate to cognitive processing during an experimental task. For example, Louwerse and Jeu-
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niaux (2010) used word order frequency (linguistic) and human iconicity ratings (embodied)
to predict reaction times in various judgment tasks. This approach allows for a more direct
examination of whether symbolic or embodied processes are influencing processing in a given
task. Following this lead, we sought to examine how the current experiment may be situated
in the literature as either symbolic or embodied-dominant. We operationalized an embod-
ied factor as the average directional strength ratings for each word obtained in Experiment
1. We operationalized a linguistic factor as the cosine similarity between each word and its
respective anchor word (up or down) using BERT (obtained as described in Experiment 1).

We then constructed a model predicting log-transformed reaction times on correct trials.
The BERT and norm ratings as described above were entered as fixed effects, as was as
their interaction with word direction (up or down). This interaction allows us to examine
whether any facilitative effects are due to fine grain, within-direction magnitudes as defined
by our embodied and linguistic factors, or due to coarse grain, between-direction categoriza-
tions. All continuous measures were centered. As with previous models, subject and item as
random effects (intercepts), and the random effect structure was determined by entering the
maximal structure and systematically removing slope terms until convergence was achieved.
This analysis yielded a significant negative association between norm ratings and reaction
times, and up words elicited faster reaction times than down words. There were no significant
interactions, and no significant main effect of BERT (see Table 6). This pattern of results indi-
cates that norm magnitude, regardless of direction, facilitates reaction time in addition to the
facilitation of reaction time for up words. We then similarly constructed a logistic model to
predict accuracy rates. In this model, only the main effect of word direction was significant.
The results of this model are displayed in Table 7.

3.2.4. Exploratory analysis: Symbolic and embodied factors—Discussion

To examine the task specificity of embodiment in language processing, a growing body of
literature suggests that we can determine whether symbolic or perceptual processing is dom-
inant in a task by observing the relative association between language statistics or embodied
information on reaction times and accuracy (Louwerse, 2018). We sought to determine how
embodied or symbolic the task in this experiment was to determine its place in the broader lit-
erature. In short, the embodied factor was significantly associated with reaction times, while
the linguistic factor was not. This contrasts with several similar studies (Hutchinson & Louw-
erse, 2013; Louwerse & Hutchinson, 2012; Louwerse & Jeuniaux, 2012), which have found
that language statistics tend to either dominate or evenly share dominance with embodied
factors in comparably structured experiments. There are a few possible explanations for this
contrast. First, the operationalization of each factor differs slightly between each study (e.g.,
the use of BERT vs. LSA, word order frequency vs. semantic similarity scores, etc.). Second,
slight differences in task demands may place more emphasis on one system over the other. In
other words, this particular task might have been more demanding of the perceptual system
than other tasks in this literature. Third, the use of verbs as stimuli may elicit the involvement
of embodied processing more than nouns. Additionally, distributional semantic models have
been demonstrated to construct weaker representations for verbs in comparison to other parts
of speech (Brown et al., 2023), so linguistic factors operationalized in this way may be at a



24 of 43 J. Hollander, A. Olney/ Cognitive Science 48 (2024)

Table 6
Linguistic and embodied factors predicting reaction times

Fixed effects

Predictors Estimates Cl p

(Intercept) 32 3.16—-3.25 <.001
Norms —0.04 —0.07 to —0.00 .032
Word direction (0 = down) —0.05 —0.07 to —0.03 <.001
BERT 0.02 —0.33t00.38 911
Norms x direction 0.02 —0.03 to0 0.08 .359
BERT x direction —0.34 —0.79t0 0.11 135

Random effects

o? 0.03
T00 subject 0.03
T00 word O
T11 word BERT 0.04
P01 word —1
ICC 0.46
N subject 69
N word 32
Observations 3881
Marginal R?/Conditional R .015/.468

Note. Model equation: logRT ~ BERT*worddirection + norms*worddirection + (I|subject) + (1 +
BERT|word).
7, estimated variance of random effects; p, correlation of random effects.

disadvantage. Future research should seek to examine the sensitivity of similar effects to these
methodological elements (and their combination).

While the embodied factor was significantly associated with faster reaction times, it was
not associated with increased accuracy. This is unusual, as speed and accuracy are often found
to be tightly linked in studies with similar paradigms (Pecher et al., 2010). However, the word
direction factor was significantly associated with both reaction time and accuracy, suggest-
ing that, in this case, support for the judgments being made in the task may have been due
to between-direction category distinctions more than within-direction directional magnitude,
contrary to what was found in the reaction time model. Future research may need to examine
cases where judgment speed and accuracy yield asymmetric patterns of results to probe for a
more generalizable explanation.

