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Many animal groups exhibit signatures of persistent internal modular struc-

ture, whereby individuals consistently interact with certain groupmates

more than others. In such groups, information relevant to a collective

decision may spread unevenly through the group, but how this impacts

the quality of the resulting decision is not well understood. Here, we expli-

citly model modularity within animal groups and examine how it affects the

amount of information represented in collective decisions, as well as the

accuracy of those decisions. We find that modular structure necessarily

causes a loss of information, effectively silencing the input from a fraction

of the group. However, the effect of this information loss on collective accu-

racy depends on the informational environment in which the decision is

made. In simple environments, the information loss is detrimental to collec-

tive accuracy. By contrast, in complex environments, modularity tends to

improve accuracy. This is because small group sizes typically maximize col-

lective accuracy in such environments, and modular structure allows a large

group to behave like a smaller group (in terms of its decision-making). These

results suggest that in naturalistic environments containing correlated infor-

mation, large animal groups may be able to exploit modular structure to

improve decision accuracy while retaining other benefits of large group size.

This article is part of the theme issue ‘Liquid brains, solid brains: How

distributed cognitive architectures process information’.
1. Introduction
From choosing where to invest time searching for food to deciding whether to

fight or flee from a predator, an animal’s decisions may impact its probability of

survival and reproduction. Animals have therefore evolved mechanisms to

exploit available information in order to improve their decisions. Many organ-

isms do not make such decisions in isolation, however. The social environment

in which many animals live (and make decisions) can also strongly influence

the decision-making abilities of individuals. Indeed, a large and growing

body of theoretical and empirical evidence suggests that making decisions col-

lectively can often improve decision accuracy across a wide range of contexts,

including detecting the presence of predators [1,2], locating the correct direction

in which to migrate [3,4], when climbing environmental gradients [5,6] and dis-

covering energy-efficient travelling routes [7,8]. Similar results have been

obtained in several domains of human decision-making, including forecasting

future events [9], forming medical diagnoses [10] and estimating numerosities

[11–13], suggesting that the mechanisms underlying collective decision-

making may be general and find broad applications across contexts and species.

One such collective decision-making mechanism involves the pooling of infor-

mation across individuals in the group [3,4]. Because each group member
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necessarily occupies a unique position in space, and therefore

experiences somewhat unique stimuli from the environment,

the information available to the group as a whole can be much

greater than that sensed by any single individual [14,15]. It has

therefore been hypothesized that the collective decision gener-

ated by such a distributed sensory array has the potential to

outperform individual decisions, simply owing to the greater

amount of information available to the group [14].

However, the decision-making benefits of information

pooling require some diversity of information among the indi-

viduals, since there can be no potential for improvement in

decision accuracy if all individuals possess identical infor-

mation. In reality, rather than being completely independent

of each other, the information perceived by animals in a

group will often be correlated to some degree. This can arise

owing to intrinsic spatial correlations in environmental cues

(e.g. odour plumes, sounds or visual stimuli) [16,17]. Another

mechanism by which opinions can be correlated is if individ-

uals can be influenced by the opinions, or behaviour, of

others through social learning [11,18]. Such correlations in

information across individuals have been shown to degrade

collective accuracy generally [19–23], and recent research has

demonstrated that small groups often maximize collective

accuracy in such scenarios [16,18]. Increasing group size

initially allows the individuals to exploit the benefits of infor-

mation pooling, but increasing the size of the group further

causes correlations (either from the environment or from

social influence) to dominate the collective decision-making

and consequently degrade accuracy [16].

Models that seek to explain the benefits of collective

decision-making, whether in relatively simple environments

or scenarios involving correlations, typically assume, either

explicitly or implicitly, that individuals in groups make

decisions through simple majority rule, or a related rule

such as a weighted majority [24] or quorum rule [1,25–28].

Indeed, majority rule can be mapped onto many real

animal decision mechanisms [29–32], and even models of

collective movement, where individuals are typically

assumed to interact only with near neighbours, produce over-

all decisions that closely match majority rule [17,24,33]. In

short, animal groups are often assumed to be well-mixed

over the course of a decision, such that the resulting decision

is well approximated by simple majority rule.

