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The newly developed semi-analytical scheme (Lee et al., 2015a) for remote sensing of the Secchi disk depth (ZSD,
m)wasmodified and applied to Landsat-8 data to obtain high-spatial-resolutionmap of water clarity. In order to
implement the quasi-analytical algorithm (QAA) for the derivation of absorption and backscattering coefficients
from Landsat-8 data,which are key optical properties for the estimation of ZSD, the representativewavelengths of
Landsat-8 bands in the visible domain are verified; so are the absorption and backscattering coefficients of pure
water for these bands. This semi-analytical schemewas then applied to a dataset having both in situmeasurements
of ZSD (~0.1–30m) and remote-sensing reflectance and found that the estimated ZSD from remote sensing matches
measured ZSD very well (R2 = 0.96, average absolute percent difference ~17%, N = 197). This scheme was further
applied to a Landsat-8 image collected in an estuary to obtain high-spatial resolution ZSD map, and the obtained
spatial distribution of ZSD is found quite consistent with in situmeasurements and visual observations. These results
indicate an important application of Landsat data— to provide reliable high-resolutionwater clarity product of bays,
estuaries, and lakes with a unified mechanistic system.
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1. Introduction

Coastal and inland waters are important ecosystems for all lives on
Earth. They provide important sanctuary for phytoplankton and aquatic
animals, resources for recreation activities, and supply of fresh waters
for various industries and city dwellers. During the recent decades,
from factors of human activities to climate variations, the quality of
these water bodies is under significant stress; and there are more and
more frequent occurrences of hazardous events, such as harmful algae
blooms, in these ecosystems. Adequate, accurate, and consistent
monitoring of these water bodies is a high priority for local and federal
government agencies.

One of the water quality parameters routinely measured is water
clarity (or water transparency) using a Secchi disk (Arnone, Tucker, &
Hilder, 1984; Binding, Jerome, Bukata, & Booty, 2007; Bukata, Jerome,
& Bruton, 1988; Fleming-Lehtinen & Laamanen, 2012; Stumpf, Frayer,
Durako, & Brock, 1999) - a white or black-and-white disk with a diam-
eter ~30 cm. The depth of this disk when it is no longer viewable by an
observer at surface is called the Secchi disk depth (ZSD, m). The value of
ZSD provides a direct and intuitive representation of the clarity of a
water body; and water clarity is a first order description of the quality
hang@xmu.edu.cn (S. Shang).
status of an aquatic environment, where there have been millions of
measurements of ZSD in the past 100+ years in both oceanic and inland
water bodies (Boyce, Lewis, & Worm, 2012). However, due to the
inherent limitation from ship surveys, it is infeasible to have adequate
and repetitive observations over large areas and/or multiple lakes from
shipborne surveys, although it is excellent to provide detailed
characterizations of a few isolated locations. Measurements by air-
borne or space-borne sensors are the only feasible means to achieve
large scale and long-term observations of water clarity of aquatic
environments.

Satellite systems aimed atwater's biogeochemical properties are the
ocean color satellite sensors, such as the CZCS of the 1970's and the
SeaWiFS/MODIS/MERIS of the 1990's and 2000's (IOCCG, 1999). These
sensors have a few narrow (~20 nm in bandwidth) spectral bands in
the visible domain, and analyses of the radiance measured at these
bands can provide quantitative information of water constituents (e.g.,
concentration of chlorophyll or suspended particulate matter) (IOCCG,
2000) and water clarity (Doron, Babin, Hembise, Mangin, & Garnesson,
2011; Shang, Lee, & Wei, 2010). These systems have a spatial resolution
of ~300 m or coarser, which although have shown great applications in
coastal zones or large size lakes (Miller & McKee, 2004; Petus et al.,
2010), run into difficulties to provide adequate measurements for bays,
estuaries and many lakes, ecosystems that require much higher spatial
resolution for its observations.

http://crossmark.crossref.org/dialog/?doi=10.1016/j.rse.2016.02.033&domain=pdf
mailto:slshang@xmu.edu.cn
http://dx.doi.org/10.1016/j.rse.2016.02.033
www.elsevier.com/locate/rse