3.3. Experiment 2 discussion

This experiment extends upon previous work in location-cue congruence paradigms by
using verbs to replicate effects found typically using nouns. It further extends this line of
inquiry by introducing analyses that probe the cognitive explanation for the observed effects.
We found that a verb presented in a manner congruent with its directional meaning yielded
faster, more accurate judgments for up words presented high. Further analyses suggest that
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Table 7
Linguistic and embodied factors predicting accuracy rates

Fixed effects

Predictors Std. odds ratio Cl p
(Intercept) 12.14 8.44—17.45 <.001
BERT 1.27 0.90—1.78 175
Norms 1.15 0.83—1.59 392
Word direction (0 = down) 1.56 1.02—2.40 .04
BERT x direction 0.88 0.54—1.44 .617
Norms x direction 0.94 0.58—1.53 .808

Random effects

o? 3.29
Too subject 0.69
T00 word 0.27
ICC 0.23
N word 32
N subject 69
Observations 4279
Marginal R?*/Conditional R .029/.248

Note. Model equation: accuracy ~ BERT*worddirection + norms*worddirection + (1|subject) + (1|word).
T, estimated variance of random effects; p, correlation of random effects.

polarity alignment is not a comprehensive explanation for this effect. Rather, we found that the
embodied factor (perceptually based human ratings) is more strongly associated with reaction
times than the linguistic factor (language statistics), which supports accounts of language
processing involving perceptual simulation for comprehension.

One plausible explanation for similar studies involving nouns is that the height of phys-
ical referents in the visual field creates a priming effect which facilitates processing during
lexical judgment tasks. Extending this explanation to include verbs expands the scope of per-
ceptuomotor information that may be responsible for these effects. In this experiment, verbs
are likely eliciting motoric, tactile, or other interoceptive information since they were pre-
sented without subjects or objects. Embodied language processing theory readily accounts
for nonvisual perceptual information in this way.

However, task specificity cannot be discounted as an explanation for the results of a
single experiment. Whether these results are due to the demands of the task or due to
the psycholinguistic processing of verbs must still be disentangled. Further, studies which
compare the relative influence of linguistic and embodied factors across tasks often do so
in between-subjects designs (Louwerse & Jeuniaux, 2010; Louwerse & Jeuniaux, 2012).
However, within-subjects designs investigating the same hypotheses would provide more
powerful evidence regarding this theory. Accordingly, we devised an additional experiment
that leverages the unique properties of verbs to create a within-subjects design to further
examine the influence of task on symbolic and embodied language processing,
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4. Experiment 3

One challenge to studying verbs is that they generally signify an event which takes place
over time using relational information, which necessitates complex dynamic processing
(Richter, Lins, & Schoner, 2021). This poses a problem to the methods described thus far,
which present words in static positions. Research in signed languages suggests that signed
verbs are often particularly rich with iconicity because several types of motion may be repre-
sented over time in a single sign (Perniss et al., 2010). Representing the meaning of motion
verbs in a computer-based study may, therefore, require animations that represent motion
more directly than static pictures can.

In this study, using the same verbs, participants made semantic judgments of simple ani-
mations of vertically moving objects. Conditions were created in which the motion of the
objects were either congruent or incongruent with the meaning of each verb. Previous studies
using similar paradigms have manipulated the task in some way in order to occasion dif-
ferences in the influence of symbolic and embodied processing (Dudschig & Kaup, 2017;
Lachmair et al., 2011).This study offers a novel task manipulation that is designed to accom-
plish this goal while accommodating the unique nature of verbs. This animated object (or
movement cue) consisted of a “scrambled” version of each word, consistent with recom-
mendations of luminance control in pupillometry research (Mathdt, 2018). This process
renders the image of each word illegible, but with the same luminance properties as the
word itself. By decoupling the word and movement cues and presenting them serially, the
sequence of whether the word or movement cue appears first was manipulated. In both condi-
tions, participants make their judgments (whether the cue is moving in the implied direction
of the verb) during the final phase of each sequence. The purpose of this manipulation is
to influence how either symbolic or embodied processes are recruited during participants’
judgments.

In the word-first condition, participants are allowed time to process the word linguistically
before having to make a judgment about a simple movement cue. According to the linguistic
shortcut hypothesis, linguistic processes are recruited first in this condition and are sufficient
to make a judgment, the slower embodied system is preempted, and reaction times should
be explained by linguistic, statistical relationships between words. In the cue-first condition,
participants view only the movement cue until the revelation of the word, delaying linguistic
processing (and judgment timing) until after perceptual processing is underway by means
of the movement cue. Therefore, reaction times in this condition should be explained by
embodied, perceptually derived associations.