By contrast, however, rather than being well-mixed, many

real animal groups exhibit signatures of persistent modular

structure in the group, whereby individuals interact with cer-

tain other individuals more than others. Early studies of fish

schools in the laboratory and in the field described subsets of

the school moving semi-independently [34–37], often form-

ing appendages at the edges of the school [38] or ‘lacunae’

within the school [39–43]. Distinct subgroups within the

larger school have been observed in a wide range of fish

species, including saithe [39,44], herring [35,45], mackerel

[46], capelin [47] and minnows [42], through the observation

of correlations in movement across individuals, or the detec-

tion of high density regions within a school. In these studies,

for schools ranging in size from 12 to 70 fish, subgroups

tended to consist of two to five individuals [46]. Similarly,

in birds, subgroups have been observed in rock doves [48]

and domains of correlated movement have been identified

in starlings [49].

More broadly, many animal species can form complex

hierarchical structures within a social group, or societies
within a larger population [50]. By characterizing the social

networks of animal groups (e.g. [51,52]) or using other

methods, researchers have identified such complex social

structures across diverse taxa, including primates [53,54],

bats [55], hyenas [56], equids [52], cetaceans [57], elephants

[58] and birds [59]. In such hierarchical structures, a particu-

lar animal often forms close alliances with certain individuals

(such as kin), but maintains relatively looser affiliations with

others, either within the same group, or across distinct

groups. A number of proximate mechanisms, including indi-

vidual recognition and self-sorting (without the need for

individual recognition) [51,60,61] have been found to be

capable of generating persistent non-random associations

between individuals.

Furthermore, many social insects, such as ants [62,63],

honeybees [64], bumblebees [65] and wasps [66], interact

more frequently with certain individuals in the colony than

other individuals. This spatial heterogeneity can strongly

affect how information about food availability or environ-

mental conditions spreads across the colony. However,

because collective decisions in such colonies also use other

mechanisms, such as pheromones [67], waggle dances [68]

and recruitment [69]—often physically embodied outside of

the nest site—in this study we focus on modelling other

animal groups, such as fish schools and bird flocks, rather

than social insects in particular.

In the context of this special issue, animal groups exhibit-

ing some modular structure inhabit an intermediate space

between ‘liquid brains’ (in which the links connecting com-

ponents are highly dynamic) and ‘solid brains’ (in which

the links are static), exhibiting some features of both. Here,

we systematically examine the effect of such intermediate

structure on the quality of collective decision-making by

group-living animals. To facilitate this analysis, we define a

new measure of the information contained within a collective

decision, the effective group size (in analogy to effective popu-

lation size in population genetics, and effective reproduction

number in disease dynamics), which allows for the quantifi-

cation of the effect of modular structure on the quality of a

collective decision. We then analyse the effect of modularity

within simple environments, as well as more naturalistic

scenarios (environments with multiple cues that vary in cor-

relation [16]) to understand how such internal structure may

be strategically exploited by animals in a group to improve

collective decision accuracy.
2. Defining the effective group size
The classic Condorcet jury theorem [70] demonstrated that,

given a choice between two options (where one option is

inherently superior to the other but is known imperfectly to

a group of individuals) in which each individual selects the

better option with the same probability r . 0.5, then the opti-

mal method to combine the individual opinions is to select

the more popular option (i.e. simple majority rule) [71].

Doing so allows for a monotonic increase in collective

decision accuracy as group size increases, saturating at per-

fect accuracy as group size grows very large (figure 1a).