102 Z. Lee et al. / Remote Sensing of Environment 177 (2016) 101–106
The Landsat series (thematic mapper and the enhanced thematic
mapper) have 2 or 3 wide (50 nm or more in bandwidth) spectral
bands in the visible domain (Roy et al., 2014) which were found useful
for the remote sensing of some water constituents that include water
clarity (Brezonik, Menken, & Bauer, 2005; Giardino, Pepe, Brivio, Ghezzi,
& Zilioli, 2001; Olmanson, Bauer, & Brezonik, 2008). In particular, because
of the 30m spatial resolution of the Landsat data, it is “ideal” for synoptic
observations of bays and lakes, and a wide range of publications and
applications can be found in the literature (Clark, Fay, & Walker,
1987; Dekker, Brando, & Anstee, 2005; Zhang, Pulliainen, Koponen,
& Hallikaine, 2003; Zhou, Wang, Zhou, & Troy, 2006). One worth
noting example of such applications is the large scale and long-term
monitoring of ZSD of the 10's of thousands of Minnesota lakes from the
20+ years of Landsat data (Olmanson et al., 2008), which show a
clear contrast of water clarity of the many lakes and their variations
for a two-decade period. The approach used for that effort and many
other studies (Binding et al., 2007; Brezonik et al., 2005), however,
was purely empirical. Such kind of schemes have two inherent
limitations: 1) it requires many and wide range of match-up in situ
measurements for the derivation of the algorithms coefficients,
and; 2) the empirical coefficients are data or location/region depen-
dent, thus the algorithm is not portable for application to other lakes
or bays.

To overcome such limitations in empirically retrieving ZSD from
remote sensing, it has long been desired to have a mechanistic
algorithm for the derivation of ZSD from ocean color measurements.
An earlier attempt was that of Doron et al. (2011), where the derivation
for ZSD was based on a theoretical ZSD model developed from the classi-
cal underwater visibility theory (Duntley, 1952; Preisendorfer, 1986). It
was found that, however, the estimated ZSD from ocean color satellite
data show large differenceswhen comparedwithmatch-up in situmea-
surements (Doron et al., 2011). This poor performance was reviewed in
detail recently (Lee et al., 2015a) and it was concluded that the most
likely reason for the discouraging results is that the classical model for
ZSD does not match the physical processes of sighting a Secchi disk in
water by the human eye. A new underwater visibility theory was then
proposed and a new mechanistic model for ZSD has been established
(Lee et al., 2015a). Thismodel was subsequently evaluatedwith concur-
rent measurements (~300 stations, ZSD in a range of ~0.1–30 m) of ZSD
and remote sensing reflectance in a wide range of environments and
obtained an unbiased absolute percent difference of ~18% between
model estimated and in situ measured ZSD (Lee et al., 2015a), and the
difference changes to merely ~23% for a MODIS-in situmatchup dataset
(where there was a time difference of ±6 h between MODIS and in situ
measurements) (Shang, Lee, Shi, Lin, &Wei, submitted for publication).
These results indicate a robust performance of themodel and algorithm
for the estimation of ZSD from ocean color measurements, which further
inspired us to extend this mechanistic scheme to Landsat-8 (L8 in the
following) data for observation of water clarity of small water bodies.
This paper describes the details of estimating ZSD from L8 data, where
the remote-sensing reflectance (the input for ZSD estimation) of L8 is
generated with Acolite (Vanhellemont & Ruddick, 2015a, 2015b). The
overarching goal is to generate ZSD product of bays, estuaries, and
lakes with a unified mechanistic data processing system.

2. Methods

2.1. Model of the Secchi-disk depth

Historically, ZSDhas beenmodeled as an inverse functionof the beam
attenuation coefficient (c) and the diffuse attenuation coefficient (Kd) of
downwelling irradiance (Duntley, 1952; Preisendorfer, 1986). Recently,
through a careful and thorough review of the physics of sighting of a
Secchi disk by a human eye, it was found that the classical model of
ZSD (Aas, Høkedal, & Sørensen, 2014; Preisendorfer, 1986; Zaneveld &
Pegau, 2004) does not represent the observation of our eyes (Lee
et al., 2015a). Following the new underwater visibility theory, the
Secchi-disk depth is inversely proportional to the diffuse attenuation
coefficient and can be expressed (Lee et al., 2015a)

ZSD ¼ 1
2:5Min Ktr

d

� � ln
0:14−Rtr

rs

�� ��
0:013

 !
: ð1Þ

Here Kd
tr is the diffuse attenuation coefficient at the transparent

window of the water body within the visible domain (410–665 nm),
with Rrs

tr the remote-sensing reflectance corresponding to this wave-
length. Thereforewhat is needed for the estimation of ZSD is information
of Kd

tr from L8 measurements.