4.1. Method

4.1.1. Participants

Seventy-three participants (M, = 22.04, SD = 4.89) were recruited from the University
of Memphis undergraduate research pool by offering course credit. Participants completed
the study online, in-browser, using their own computers.
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Fig. 6. Example stimulus (rise) used for movement cues.

4.1.2. Materials

Verbs indicating movement either upward or downward were presented to participants. The
words used in this experiment are the same as in Experiments 1 and 2.

To create the movement cues, an image of each word was horizontally mirrored and divided
into 100 equally sized squares. These squares were randomly rearranged and rotated to one
of four orientations (0—270 degrees at 90-degree intervals). An example of the word rise
scrambled in this way is presented in Fig. 6. Four different cues were created for each word
and implemented at random during the experiment so that participants could not associate a
cue with its word. This process was carried out in MATLAB. The rest of the experiment was
programmed using the jsPsych library (de Leeuw, 2015).

To determine the relative influence of symbolic and embodied processing in this exper-
iment, each was operationalized using methods similar to Louwerse and Jeuniaux (2010).
The embodied factor was operationalized as the movement ratings for each word obtained
in Experiment 1. The symbolic (linguistic) factor is operationalized as the cosine similarity
between each word and its respective anchor word (up or down) using BERT as defined in
Experiment 1.

4.1.3. Design

The experiment utilized a 2x2 within-subjects design. The first factor was the sequenc-
ing manipulation, which contains word-first and cue-first levels. The second factor was the
directional movement of the cue manipulation, which contains up and down levels. Primary
dependent measures included reaction times and error rates.

4.1.4. Procedure

After the informed consent procedure, participants were randomly assigned to one of two
starting conditions: word-first or cue-first. Each participant completed both conditions. All
words were used twice in each condition, once with congruent movement, and once with
incongruent movement. The order of word and movement congruency were chosen at ran-
dom without replacement. Words were presented in black, 40-point Arial font on a white
background. In each condition, instructions for the task and 12 practice trials using the words
up and down commenced. The practice trials contained feedback and were discarded from
analyses. Participants repeated the practice trial block until they achieved at least 80% cor-
rectness on a repetition of the 12-trial sequence. Test trials appeared as follows.

In the word-first condition, a fixation cross appeared at the center of the screen for 500
ms. Then, a word and movement congruency condition were randomly chosen as described
above. The word appeared in the center of the screen, stationary, for 500 ms, followed by
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a blank screen ISI jitter of 500—700 ms. Then, one of the movement cues created for that
word was chosen at random. Because the experiment is designed to adapt to multiple screen
sizes and resolutions, the word was programmed to move from the midpoint of the screen to
an endpoint located at 95% of the total screen height either upward or downward in exactly
2000 ms. The speed at which the cue moved remained constant from its appearance until it
reached its destination (i.e., there is no apparent acceleration or deceleration). Participants
were instructed at the beginning of the block to indicate whether the cue is moving in the
direction represented by the word. Responses were made using the keyboard using the f and
J keys, which corresponded to congruent and incongruent responses randomly for each par-
ticipant. These keys were selected due to their vertical evenness on a typical keyboard, as
research shows that vertically disparate response options may confound location-cue congru-
ency effects (Petrova et al., 2018). Response timing began when the movement cue appeared.
Stimulus presentation speeds were based on related semantic similarity judgment tasks that
use serial stimulus presentation (Pu, Medina, Holcomb, & Midgley, 2019), though this novel
task manipulation does not provide a perfect analog to such designs. After each trial, a blank
screen intertrial jitter of 800—1200 ms took place.

In the cue-first condition, a fixation cross appeared at the center of the screen for 500
ms. Then, a word and movement congruency condition were randomly chosen. One of the
movement cues created for that word was randomly chosen. The cue’s movement is designed
exactly like the movement in the word-first condition. Once the cue reached its destination, it
disappeared, and a blank screen ISI jitter of 500—700 ms occurred. Then, the selected word
appeared in the center of the screen and remained stationary there for 2000 ms. Responses
were made using the f and j keys on the keyboard, assigned randomly for each participant.
Response timing began when the word appeared. Feedback and practice trials occur in the
same manner as the word-first condition, though the practice trials are adapted to reflect the
presentation of this condition. After each trial, an intertrial jitter of 800—1200 ms took place
in the form of a blank screen before the next trial began.