Although each individual contributes equally valuable

information to the group (i.e. they all have the same individual

accuracy r), the marginal improvement in collective accuracy

owing to the addition of another individual decreases with
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Figure 1. Defining the effective group size. (a) A group of individuals, each with a probability r of selecting the correct option (out of two available options), can
maximize its collective accuracy by combining the individual opinions through simple majority rule. Shown is the collective accuracy resulting from simple majority
rule as a function of the total group size N. (b) By inverting the relationship in (a), we define a new measure, the effective group size Neff, to describe the infor-
mation loss incurred owing to modular structure within the group. The effective group size is the size of the group that, making a decision through simple majority
rule, achieves the same observed accuracy as a (larger) group containing some modular structure.
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Figure 2. Modelling modular structure in groups. (a) Many group-living animals associate closely (solid lines) with certain individuals, and only interact weakly
(dotted lines) with other individuals, which can create persistent subgroups within the larger group. (b) To model such modular structure in animal groups, we
assign each individual to a unique subgroup (dotted circles). The individuals within each subgroup form a consensus opinion through simple majority rule (shown in
tier t ¼ 1). Following this, the decisions of the subgroups are then combined into an overall consensus decision, also through simple majority rule (tier t ¼ 2). An
arbitrary number of subgroups and tiers can be modelled in this framework. (c) An example demonstrating how a minority can determine the collective decision
when modularity is present. While a majority (five out of 11) individuals voted for one option (indicated in black), this particular assortment of individuals into
subgroups resulted in a consensus decision for the other option (indicated in white).
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group size. This nonlinear relationship between group size

and collective accuracy makes collective accuracy a subopti-

mal measure to quantify the effect of modular structure on

decision accuracy. To counter this, we define a new measure

of information content, the effective group size, by inverting

the relationship illustrated in figure 1a. Thus, for a particular

individual accuracy r, we can map any observed collective

accuracy, arising from any decision-making process or any

internally structured group, to an effective group size Neff,

which is the group size that would achieve the same collective

accuracy if making a decision by simple majority rule (figure

1b). Given that simple majority rule reflects the optimal use of

the available information contained within the individuals in

the group in this context, the effective group size will generally

be smaller than the actual group size. The ratio between the

effective group size Neff and the actual group size N allows

us to quantify how much information is lost owing to the

introduction of internal structure, or other details of the collec-

tive decision-making process.
3. Modelling modular structure within groups
Many animals living in social groups associate strongly with

a subset of the group, and more weakly with other group

members [50,60,61]. As a result, relatively distinct, semi-

independent subgroups can often be detected within the
group [46]. In such groups, information may be shared

among members of a particular subgroup at a relatively fast

time-scale, while information is transferred, and a consensus

formed, between subgroups at a slower time-scale (figure 2a).

To formalize this structure, we consider each individual

to belong to a particular, mutually exclusive subgroup

(figure 2b). A consensus is first formed within each subgroup

through simple majority rule, and then the decisions of the

subgroups are combined to form an overall collective

decision, also through simple majority rule (see §7 for

details). To increase the generality of our results, we addition-

ally tested two modifications to our model. One model does

not assume that individuals have identical accuracies but

rather have accuracies normally distributed around some

value, while the other model assumes that the decisions of

the subgroups are combined not through simple majority

rule but instead are weighted by the size of each subgroup

(see §7 for details). In addition, the structure may be general-

ized from the two-tier system that we examine here, to many

tiers, in which subgroups are further divided into smaller

units.

Previous theoretical work has shown that, in general,

such modular structure causes a loss of information, whereby

decisions made in these systems tend to be less accurate com-

pared to decisions made when all group members vote

directly through majority rule, without any such internal

structure [72–74]. This is because modularity allows the
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a region where group sizes N ranged from 5 to 201, subgroup evenness S
ranged from 0 to 1, individual accuracy r from 0.51 to 0.70 and number
of subgroups M from 3 to 15. Shown in grey are the individual data
points for each set of parameter values. Shown in black are the effective
group size ratios, as a function of (a) total group size, (b) subgroup evenness
and (c) individual accuracy, respectively, while holding all other variables at
their mean value. Subgroup evenness S was calculated relative to the maxi-
mum and minimum Shannon diversity possible, where S ¼ 0 indicates a
maximally uneven distribution (all but one subgroups contain one individual,
and one subgroup contains the rest of the individuals) and S ¼ 1 indicates a
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bers of individuals); see §7 for details of the model, and electronic
supplementary material for the Matlab code used to generate all results
figures.
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minority preference to be selected occasionally by the group

(figure 2c). Because the Condorcet jury theorem states that the

majority is more likely to be correct than the minority (pro-

vided that individual accuracy r . 0.5), these instances of

‘majority deficiency’ [74] tend to degrade collective accuracy.