2.2. The overall scheme to analytically retrieve IOPs from remote sensing
reflectance

Through analytical derivations of the radiative transfer equation, it has
been found that Kd is a function of the sun zenith angle and the inherent
optical properties (IOPs) (Preisendorfer, 1976) of the upper water
column, in particular the absorption (a) and backscattering (bb) coeffi-
cients (Gordon, 1989; Lee et al., 2013). Thus, the key to obtain Kd

tr from
L8 measurements is to derive a and bb from L8 data. Although various
analytical or semi-analytical algorithms have been developed in the past
decades for the retrieval of IOPs from measurements of ocean color
(IOCCG, 2006), no such algorithms yetwere developed to process Landsat
data. Because of the mathematical simplicity and physical transparency,
here we adopt the quasi-analytical algorithm (QAA) (Lee, Carder, &
Arnone, 2002) for the retrieval of a and bb from the remote sensing reflec-
tance of L8 (represented as RrsL8, sr−1), and processing steps are briefly
described below.

In general, for Rrs observed in the nadir direction, it can be converted
to its subsurface counterpart (rrs, sr−1) following (Lee et al., 2002)

rrs λð Þ ¼ Rrs λð Þ
0:52þ 1:7Rrs λð Þ : ð2Þ

Through modeling of the radiative transfer function, rrs is a function
of the ratio of bb / (a+ bb) and can be expressed as (Gordon et al., 1988)

rrs λð Þ ¼ g0 þ g1
bb λð Þ

a λð Þ þ bb λð Þ
� �

bb λð Þ
a λð Þ þ bb λð Þ : ð3Þ

Here g0 (= 0.089 sr−1) and g1 (= 0.125 sr−1) are model constants
(Lee et al., 2002). From this quadratic function, there is

u λð Þ ¼
−g0 þ

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
g0ð Þ2 þ 4g1 � rrs λð Þ

q
2g1

; ð4Þ

where u=bb/(a+bb). Thus, for any wavelength where there exist
measurements of rrs, knowing a will enable the analytical derivation of
bb; vice versa. Following this logic, QAA starts with the estimation of a
at a reference wavelength (λ0)

a λ0ð Þ ¼ aw λ0ð Þ þ Δa λ0ð Þ: ð5Þ

Where aw is the absorption coefficient of pure water and assumed as
a constant,Δa(λ0) is the contributions fromnon-water constituents and
estimated empirically from rrs spectrum (Lee et al., 2002) [http://www.
ioccg.org/groups/software.html].

After a(λ0) is known, bb(λ0) is solved from Eq. (3) (Lee et al., 2002),
which leads to

bbp λ0ð Þ ¼ u λ0ð Þ � a λ0ð Þ
1−u λ0ð Þ −bbw λ0ð Þ; ð6Þ

http://www.ioccg.org/groups/software.html
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Table 1
Representative wavelength of Landsat-8 visible bands.

Band 1 (433–553 nm)
Wavelength [nm] 441 442 443 444 445
|Slope-1| 0.0042 0.0016 0.0014 0.0047 0.0084
Bias 0.00001 0.00001 0.00001 0.00002 0.00002

Band 2 (450–515 nm)
Wavelength [nm] 480 481 482 483 484
|Slope-1| 0.0079 0.0025 0.0028 0.0082 0.0137
Bias −0.00015 −0.00013 −0.00012 −0.00011 −0.00009

Band 3 (525–600 nm)
Wavelength [nm] 553 554 555 556 557
|Slope-1| 0.0039 0.0003 0.0048 0.0094 0.0143
Bias −0.00022 −0.00020 −0.00018 −0.00016 −0.00015

Band 4 (630–680 nm)
Wavelength [nm] 654 655 656 657 658
|Slope-1| 0.0176 0.0099 0.0011 0.0089 0.0195
Bias 0.00000 0.00001 0.00002 0.00004 0.00005