4.2. Results and discussion

Consistent with similar analyses by Louwerse and Jeuniaux (2010), trials in which RT
was below 200 ms and more extreme than 2.5 standard deviations from an individual’s mean
were removed from analyses (2.5% of the data). The error rate (M = 8.0%) was well below
exclusion thresholds used in similar studies by Louwerse and Jeuniaux (2010) and Zwaan
and Yaxley (2003). As there were no outliers in participants’ error rates, all participants were
included in these analyses.

4.2.1. Expected effects—Results

In order to determine the individual and combined effects of directional congruency and
word-movement presentation order on reaction time, a linear mixed-effects model was con-
structed in R (Team R Development Core, 2021) using the Ime4 (Bates et al., 2015) and
ImerTest (Kuznetsova et al., 2017) packages. Similar to Experiment 2, the model con-
struction and selection processes were designed to comply with the recommendations of
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Table 8
Results of linear mixed effects model of experimental conditions predicting log RT

Fixed effects

Predictors Estimates Ccl p

(Intercept) 3.09 3.06—3.13 <.001
Cue movement (0 = down) —0.02 —0.04 to —0.01 .001
Word direction (0 = down) —0.02 —0.04 to 0.00 .092
Order (0 = cue first) —0.09 —0.10 to —0.07 <.001
Cue movement x word direction —0.06 —0.08 to —0.04 <.001
Cue movement x order 0.05 0.03—0.07 <.001
Word direction x order 0 —0.02 to 0.02 .986
Cue movement x word direction x order —0.01 —0.04 t0 0.01 312

Random effects

o? 0.03
T00 subject 0.02
T00 word 0
T1 subject.word_dirup 0
P01 subject —0.34
1CC 0.37
N subject 73
N word 32
Observations 8418
Marginal R?*/Conditional R? .057/.408

Note. Model equation: 10gRT ~ cuemovement*worddirection*order + (1 + worddirection| subject) + (1]
word).

Barr et al. (2013) and Meteyard and Davies (2020). Again, for the analysis of reaction time
data, only correct trials were included. Reaction times, the dependent variable, were highly
skewed even after filtering for outlier trials as described above (skewness = 5.92) and were
logarithmically transformed (1ogRT skewness = 0.85). Visual inspection of Q-Q and resid-
ual plots (available as Supplementary Material on the project’s OSF repository) suggest that
this transformation improved the model’s homoskedasticity and normality of residuals. Fixed
effects included cue movement direction, word meaning direction, and order (cue-first or
word-first). The random effect structure was determined by entering the maximal structure
and systematically removing terms until convergence was achieved. R code for all analytic
procedures can be found on the project’s OSF repository in the Supplementary Material.
Visual inspection of residual plots revealed no obvious violations of the assumptions of
linear mixed-effects modeling. This analysis revealed significant interactions between cue
movement and order, as well as cue movement and word direction, with significant main
effects of order and cue movement (see Table 8 for model summary and formula). Post-hoc
contrasts (Tukey-HSD) indicate that the interactions are driven by the significant difference
between up words presented with upward moving cues and up words with downward moving
cues, as this contrast was significant in both the cue first (p < .001) and word first (p < .001)
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Fig. 7. Reaction time by order, word meaning, and cue movement conditions.
Note. Figure represents group means and standard errors.

conditions, while the same was not true for down words. No other contrasts were significant.
Fig. 7 graphically represents group means and standard errors, using raw RT rather than log-
transformed RT for interpretability.

To further determine the individual and combined effects of these factors on response accu-
racy, we constructed a similar mixed-effects logistic regression model using all trials. Model
selection procedure was conducted similarly to the procedure used to predict reaction times.
This analysis revealed significant interactions between cue movement and word direction,
as well as word direction and order (see Table 9 and Fig. 8). Post-hoc contrasts (Tukey-
HSD) indicate that the significant interactions are driven by the significant difference between
upward and downward cue movement for up words in the cue-first condition (p < .001), but
not the word-first condition. No other contrasts were statistically significant.

4.2.2. Expected effects—Discussion

We observed reaction time facilitation for movement-meaning congruence, primarily
up-meaning words with upward cue movement, and we observed an accuracy facilitation
for up-meaning words with upward cue movement. These effects generally support the
previous location-cue congruency experiments (see Estes, Verges, & Adelman, 2015; Estes
& Barsalou, 2018). Specifically, the facilitative congruency effect has generalized from
static location cues to dynamic movement cues. As this effect generalizes (at least so far
in spatial domains), other features may be considered for psycholinguistic investigations of
sign-referent congruency effects.