In general, because only the majority opinion propagates

beyond a subgroup, the minority opinion in each subgroup

is silenced at higher levels of the decision-making process.

The effective group size is therefore a natural measure of

the loss of information caused by the silencing of a certain

fraction of the group.

4. Modular structure causes information loss
The space of possible modular structures that can be gener-

ated spans four dimensions: the total number of individuals

in the group N; the evenness in the sizes of the subgroups

S (measured here as the Shannon diversity of the occupancy

of the subgroups, normalized by the smallest and largest

possible values that the Shannon diversity can take); the accu-

racy of each individual r; and the number of subgroups M.

Here we assume only two tiers in the hierarchy (i.e. the

group is composed of subgroups, with no further division

of the subgroups), both for simplicity and because they ade-

quately describe many simpler animal social structures (such

as those observed in fish schools [46] and bird flocks [48]).

For each combination of parameter values, we computed

the ratio of the effective group size to the actual group size to

measure how much information is lost owing to that particu-

lar modular structure. For this analysis, we assume, initially,

a scenario identical to that of the Condorcet jury theorem,

where each individual independently selects the correct of

two options with a probability r.

We find that the relative effective group size ratio

decreases as the total group size increases (figure 3a). This

is because the collective accuracy tends to saturate and

approach 1 at large group sizes, so a small decrease in collec-

tive accuracy results in a large drop in the effective group

size. The effective group size ratio increases as the subgroups

become more equally sized (figure 3b), agreeing with earlier

work showing that equally sized subgroups tend to outper-

form asymmetric groups [19,72,75]. We find a mild

decrease in the effective group size ratio as the accuracy of

the individuals increases (figure 3c), for a similar reason to

that for total group size.

The results are very similar when individuals have a dis-

tribution of accuracies, rather than identical accuracies

(electronic supplementary material, figure S1). However,

when subgroup decisions are weighted by their size, we

find that the effective group sizes tend to be greater overall

compared with consensus decisions formed by weighting

subgroup decisions equally (electronic supplementary

material, figure S2). When subgroup decisions are weighted

by their size, the effective group size ratio decreases much

less sharply as the total group size increases (electronic sup-

plementary material, figure S2a) and is nearly constant as

individual accuracy changes (electronic supplementary

material, figure S2c). However, rather than a monotonic

increase in the effective group size ratio as the subgroups

become more evenly sized, we find that the effective group

size ratio is relatively high when subgroup evenness is very

low or very high, and at its minimum when the evenness is

moderate (electronic supplementary material, figure S2b).
This is because highly uneven subgroup sizes (e.g. when

there is one very large group and several very small

groups) behave similarly to a group with no modular struc-

ture since the large subgroup is much more strongly

weighted than the small subgroups.

Previous work noted that given two numbers, n1 and n2,

where n1 . n2, having n1 subgroups consisting of n2 individ-

uals per subgroup leads to higher collective accuracy

compared to n2 subgroups consisting of n1 individuals per
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subgroup for the model where individuals have identical

accuracy and subgroup decisions are combined through

simple majority rule [22,72,76]. This led researchers to conjec-

ture that generally it is better to have a large number of small

subgroups than a small number of large subgroups [22,72].