Fig. 1. Relationship between Rrs
L8(B3) and Rrs(554;561) for a wide range of aquatic

environments.
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where bbw and bbp are the backscattering coefficients of pure seawater
and particles, respectively. Further the bbp values at other wavelengths
are estimated following a power-law function (Gordon & Morel, 1983).

bbp λð Þ ¼ bbp λ0ð Þ λ0

λ

� �η

; ð7Þ

with the exponent η estimated empirically from the rrs spectrum
[http://www.ioccg.org/groups/software.html]. Since u(λ) is available
from rrs(λ), a(λ) can then be easily derived after bbp(λ) is known

a λð Þ ¼ 1−u λð Þð Þ bbw λð Þ þ bbp λð Þ� �
=u λð Þ: ð8Þ

Following the radiative transfer equation, Kd(λ) is a function of a(λ)
and bb(λ) and can be modeled as(Lee et al., 2013)

Kd λð Þ ¼ 1þm0 � θsð Þa λð Þ þ 1−γ
bbw λð Þ
bb λð Þ

� �
�m1

� 1−m2 � e−m3�a λð Þ
� 	

bb λð Þ: ð9Þ

Herem0 − 3 and γ are model parameters and their values are 0.005,
4.26, 0.52, 10.8, and 0.265, respectively. θs (in degrees) is the solar
zenith angle in air.

2.3. Algorithm parameters for implementing QAA with L8 band setting

For processing hyperspectral or MODIS or SeaWiFS remote sensing
measurements, λ0 is designated as 55× or 670 nm (Lee et al., 2002)
[http://www.ioccg.org/groups/software.html], whereas the required
values for aw(λ0) and bbw(λ0) are determinedbased on aw and bbw spectra
reported in the literature (Morel, 1974; Pope & Fry, 1997; Zhang, Hu, &
He, 2009). For L8, however, because some bands (Band 2 and Band 3 in
particular) have a bandwidth ~60 nm, it is necessary to designate a repre-
sentative wavelength for each band in order to properly propagate the
optical properties from one band to another (e.g., Eq. (7)). Also, it is
required to determine the corresponding aw and bbw values for each
band in order to implement QAA for L8 data.

The listed centerwavelengths for thefirst four L8 bands are 443, 483,
561, and 655 nm, respectively (Franz, Bailey, Kuring, & Werdell, 2015;
Vanhellemont & Ruddick, 2015b). Fundamentally, because the reflec-
tance of each wide band is a weighted average of the corresponding
hyperspectral reflectance (see Eq. (10) below), the listed center wave-
lengths of these L8 bands may not necessarily reflect the representative
wavelengths of an interested target if the reflectance of this target is
strongly spectral dependent within a spectral window of ~50 nm. To
obtain the representative wavelength of L8 bands for aquatic environ-
ments, remote sensing reflectance of equivalent L8 bands (RrsL8) of a set
(901 spectra) of hyperspectral Rrsmeasured in oceanic and coastal envi-
ronments (Lee, Shang, Hu, & Zibordi, 2014)were calculated by including
the response function of each band (Gordon, 1995)

RL8
rs Bið Þ ¼

Z 800

400
RrsðλÞRSRi λð ÞdλZ 800

400
RSRi λð Þdλ

: ð10Þ

Here RSRi is the response function of L8 band number i (Bi), and the
hyperspectral (400–800 nm, 5-nmresolution)Rrs (Lee et al., 2014)were
interpolated to 1-nm resolution for this calculation. For each L8 band,
the calculated Rrs

L8(Bi) were then compared with hyperspectral Rrs for
wavelengths (λj) within ±10 nm of the listed center wavelengths,
respectively, and the slope and bias in linear regression were calculated
for each pair of RrsL8(Bi) vs Rrs(λj). Table 1 presents results (bias and
|slope− 1.0|) of a few of these pairs. Based on these statistical values, it
is appeared that the center wavelengths of the L8 visible bands presented
in the literature are generally applicable for aquatic environments. For
Band 3, however, it is found that the most representative wavelength
(slope close to 1.0 and a bias closed to 0) is 554 nm (see Fig. 1), instead
of the listed 561 nm (close to 0 bias, but slope is ~0.96), although both
wavelengths have a coefficient of determination (R2) N 0.99 when
compared with Rrs