An additional objective of this experiment was to determine whether the decoupling and
manipulated sequencing of a verb and its movement cue could reveal information about
embodied and symbolic language processing. The order manipulation yielded a significant
effect—participants were faster to make their judgments during the word-first condition than
the cue-first condition. This effect supports linguistic shortcut hypotheses. In the word-first
condition, reading the target word allows quick, associative, linguistic processes to quickly
form a directional hypothesis, preempting the need for embodied semantic processing and
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Table 9
Results of logistic mixed effects model of experimental conditions predicting accuracy

Fixed effects

Predictors Odds ratios Cl p
(Intercept) 12.88 8.49—19.53 <.001
Cue movement (0 = down) 1.14 0.85—1.54 .369
Word direction (0 = down) 1.59 0.91-2.78 .104
Order (0 = cue first) 0.86 0.65—1.14 305
Cue movement x word direction 2.17 1.29-3.65 .003
Cue movement x order 0.68 0.46—1.02 .06
Word direction x order 1.72 1.08—2.74 .023
Cue movement x word direction x order 0.76 0.37—1.57 466

Random effects

o? 3.29
T00 subject 0.45
T00 word 0.43
ICC 0.21
N word 32
N subject 73
Observations 9115
Marginal R?/Conditional R? .079/.274

Note. Model equation: accuracy ~ cuemovement*worddirection*order + (1 [subject) + (1 |word), family =
binomial.
7, estimated variance of random effects; p, correlation of random effects.

allowing for a quicker judgment. The embodied or perceptual language processing, in this
case, is cut short, and appears to only be needed to check for the movement cue’s consistency
with the narrow directional hypothesis. In the cue-first condition, perceptual information does
not encode any particular word. Rather, multiple possible words may be partially preactivated
by a movement cue, so when the word appears, the remainder of word recognition processes
must still run to completion, causing slower judgments. However, as the accuracy results
show, these slower judgments are also more accurate. The contrasting effect of order condi-
tion on reaction time (word first better) and accuracy (cue first better) adds a new dimension
to the linguistic shortcut hypothesis: linguistic shortcuts may have a cost. Taken together,
these results provide a detailed depiction of the nature and constraints of the dynamic and
interconnected roles of embodied and symbolic language processing systems.

As discussed in Experiment 2, polarity correspondence may bear on these results. How-
ever, while some of the observed effects are consistent with an interpretation of polarity cor-
respondence, other contrasts were not. Specifically, up words with upward moving cues in the
word-first condition did not significantly differ in accuracy from those with downward mov-
ing cues, though polarity correspondence would suggest that the former would yield higher
accuracy. This is especially curious in relation to the same comparison in the cue-first con-
dition, where accuracy up words was affected by cue direction. Since these contrasts differ
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Fig. 8. Accuracy by order, word meaning, and cue movement conditions.
Note. Figure represents group means and standard errors.

by cue-first and word-first condition, it is possible that the demands of each condition elicit
different processing by linguistic and embodied systems, which may be outside the scope of
the usual cognitive principles that align with polarity effects. This is not to say that polarity
alignment plays no role in these tasks, but a polarity correspondence account is, at most, not
fully supported by our data. This conceptually replicates the findings of Pecher et al. (2010),
who conducted a similar study with some of the factors as between-subjects manipulations. In
that study, reaction times did not align well with polarity predictions, or at best, did so incon-
sistently, and the authors concluded that mental simulation was a likelier explanation of their
results than polarity. Our data suggest a similar conclusion, but again, incorrect responses
were much more scarce than correct responses in our study, resulting in large variances and
rendering contrasts with incorrect responses unreliable when attempting to draw conclusions
in this way.

4.2.3. Symbolic and embodied factors—Results

We also sought to determine whether symbolic and embodied processing factors influ-
ence processing speed differently in different order conditions. Here, the embodied factor is
operationalized as the movement ratings for each word obtained in Experiment 1. The sym-
bolic (linguistic) factor is operationalized as the cosine similarity between each word and its
respective anchor word (up or down) using BERT (obtained as described in Experiment 1).
The model construction process was similar to previously described models. Reaction time
analyses were performed on correct trials. The BERT and norm ratings as described above
were entered as fixed effects, as was their interaction with word direction (up or down) and
the three-way interaction between these two factors and order. This interaction allows us to
examine whether any facilitative effects are due to fine grain, within-direction magnitudes as
defined by our embodied and linguistic factors, or due to coarse grain, between-direction cat-
egorizations (i.e., up/down words), as well as whether the order manipulation differentially
demanded the involvement of these factors. The results of the model are presented in Table 10.
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Table 10
Results of linear mixed effects model predicting reaction times