While we find agreement that, for a given pair n1 and n2,

higher collective accuracy is indeed achieved with a large

number of small subgroups than vice-versa, this does not

imply that collective accuracy increases monotonically as

the number of subgroups increases (figure 4a). By contrast,

in general we observe that a moderate number of subgroups

minimizes collective accuracy. However, the change in collec-

tive accuracy loss from adjusting the number of subgroups

tends to be relatively small, compared to the loss resulting

from introducing any modular structure into the group

(figure 4a). Nonetheless, across a wide range of group sizes

and parameter values (but assuming that subgroups are of

approximately equal sizes), we find that the modular struc-

ture that leads to the lowest collective accuracy occurs very

close to when there are
ffiffiffiffi

N
p

subgroups with
ffiffiffiffi

N
p

individuals

per subgroup (figure 4b). Overall, then, the highest collective

accuracy is achieved either with a large number of small sub-

groups or a small number of large subgroups (with a slight

accuracy advantage to the former), although all groups

with modular structure suffer a decrease in collective

accuracy compared to groups with no modular structure.
an intermediate number of individuals leads to the lowest collective accuracy.
Shown is an example for a group of total size N ¼ 405, which can be
split into a range of evenly sized subgroups (black), with individual accuracy
r ¼ 0.53. For comparison is the collective accuracy that would be achieved
for a group of the same size, with no modular structure (grey dotted
line). The number of subgroups M is displayed on a logarithmic axis for
clarity. (b) The number of subgroups leading to the lowest collective accuracy
as a function of total group size N, across individual accuracies r ranging from
0.55 to 0.70, with subgroup evenness S fixed at 1. Overlaid in red is the line
M ¼

ffiffiffi

N
p

. The scatter at large N is due to the very high collective accuracy
for large groups, especially when r is also large, making it computationally
difficult to resolve the number of subgroups leading to the lowest accuracy.
(Online version in colour.)
5. Modular structure can improve accuracy in
complex environments

In natural environments, animals typically do not make judg-

ments completely independently of each other, as assumed

in our analysis so far, and in models such as the Condorcet

jury theorem. Instead, the opinions of animals are often corre-

lated with each other to some degree, and in such scenarios,

small group sizes have often been shown to maximize collec-

tive accuracy [16,18]. This is because increasing group size

initially increases collective accuracy owing to the benefit of

opinion aggregation (the ‘wisdom of crowds’), but at larger

group sizes, the correlated cue increasingly dominates the col-

lective decision, decreasing accuracy. Because our analysis so

far has demonstrated that modular structure within groups

can decrease the effective group size when making decisions

(often by a substantial fraction), animals in groups may be

able to exploit the information loss resulting from such struc-

ture in order to improve their collective accuracy in such

complex environments (where the information perceived by

individuals in the group may be correlated with each other).

To test this, we examined the impact of modular structure

on collective decisions within environments containing two

informational cues, one of which is sampled independently

by individuals in the group (the ‘uncorrelated cue’) and one

that provides identical information to all individuals in the

group (the ‘correlated cue’; see §7 and refs. [16,17] for details

of the model). In this model, the uncorrelated cue provides

correct information with some probability rL . 0.5, the corre-

lated cue provides correct information with probability rH �
0.5 and individuals form an opinion by probabilistically

selecting the uncorrelated cue with probability p and the cor-

related cue with probability 1 2 p. This probabilistic use of

cues is the ‘weighted average’ analogue when there are

only two cues available, since an actual weighted average
would trivially result in the more strongly weighted cue

being used, and thus determining every decision.