L8(B3). This might be in part because the absorption
coefficient of pure water increases rapidly (a factor of ~4) from 520 nm
to 600 nm (Pope & Fry, 1997), and Rrs of aquatic environments are
generally much higher (at least for this dataset) in the shorter than
in the longer wavelengths for wavelength domain of B3, therefore
the spectrally weighted average (Eq. (10)) at this band will have a
tendency tilting to the shorterwavelength.Without losing the generality
and for easy processing of L8 image, 554 nm is employed as the repre-
sentative wavelength for L8 Band 3 in this effort, although the impact
on the estimation of bbp at short wavelengths (see Eq. (7)) is generally
less than 2% for this modification.

After the verification of the representative wavelengths for the L8
bands in the visible domain, the other parameters required to be
determined for the implementation of QAA is awL8(Bi) and bbw

L8 (Bi). Because
Rrs is proportional to the backscattering coefficient (Eq. (3)), band-
averaged bbw

L8 (Bi) of the first four bands were calculated following the
scheme to obtain band-averaged Rrs,

bL8bw Bið Þ ¼

Z 800

400
bbwðλÞRSRi λð ÞdλZ 800

400
RSRi λð Þdλ

; ð11Þ

with the hyperspectral bbw spectrum from Zhang et al. (2009).

http://www.ioccg.org/groups/software.html
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Fig. 2. Kd(530) synthesized from Kd(488) and Kd(555) compared with Kd(530) derived
from Rrs(530).
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On the other hand, because Rrs is inversely proportional to the
absorption coefficient, band-averaged aw

L8(Bi) were obtained from a
two-step process:

xL8w Bið Þ ¼

Z 800

400
RSRi λð Þ 1=aw λð Þð ÞdλZ 800

400
RSRi λð Þdλ

; ð12aÞ

aL8w Bið Þ ¼ 1
xL8w Bið Þ : ð12bÞ

The hyperspectral (5-nm original resolution, interpolated to 1-nm
resolution) aw spectrum for the 400–800 nm range used in the above
calculation is a combination of the results of Lee et al. (2015b)
(400–545 nm), Pope and Fry (1997) (550–720 nm), and Kou, Labrie,
and Chylek (1993) (725–800 nm). The resulted aw

L8(Bi) and bbw
L8 (Bi) are

presented in Table 2.
Further, since there are no significant differences between the

representative wavelengths of L8 bands and those of SeaWiFS
bands, the default algorithm coefficients used in the current version of
QAA [http://www.ioccg.org/groups/software.html] to estimate Δa(λ0)
were applied for the L8 band settings. With the above-derived aw and
bbw values for L8, a and bb of the first four L8 bands can be adequately
derived from Rrs

L8 following the steps described in Section 2.2; subse-
quently Kd of these bands can be calculated based on Eq. (9).

2.4. Spectral gap filling

Sighting a Secchi disk in water represents measurements of optical
signal in the most transparent window of the water (Aas et al., 2014;
Lee et al., 2015a), which was found can be well characterized with
measurements around 440, 490, 530, 555, and 670 nm (Lee et al.,
2015a). L8, however, has only four wide bands centered at ~443, 481,
554 and 656 nm in the visible domain, thus lacks a band focused at
the 500–530 nm window that covers waters more transparent at
these wavelengths. Although there is also a wide spectral gap between
554 and 656 nm, extremely few waters having a transparent window
in this spectral range, thus this window is not important for the deter-
mination of ZSD, as evidenced for the wide range of environments
reported in Lee et al. (2015a). To fill the spectral gap around 530 nm,
we developed an empirical relationship based on the dataset used in
Lee et al. (2015a). In that study, Kd(488), Kd(530), and Kd(555) were
all estimated independently from the measured Rrs spectrum; and,
through multiple regression analysis, it was found that

Kd 530ð Þ ¼ 0:20Kd 488ð Þ þ 0:75Kd 555ð Þ: ð13Þ

Fig. 2 compares Eq. (13) estimated Kd(530) with that derived from
Rrs(530), where the unbiased average absolute percent difference is
~6.9% (R2 = 0.99, N = 338). Such results provide us the confidence to
estimate Kd(530) from values of Kd(488) and Kd(555). Thus, by assuming
no significant difference in attenuation coefficients for the small wave-
length differences, Kd(530) for L8 band setting is approximated as

KL8
d 530ð Þ ¼ 0:20KL8

d 481ð Þ þ 0:75KL8
d 554ð Þ: ð14Þ

Therefore, with Kd at 443, 481, 554, and 656 nm retrieved semi-
analytically from Rrs

L8, and Kd(530) estimated from Kd(481) and Kd(554),
Table 2
Absorption and backscattering coefficients of pure seawater for L8 visible bands.