Fixed effects

Predictors Estimates CI p
(Intercept) 3.08 3.05-3.11 <.001
Norms —-0.03 —0.05 to —0.00 025
Word direction (0 = down) —0.05 —0.06 to —0.03 <.001
Order (0 = cue first) —0.06 —0.09 to —0.03 <.001
BERT —0.09 —0.32t00.15 464
Norms x direction 0.02 —0.01 to 0.06 .19
Norms x order —0.01 —0.03 t0 0.01 422
Word direction x order —0.01 —0.02 t0 0.01 .266
BERT x word direction —0.16 —0.48 t0 0.17 337
BERT x order 0.15 —0.05 t0 0.35 .146
Norms x word direction x order 0 —0.03t0 0.03 .859
BERT x word direction x order —0.07 —0.34 t0 0.20 .615

Random effects

o’ 0.02
T00 subject 0.02
T00 word 0
Ti1 subject.word_dirup 0
T11 subject.orderwordfirst 0.01
P01 subject.word_dirup —0.45
Lot subject.orderwordfirst —0.32
1cC 0.44
N subject 73
N word 32
Observations 8418

Marginal R?/Conditional R? .046/.466

Note. Model formula: 1ogRT ~ norm*worddirection*order + BERT*worddirection*order + (1 + worddirec-
tion + order|subject) + (1|word).
7, estimated variance of random effects; p, correlation of random effects.

This analysis revealed significant main effects of order, word direction, and norms. No sig-
nificant interactions were observed. We then similarly constructed a logistic model to predict
accuracy rates. In this model, fixed effects included the main effects of order and word direc-
tion, a significant two-way interaction between order and word direction, and a significant
three-way interaction between BERT, order, and word direction. The results of this model are
displayed in Table 11.

4.2.4. Symbolic and embodied factors—Discussion

The models employing embodied and linguistic factors yielded complex and interesting
results. When predicting reaction time, the embodied factor, word direction, and order condi-
tion were statistically significant factors, while the linguistic factor and the interactions were
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Table 11
Logistic model using linguistic and embodied factors to predict accuracy rates

Fixed effects

Predictors Std. odds ratio Cl P

(Intercept) 14.68 10.25-21.04 <.001
Norms 1.32 0.94—1.86 .109
Order (0 = cue first) 0.67 0.54—0.82 <.001
Word direction 1.95 1.22-3.12 006
BERT 1.23 0.86—1.77 247
Norms x order 0.83 0.68—1.03 .086
Norms x word direction 1.02 0.59—1.74 .947
Order x word direction 1.86 1.29-2.70 001
BERT x order 0.94 0.76—1.18 .616
BERT x word direction 0.87 0.51—-1.48 584
Norms x order x word direction 0.98 0.65—1.48 925
BERT x order x word direction 1.6 1.04—2.45 .028

Random effects

o? 3.29
T00 subject 0.45
T00 word 0.32
ICC 0.19
N subject 73

N word 32
Observations 9115
Marginal R?/Conditional R? .099/.269

Note. Model equation: accuracy ~ norms*worddirection*order + BERT*worddirection*order + (1|subject) +
(1|word).
7, estimated variance of random effects; p, correlation of random effects.

not significant. While we predicted significant interactions due to the relative time course of
perceptual and linguistic processing during this task, there are several possible explanations
for this pattern of results that are consistent with the literature. These results suggest that
much like in Experiment 2, between-direction categorization and embodied, within-direction
magnitudes were more influential of processing during this task than languages statistics (as
operationalized here). A lack of effect for the linguistic factor on reaction time could be
because the present task is more demanding of perceptual system involvement, or because
verbs favor perceptual processing or are weakly represented by symbolic systems in general
(Brown et al., 2023, though the results of Experiment 1 show that BERT maps onto these
word senses relatively well). However, these explanations for the lack of a linguistic factor
effect are not consistent with the model for accuracy, discussed next.

The related model predicting accuracy yielded a different pattern of results, including evi-
dence for the more direct involvement of language statistics. In this model, we observed a
significant three-way interaction between the linguistic factor, word direction, and order. For



J. Hollander, A. Olney/Cognitive Science 48 (2024) 350f43

upward meaning words, stronger within-direction linguistic associations yielded higher accu-
racy rates in the word first condition than the cue first condition. This result can be interpreted
as consistent with our other findings in that activating stronger linguistic connections while
only being able to see the word may create a much narrower hypothesis of potentially con-
gruent movement, demanding less disambiguation from the perceptual system upon viewing
the cue, thereby rendering speeded judgments easier.