We varied the number of subgroups and the evenness of

the sizes of the subgroups, and simulated such groups

making decisions for one particular group size and environ-

ment (N ¼ 51, rL ¼ 0.65, rH ¼ 0.5, p ¼ 0.6; for this model, a

finite optimal group size exists if p , 1/(2rH); the par-

ameters otherwise control the exact size of the optimal

group and the collective accuracy of an infinitely large

group). We find that there exists a unique number of sub-

groups and evenness that maximizes collective accuracy

(figure 5a). For this scenario, forming seven subgroups

with maximum unevenness (where all but one of the sub-

groups contain only one individual and the other

subgroup contains the rest of the individuals) allows a

group of size N ¼ 51 to achieve an effective group size of

Neff ¼ 18.4. Because collective accuracy in this environment

is maximized with a group of size 5 (with no modular struc-

ture), the presence of modular structure allows a large

group to behave much more similarly to an optimally

sized group and consequently achieve a substantially

higher collective accuracy (figure 5b).
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Figure 5. Modular structure can improve decision accuracy in complex environments. (a) In environments containing multiple informative cues, which vary in their
degree of correlation across individuals in the group, a monotonic increase in collective accuracy as group size increases (as in the Condorcet jury theorem) is typically
not observed; instead, a finite (and often small) group size maximizes accuracy. Large groups may exploit modularity to reduce their effective group size, thereby
behaving like a smaller group and increasing collective accuracy. Shown is the collective accuracy achieved as function of the number of subgroups M and subgroup
evenness S, for a group of size N ¼ 51 and an environment where the correlated cue provides correct information with probability rH ¼ 0.5, the uncorrelated cue is
correct with probability rL ¼ 0.65 and individuals follow the uncorrelated cue with probability p ¼ 0.6 (see §7 for details of the model). A particular number of
subgroups and subgroup evenness maximizes collective accuracy. (b) Using the optimal modular structure found in (a) allows the group of size N ¼ 51 to behave
like a group of size Neff ¼ 18.4, allowing the group to gain additional decision accuracy. (c) Assuming that subgroups in animal groups are approximately evenly
sized (S ¼ 1), the number of subgroups leading to the highest collective accuracy is approximately M ¼

ffiffiffi

N
p

. For each group size, 20 random values of the
reliability of the correlated cue rH, reliability of the uncorrelated cue rL, and probability that an individual follows the uncorrelated cue p were tested. (d ) The
effective group size measure not only accurately describes the collective accuracy of a group with modular structure, but also the probability that the decision
is dominated by the uncorrelated cue ( pN) and the probability that the group makes a correct decision when the decision is dominated by the uncorrelated
cue (rN

L ). Fifty random sets of parameter values, with total group size selected from the range N [ [11, 101], number of subgroups M [ [3, N 2 2], subgroup
evenness S [ [0, 1], uncorrelated cue accuracy rL [ [0.5, 0.7], correlated cue accuracy rH [ [0.5, 0.7] and individual probability of using the uncorrelated cue p [
[0, 1/(2rL)]. (Online version in colour.)
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Across group sizes and environmental conditions, we

observed that maximizing subgroup unevenness typically

improves accuracy in these scenarios. However, this extreme

modular structure may not be realistically achievable for

many animal groups in which the subgroups tend to be

approximately evenly sized [46]. Therefore, to better under-

stand how real animal groups may improve accuracy

through modular structure, we subsequently fixed the sub-

group evenness to its maximum value (such that subgroups

are approximately evenly occupied) and located the number

of subgroups that maximized accuracy across a wide range

of environmental conditions. We find that the optimal

number of subgroups increases with group size, and also clo-

sely follows the M ¼
ffiffiffiffi

N
p

line (figure 5c). Therefore, having
ffiffiffiffi

N
p

subgroups leads to the lowest collective accuracy when

individuals have independent information (as in the Condor-

cet jury theorem), but often leads to the highest collective

accuracy when individual opinions exhibit some degree

of correlation.

While in the Condorcet jury theorem scenario the only rel-

evant output is the collective accuracy of a subgroup or group,
for the more complex scenario with multiple informative cues

there are additional quantities of interest. One such quantity is

the propensity of a group’s decision to be dominated by the

uncorrelated cue. A group’s decision is dominated by the

uncorrelated cue when the group decision is not dependent

on whether the correlated cue provided correct or incorrect

information. This occurs when either a majority of correct

votes has already been reached by individuals using the

uncorrelated cue (such that the collective decision is correct

regardless of the correlated cue); or when there is a submajor-

ity of correct votes using the uncorrelated cue, but the size of

the correlated cue voting bloc is too small to result in a

majority of correct votes even if the correlated cue is correct

(such that the collective decision is incorrect regardless of the

correlated cue). In analogy to the individual probability of fol-

lowing the uncorrelated cue, we denote the probability that a

group’s decision is dominated by the uncorrelated cue as pN.