Band 1 Band 2 Band 3 Band 4

aw (m−1) 0.005 0.011 0.064 0.368
bbw (m−1) 0.0021 0.0014 0.0008 0.0004
a spectral minimum Kd of a water body can then be determined from
the multiband Kd data, and ZSD can be calculated following Eq. (1). In
this calculation, because Rrs

L8 is significantly smaller than the remote-
sensing reflectance of a white disk, there was no attempt to find
the RrsL8 value corresponding to 530 nm, and Rrs

tr in Eq. (1) was determined
as the maximum Rrs value among wavelengths of 443, 481, 554, and
656 nm.

3. Results

A dataset of 197 sites (see Fig. 6 of Lee et al. (2015a) for locations)
containing concurrent measurements of ZSD and hyperspectral Rrs is
used to evaluate the performance of the above-described semi-
analytical scheme to estimate ZSD from L8 band settings. Measurements
of ZSDwere carried out conventionallywith a standard 30 cmwhite disk.
Measurements of hyperspectral Rrswere carried out from above the sea
surfacewith a GER 1500 (350–1000 nm, 3 nm resolution) following the
Ocean Optics Protocols (Mueller, Fargion, & McClain, 2003), with the
processing steps detailed in Shang et al. (2011). The equivalent L8 Rrs
of these measurements were derived following Eq. (10), subsequently
a, bb, and Kd of the L8 bands were derived with the steps described in
Section 2.2, which further led to semi-analytically estimated ZSD following
Eq. (1). A nominal sun angle of 30o from zenith was used for the calcula-
tion of Kd of all stations.

The comparison between ZSD derived from simulated-RrsL8 and in situ
ZSD is shown in Fig. 3. Statistically, the R2 value in linear regression
Fig. 3. Comparison between ZSD derived from simulatedRrsL8 and in situ ZSD. The average
unbiased absolute percent difference is ~17% with ZSD in a range of ~0.1–30 m.

http://www.ioccg.org/groups/software.html
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analysis between the two ZSD datasets (in a range of ~0.1–30m) is 0.96,
along with an average unbiased absolute percent difference as 16.7%.
These results are almost identical to that obtained from multispectral
narrow-bandwidth Rrs (see Fig. 6 of Lee et al. (2015a)), suggesting ro-
bust ZSD retrievals from Rrs

L8. This may not be too surprising because
ZSD value represents ameasurement of the bulk water property, where-
as the band settings of L8 also provide an observation the bulk water. It
deserves an emphasis, however, that during this evaluation there was
no algorithm tuning to fit the measured ZSD values for the wide range
of environments encountered. It is the same algorithm used for the
derivation of ZSD for all locations covering clear oceanic and turbid coastal
waters. Such features ensure reliable and consistent ZSD retrievals from
Rrs
L8 for different regions or areas as long as the quality of RrsL8 derived

from L8 images is acceptable. On the other hand, it is necessary to point
out that the upper limit of this ZSD dataset is ~30 m, thus not so sure yet
of the potentials of using L8 to monitor ZSD of super blue waters where
the transparent window might be in the 400–450 nm range, a window
not clear if L8 has enough signals from such waters.

4. Demonstration with a Landat-8 image

The scheme described in Section 2 was applied to an L8 image to
obtain a high-spatial resolution (30 m) water clarity map of an estuary,
whereas the sensor specifics of L8 can be found in Roy et al. (2014) and
Franz et al. (2015). This image (LC81190432013216LGN00) was
collected on August 4, 2013 and the targeted area is the Jiulongjiang
River estuary off Xiamen City, China (see Fig. 4a and b for the location).
The selection of this L8 imagewas because that thereweremeasurements
of both ZSD and hyperspectral remote sensing reflectance in this area (the
three red circles in Fig. 4b) elevendays ago (July 24, 2013),with ZSD as 0.4,
0.8, and 1.4 m at P1, P2 and P3, respectively.