Why this might be true only of upward meaning words, however, demands further expla-
nation. While these asymmetric results are somewhat common in similar paradigms, with
location-cue congruence effects often being driven by up/high words (Dudschig et al., 2013;
Lachmair et al., 2011; but not always, see Pecher et al., 2010), this particular combination of
analytic approaches is in novel territory. Future research should seek to redefine and/or disen-
tangle the contributions of linguistic and embodied processing in these situations, especially
considering the frequency with which task specificity is raised as a concern for the field.

4.3. Experiment 3 discussion

One of the primary purposes of this experiment was to extend the integrated language
processing literature to include verbs in a new stimulus presentation paradigm. By decou-
pling lexical stimulus presentation from the perceptual cue used to make judgments in a
cue-congruency paradigm, we hoped to create an experimental manipulation that could be
used within-subjects that might allow us to examine embodied language processing in greater
detail using new stimulus sets. This endeavor was successful, but not without limitations and
unexpected results.

Regarding expected effects (Section 5.2.1), we found that words with upward meanings
paired with upward-moving cues facilitate reaction time and accuracy, consistent with previ-
ous location-cue studies. Since movement-word congruency aided processing in both condi-
tions, these results suggest a degree of generalizability in using dynamic stimulus presenta-
tions to examine embodied and symbolic language systems. Further, there was a significant
effect of the novel order condition; participants were faster in the word-first condition. In this
condition, reading the word first triggers linguistic processes which quickly create a narrow
judgment hypothesis, which shortcuts need for slow, embodied language processing, thereby
reducing reaction time. In contrast, participants were more accurate for upward words and
upward movement in the cue-first condition, suggesting embodied processing before linguis-
tic processing. These effects generally support language shortcut hypotheses, but warrant
further investigation, especially to examine whether the order manipulation is truly eliciting
differences in symbolic and embodied language processing as expected.

We also examined whether polarity alignment could explain our effects (Section 5.2.3).
As in Experiment 2, we found that our results generally did not align with the predictions
made by polarity correspondence research. However, this does not completely rule out polar-
ity as a factor that influences reaction times. Rather, it suggests that perceptual simulation
is a more likely explanation for more of the variance observed in our data (as in Pecher
et al., 2010). We recommend that researchers in the future seek to disentangle the possibly
plural role of polarity and mental simulation more directly in similar experimentation, for
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example, by incorporating more difficult tasks or reconsidering the response dimension of
polarity.

The analyses using operationalized symbolic and embodied factors to predict reaction time
and accuracy (Section 5.2.5) yielded complex results. We found that the embodied factor
(human ratings) was significantly associated with reaction times, while the symbolic factor
(language statistics) was not. Unexpectedly, this was true across both order conditions. There
are many possible explanations for this finding. It could be that verbs elicit more percep-
tual processing than other parts of speech, causing the embodied factor to predominantly
influence reaction times. Alternatively, the judgments being asked of participants might be
more perceptually demanding than other lexical judgments often found in related studies.
Along these lines, distributional semantic models have been shown to account more weakly
for verbs than other parts of speech (Brown et al., 2023), so the linguistic factor may have
been disadvantaged from the start. However, the linguistic factor did yield a significant three-
way interaction with the order manipulation and word direction when predicting accuracy.
More specifically, stronger within-direction linguistic associations led to higher accuracy rates
in the word-first condition for words with upward meanings. This outcome aligns with our
previous findings, suggesting that when stronger linguistic connections are activated while
only the word is visible, participants form narrower hypotheses about potentially congru-
ent movement. This reduces the need for disambiguation by the perceptual system when
the cue is observed, making quicker judgments more possible. However, this effect may
apply only to upward meaning words, which is not readily explained by mental simula-
tion alone. As previously discussed, future research may need to investigate polarity align-
ment as an explanation in conjunction with cognitive simulation, rather than as a replacement
for it.