A second quantity of interest is the collective accuracy of the

group when the group’s decision is dominated by the uncorre-

lated cue. Because, as described above, there are two ways in

which the uncorrelated cue can dominate a collective decision,
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how the probability of these two ways changes across environ-

ments or group size is not obvious. In analogy with the

reliability of the uncorrelated cue for an individual, we

denote the probability that a group’s decision is correct when

it is dominated by the uncorrelated cue as rN
L .

Thus far, we have mapped a group containing modular

structure to an effective group size without modular structure

using only the collective accuracy of the group. If a group

with modular structure is truly equivalent to a (smaller)

group without modular structure, then it should have not

only the same collective accuracy, but also have the same

probability of being dominated by the uncorrelated cue pN

and being correct when dominated by the uncorrelated cue

rN
L . We therefore examined, across a wide range of environ-

mental scenarios and group sizes, the difference between

the predicted values for all three quantities between a

group with modular structure and one without modular

structure at the effective group size. We find that the effective

group size is indeed an accurate description of a modular

group for all three quantities (figure 5d ). Therefore, the effec-

tive group size is an accurate descriptor of how a group with

modular structure behaves.

6. Discussion
Despite a considerable amount of empirical evidence that

many social animal groups exhibit persistent modular struc-

ture, there exists very little theoretical understanding of its

effect on a group’s decision-making abilities. Here, we

showed that, by silencing the minority opinion within

subgroups, modularity necessarily causes a loss of infor-

mation. This information loss is subsequently reflected in

the group decision and is well described by the effective

group size measure that we introduced. In general, modular

structure is detrimental to collective decision accuracy in

simple environments, such as those described by the Con-

dorcet jury theorem, but can often enhance decision

accuracy in more complex, and naturalistic, environments

that contain correlations in the informative cues sensed by

animals.

Modular structure may therefore be a mechanism to allow

large groups to behave much as a smaller group would when

making a collective decision, but to simultaneously retain

many other recognized benefits of living in a large group,

such as predator deterrence [1,2,77]. For species that typically

live in very large groups (and are therefore very far from the

optimal group size for most environments), animals

could minimize their effective group size by constructing

approximately M ¼
ffiffiffiffi

N
p

subgroups for a group of size N.

Experimental evidence has uncovered scaling relationships

between the correlation length of individual movements and

the spatial extent of a flock of starlings [49], suggesting that

the behavioural rules that social animals follow may automati-

cally scale the number of subgroups as the size of a group

varies. Nevertheless, many animal groups exhibit a modular

structure that is far from this potentially optimal structure,

such as large groups of migrating ungulates consisting of

many small subgroups of genetically related individuals.

Because any modular structure will cause a substantial

decrease in the effective group size, while tuning the precise

number of subgroups has a more minor effect on collective

accuracy (figure 4a), any group with modular structure will

experience much of the benefits of such structure.
However, that M ¼
ffiffiffiffi

N
p

subgroups is typically optimal

for environments containing correlated information, and

least optimal for scenarios where individuals make indepen-

dent judgments, is true only if the probability that an

individual makes a correct decision is greater than 0.5. If

this is not the case, then the opposite predictions will hold

[78]. Thus, the specific predictions of the effect of internal

structure on collective decision accuracy are sensitive to the

specific informational environment in which the animal

species in question makes decisions. For different species or

contexts, we may predict a small, moderate or large

number of subgroups to be optimal.

A common assumption in the collective decision-making

literature is that more information leads to better decisions.

Our examination of modular structure highlights that this

may not be the case. Here, we have shown that silencing the

opinions of some individuals, even randomly, may have a ben-

eficial effect on decisions. When correlations between opinions

exist, or when the information available to individuals is very

poor (r , 0.5), then more information can be detrimental,

and decreasing the amount of information used in a collective

decision (and modular structure is one mechanism for achiev-

ing this) can improve the quality of decisions.