The analytical approach to retrieve ZSD requires RrsL8 as inputs, which
was generated with the Acolite algorithm detailed in Vanhellemont and
Ruddick (2015b). As a crude evaluation of the quality of Rrs retrieved
Fig. 4. Application of the semi-analytic ZSD scheme to an L8 image over the estuary off Xiamen C
measurements. (c) RrsL8 from L8 compared with that from in situmeasurements for the three red
Note that there is an 11-day gap between the two observations. (d). ZSD map derived from Rrs

L8
with Acolite, Fig. 4c shows Rrs
L8 from L8 and Rrs

L8 calculated from
hyperspectral Rrs of the three points marked in Fig. 4b. Because there
was an 11-day temporal gap between the L8 observation and in situ
measurements and this is a highly dynamic estuary, there are obvious
differences in Rrs values (especially at P1), but overall RrsL8 appeared valid
and consistent with this turbid aquatic system. And, all three locations
have the maximum Rrs

L8 at Band 3; because Kd is generally dominated by
a and Rrs is inversely proportional to a, these Rrs

L8 spectra indicate that
the Kd values at Band 3 were used for the estimation of ZSD of these
locations.

The ZSDmap of this area derived from L8 is shown in Fig. 4d. Generally
there is a pattern of higher clarity (~2 m) further offshore while lower
clarity (b~0.3 m) closer to the river mouth; and the Jiulongjiang River
has a water clarity generally less than 0.2 m — spatial patterns that are
consistent with numerous visual observations of tourists and fishermen.
For locations P1, P2 and P3, ZSD values from the L8 data are ~0.3, ~0.6,
and ~0.9 m, respectively; which are ~0.2, ~0.7, and ~1.3 m, respectively,
from in situ hyperspectral Rrs. The in situ and L8 ZSD values do not exactly
match each other; but the spatial gradient, i.e. an increase of ZSD from the
inner estuary to the outer estuary, is consistent. There are certainly uncer-
tainties associated with the ZSD algorithm (Lee, Arnone, Hu, Werdell, &
Lubac, 2010; Lee et al., 2015a) and that of the derived Rrs from L8
measurements (Vanhellemont & Ruddick, 2015b), which will contribute
to the ZSD difference. However, the primary source of difference in the
ZSD values here is most probably due to the gap in observation time
(11 days). The Jiulongjiang River estuary is an area with a semi-diurnal
tide; clearer sea water goes upstream at high tide, while turbid river
water covers most of the estuary at low tide. ZSD at a locale could thus
change within hours even in a day.

5. Conclusions

It is found that the spectral band setting of Landsat-8 is adequate
for the estimation of Secchi disk depth (ZSD); and the accuracy of the
ity, China. (a) Location of the targeted area. (b) Pseudo true color of the estuary from the L8
points in (b); solid lines for RrsL8 from in situmeasurements, open symbols for RrsL8 from L8.

.
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semi-analytically estimated ZSD from L8 band setting is similar to
that obtained from a SeaWiFS/MODIS-type dataset, at least for ZSD
in a range of ~0.1–30 m. These results provide an indirect support
on the retrieval of water's total absorption and backscattering coefficients
from L8 band settings with the quasi-analytical algorithm (Lee et al.,
2002) [http://www.ioccg.org/groups/software.html]. Further, as a
demonstration, an application of the semi-analytical scheme for ZSD to
an L8 image collected over a turbid estuarine area obtained reasonable
ZSD values and consistent spatial patterns. These results suggest that
the Acolite algorithm for atmosphere correction of Landsat-8 image
(Vanhellemont & Ruddick, 2015b) is promising and support further the
semi-analytical scheme for ZSD from L8 data. However, because the
quality of Rrs plays a critical role on the quantitative remote sensing of
water properties, it demands substantial efforts from the community to
develop robust processing systems to generate high-quality Rrs from L8
for various lake and estuary ecosystems; which also demands support
and efforts to obtain more concurrent measurements to validate the Rrs
and ZSD products from L8.

(For interpretation of the references to color in this figure legend, the
reader is referred to the web version of this article.)
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