This study is constrained by several limitations that may be addressed with continued
research. The time course of the sequencing manipulation may not be optimal for the obser-
vation of these types of effects. Participants had roughly 500 ms between stimuli, which may
overestimate the time course involved in the interplay between symbolic and embodied sys-
tems. Future research should investigate similar manipulations over multiple time courses to
determine how they impact shifts in processing between linguistic and embodied systems
under the sequencing manipulation in this task. Other psycholinguistics explanations of our
data may involve the relative contextual demands of the words in each list; it could be that
certain words have more plausible axes or degrees of motion than others. This may lead to
asymmetric results if the differences are not evenly distributed between up and down lists.
Future research using similar measures should consider the motoric associations of words in
stimulus lists carefully, because this type of sensorimotor information may play an important
role in similar experiments and tasks.

5. General discussion

This study was motivated by the lack of verbs in symbolic-embodied integrated language
processing research. Accordingly, a primary objective of these experiments was to determine
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an empirically valid way of integrating verbs into this literature. The results of these studies
suggest that verbs are viable for examination in several ways.

In Experiment 1, a judgment task of the vertical movement meanings of individual verbs
yielded norms that were both related to and importantly distinct from related language statis-
tics. This selection of verbs was small and designed to vary along one dimension (the vertical
movement axis), but future research could explore a great number of verbs in higher-scale
norming studies involving the unique motion properties of verbs. The results of this experi-
ment suggest that such norms might capture perceptually grounded information in semantic
memory that is not fully represented by current computational linguistic measures.

In Experiment 2, these verbs were implemented in a location-cue congruency paradigm
common in embodied and integrative language processing research. Verbs presented in posi-
tions that were congruent with the endpoints of their implied directions were processed more
quickly than those presented in incongruent positions—this effect was driven by upward
meaning words presented high. At a basic level, this finding indicates a successful verb-based
replication of embodied language processing experiments that have previously neglected
verbs. Further, the norms obtained in Experiment 1 were significant predictors of response
speeds in this experiment, while language statistics were not. This somewhat contrasts with
previous research in this domain that demonstrates that language statistics are often a signifi-
cant predictor of reaction times for these kinds of tasks (Hutchinson & Louwerse, 2013; Till-
man & Louwerse, 2018). However, distributional semantic models have been demonstrated
to construct weaker representations for verbs in comparison to other parts of speech (Brown
et al., 2023, though contextual embedding models like BERT should mitigate this concern
somewhat). Further, it is likely that our task was more demanding of deep, embodied infor-
mation than something like a surface-level lexical judgment (e.g., word or nonword), and the
use of motion/directionality norms for verbs may also be a stronger embodied factor than the
embodied factors operationalized in these noun-based studies. Future research should seek to
collect and examine the properties of perceptually oriented norms, and further explore how
task demands create demands for embodied and linguistic processing at a fine-grain level,
including at the level of perception (Lupyan, Rahman, Boroditsky, & Clark, 2020).

In Experiment 3, these verbs were investigated using a novel manipulation designed as
an extension of previous location-cue congruency and semantic/iconic judgment paradigms.
This manipulation involved animated stimuli and the temporal decoupling of word and mean-
ing presentations. The manipulation used in this study was found to affect reaction times
in a manner consistent with linguistic shortcut hypotheses because faster reaction times were
observed when words were presented before physical movement. Consistent with Experiment
2, norms were again associated with faster response times across conditions, while linguistic
factor yielded no significant effect. However, the linguistic factor was involved in a signifi-
cant three-way interaction predicting response accuracy, such that stronger language statistics
elicited more accurate responses for up words in the word-first condition, while the embodied
factor did not yield a significant main effect. This complex set of results may be cautiously
interpreted as generally supportive of embodied language processing theories and linguistic
shortcut hypotheses, but much more work must corroborate, disentangle, or otherwise explain
some inconsistent effects, such as the asymmetrical effects between upward and downward
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words, or the difference in patterns of results when predicting speed versus accuracy. Future
research could explore additional time course manipulations or utilize ERP or eye-tracking
methods to reveal more fine-grain information about the scale at which embodied and sym-
bolic systems activate and interrelate.

In addition to their individual results, this series of experiments may provide insight to
embodiment-integrative language processing research when considered in context. These
findings provide evidence that, for verbs, language processing is indeed both symbolic and
embodied, and that language statistics will obviate the need for embodied processing in cer-
tain contexts. Further, findings related to accuracy suggest that embodied processing done in
advance of linguistic processing may reinforce or enhance judgments made using linguistic
information in some contexts. However, our knowledge about the nature and constraints of
these interdependent systems is far from exhaustive. At a surface level, this study provides
an example of how verbs may be adapted in the study of symbolic and embodied language
processing. At a deeper level, verbs have been used in a series of incremental, novel tasks to
reveal further nuance about the interdependent nature of linguistic and embodied information.
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