There are further potential complex interrelationships

between the internal structure of a group, the structure of cor-

relations in the information perceived by individuals in the

group and the distributions of knowledge or expertise in the

group. For example, individuals within a subgroup are typi-

cally physically proximate to each other and thus spatially

localized, while the correlation of an informational cue also

typically has some spatial correlation, and it is not clear how

the spatial scales of the subgroups and the environmental

information interact to affect collective accuracy [79]. More-

over, ‘uninformed’ individuals lacking relevant knowledge

about the current decision may be distributed across the sub-

groups (e.g. juveniles in family groups [80]) or may comprise

entire subgroups (e.g. fission–fusion groups [50] or mixed-species

groups [81]). Whether and how collective decision-making may

be affected by partitioning or distributing correlations or

knowledge among subgroups is not yet understood but

may reveal new strategies by which animals in groups may

improve the accuracy of their collective decisions.
7. Methods
(a) Generating a subgroup structure with a particular

subgroup evenness
Our main model assumes N total individuals in the group, which

are assigned to one of M subgroups. In order to create a structure

with a certain subgroup evenness S, we calculate the smallest

possible Shannon diversity Hmin (where all but one of the sub-

groups have one member and the last subgroup contains the

remaining individuals) and the largest possible Shannon diver-

sity Hmax (where the subgroups are of equal size, or as close as

possible)—the desired Shannon diversity H is therefore defined

as H ¼ S(Hmax 2 Hmin) þ Hmin. A subgroup evenness of S ¼ 0

implies that H ¼ Hmin, while S ¼ 1 implies H ¼ Hmax. In order

to generate a subgroup structure with the desired subgroup

evenness S, we initially assign individuals to subgroups such

that the subgroups are of equal size (or as close as possible)

(i.e. we start with S ¼ 1). We then randomly select a subgroup

that contains more than two individuals, randomly select a

second subgroup containing at least as many individuals as the
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first subgroup (if one exists) and move two individuals from the

smaller to the larger subgroup (in order to maintain odd-sized

subgroups), thus decreasing the subgroup evenness. We con-

tinue this process of semi-randomly moving individuals across

subgroups until the desired Shannon diversity is achieved.

(b) Making a consensus collective decision in the
Condorcet scenario

Each individual casts a vote (which is correct with probability r) and

each subgroup forms a consensus decision by combining the votes

of the individuals assigned to that subgroup through simple

majority rule. An overall group consensus is then formed by com-

bining the decisions of the subgroups, also by simple majority rule.

(c) Making a consensus collective decision in the
multiple cues scenario

In this scenario, individuals have access to two sources of infor-

mation; however, the two sources differ in the correlation of the

information provided to each individual. For one source (the

uncorrelated cue), each individual perceives independently

sampled information from that source, which is correct with

probability rL (i.e. each individual flips a biased coin with prob-

ability rL, which determines whether that individual perceives

correct or incorrect information from that source). For the other

source (the correlated cue), all individuals in the group perceive

the same information from this source, which is correct with

probability rH (i.e. the group flips a biased coin with probability

rH once, which determines whether all of the individuals in the

group perceive correct or incorrect information from that source).

Individuals probabilistically select one of the two infor-

mation sources to base their vote on, selecting the uncorrelated

cue with probability p and the correlated cue with probability

1 2 p. These individual votes are then combined within each
subgroup, and the subgroup decisions combined into an overall

group consensus in the same manner as in the Condorcet

scenario.
(d) Modelling a distribution of individual accuracies
In this model, we assume that individuals may have different

probabilities of voting correctly. The model is identical to the

Condorcet scenario, except that the individual accuracies may

be different for each individual. We assume that individual accu-

racies are drawn from a normal distribution with a certain

population mean and a standard deviation of 0.05.
(e) Modelling weighted average decision-making
among subgroups

In this model, we assume that larger subgroups are more influ-

ential to the overall collective decision compared to smaller

subgroups. The model is identical to the Condorcet scenario,

with one difference: instead of the subgroup decisions combined

into an overall group consensus through simple majority rule

(where each subgroup carries the same weight), the subgroup

decisions are instead weighted by the size of each subgroup.
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