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Abstract

Light absorption by phytoplankton pigments plays an important role not only in photosynthesis but also

in modulating the appearance of water color. Some pigments are markers of phytoplankton classes or species.

To better characterize phytoplankton, an inversion model is developed to retrieve the absorption coefficients

of multiple pigments from hyperspectral remote sensing reflectance. In the model, the Gaussian functions

proposed by Hoepffner and Sathyendranath (1991) were refined and implemented for the estimation of the

absorption coefficients of multiple pigments. Application of the inversion model to remote sensing measure-

ments made in cyanobacteria bloom waters resulted in the absorption coefficients of chlorophylls a, b, and c,

carotenoid, phycoerythrin, and phycocyanin with the mean absolute relative error under 32% for wavelengths

between 400 nm and 700 nm. The results indicate that it is feasible to retrieve the absorption coefficients of

multiple pigments from hyperspectral remote sensing reflectance as long as the pigments make adequate

contributions to the total absorption coefficient.

Phytoplankton pigments act as indicators to elucidate the

composition and fate of phytoplankton in the world’s

oceans (Schl€uter et al. 2000) and are often associated with

important biogeochemical cycles related to, for example, car-

bon dynamics in the oceans. The light absorbed by phyto-

plankton pigments provides the initial energy for these

cycles: the photosynthetic process draws carbon dioxide out

of the atmosphere, turns this inorganic carbon into organic

compounds, and forms the basic energy block of the aquatic

food web (Kirk 1994; Behrenfeld and Falkowski 1997; Fal-

kowski 2002). The light absorbed by phytoplankton pig-

ments is also one of the major factors influencing the

appearance of water color (Morel and Prieur 1977; Gordon

et al. 1988; Bidigare et al. 1990; Bricaud et al. 2004).

As the primary photosynthetic pigment, chlorophyll a has

received the most attention in ocean color remote sensing,

and concentration of chlorophyll a has been generated from

satellite ocean color measurements as a standard data prod-

uct for decades (O’Reilly et al. 1998, 2000; Hoge et al. 1999;

Werdell and Bailey 2005; Dierssen et al. 2006; Hu et al.

2010, 2012; Mishra and Mishra 2012). In a phytoplankton

cell, actually chlorophyll a, chlorophyll b, chlorophyll c, and

carotenoid, etc. function together as light-harvesting pig-

ments, and all have a strong ability to capture light in the

visible bands. Some accessory pigments even play a critical

role in the photosynthesis process; such as the carotenoids

have a high light-harvesting capacity (Lehman 1981; Jeffrey

et al. 1997; Schit€uter et al. 1997; Moisan and Mitchell 1999)

and act as photoprotective pigments to protect cells from

the photo-oxidation damage (Demmig-Adams 1990; Demers

1991).

With the advancement of pigment analysis techniques,

such as high-performance liquid chromatography and liquid

chromatography-mass spectrometry, the detection of pig-

ment compositions, concentrations, and their influences on

the absorption spectrum of phytoplankton became possible

(Jeffrey et al. 1997; Kirkpatrick et al. 2000; Van Heukelem

and Thomas 2001; Roy et al. 2011). Because of these techni-

ques, pigment information has been increasingly used in in

situ and remote sensing applications (Schl€uter and

Møhlenberg 2003; Roy et al. 2011; IOCCG Report 14 and

references therein). Some pigments existing in particular

groups or taxa have been recognized as their signatures, and

the concentration, light absorption or scattering properties

of these pigments are used as indicators for phytoplankton

classes or species (Wright and Jeffrey 2006; Hirata et al.*Correspondence: guoqing.wang001@umb.edu
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2008, 2011; Sarmento and Descy 2008; Brewin et al. 2010;

Devred et al. 2011).

Cyanobacteria bloom, a notorious harmful ecosystem

event, occurs in both fresh and salt waters. Taking advantage

of the light absorption around 620 nm due to its marker pig-

ment phycocyanin, a few methods have been developed to

indicate and quantify these harmful algal blooms for inland

and coastal waters (Simis et al. 2005; Wynne et al. 2008; Mis-

hra et al. 2013; Blondeau-Patissier et al. 2014; Qi et al. 2014;

Kudela et al. 2015). Based on an assumption that chlorophyll

a and phycocyanin contribute equally to the phytoplankton

absorption at 620 nm (Simis et al. 2005), Mishra et al. (2013)

retrieved the absorption coefficient of phycocyanin from in

situ remote sensing reflectance using a reparametrized quasi-

analytical algorithm (Lee et al. 2002; Mishra et al. 2014).

Other methods, as presented in Qi et al. (2014) and Kudela

et al. (2015), used spectral shapes or band ratios to get phyco-

cyanin concentration from remote sensing reflectance.

These methods, however, retrieve the information of one

more pigment other than chlorophyll a. To retrieve the infor-

mation of more pigments, many efforts have been made in

the past decades (Bidigare et al. 1989, 1990; Hoepffner and

Sathyendranath 1991, 1993; Lohrenz et al. 2003; Bricaud

et al. 2004; Ficek et al. 2004; Chase et al. 2013). Among

these studies, Hoepffner and Sathyendranath (1991, 1993),

Lohrenz et al. (2003), and Chase et al. (2013) used the Gaus-

sian decomposition method to retrieve the absorption spec-

tra of four or five different pigments. The Gaussian curves

used in these studies showed the advantages of representing

the in vivo pigment absorption properties. However, the

input information used for the decompositions were the

measured spectra of particulate absorption or phytoplankton

absorption, rather than remotely sensed ocean (or water)

color.

In this study, we assessed the potential of retrieving the

absorption coefficients of multiple pigments from hyper-

spectral remote sensing reflectance collected in cyanobacte-

ria bloom waters. Since remote sensing data could be

acquired from airborne or space-borne platforms, if the

approach also works with water color as the input, it will

be possible to obtain information of the spatial and tempo-

ral variability of multiple pigments remotely. In this study,

the Gaussian sets proposed by Hoepffner and Sathyendra-

nath (1991) were updated for cyanobacteria dominated

waters. Based on the refined parameters, a multiple pig-

ment retrieval model was developed and applied to co-

collected hyperspectral remote sensing reflectance to

retrieve the magnitude of the absorption coefficient of six

pigments, chlorophyll a, b, c (Chl-a, -b, -c), carotenoid

(Carot), phycoerythrin (PE), and phycocyanin (PC), respec-

tively. The proposed model was further tested with inde-

pendent measurements from Taihu Lake, China to assess

the effectiveness.

Data and study area

Two separate hyperspectral datasets were used for the

method development and validation, and details of the data-

sets are provided below.

Dataset for model development

Mississippi Pond dataset (MS): This dataset includes 41

samples of remote sensing reflectance (Rrs, sr21) and absorp-

tion coefficients of phytoplankton (aph), detritus (ad), and

gelbstoff (ag). A set (24 samples) of in situ measured PC con-

centration was also included in the dataset. This dataset (see

Mishra et al. 2013 for details) was collected from a series of

highly turbid and productive aquaculture ponds at various

stages (initiation, peak, and senescence) of cyanobacteria

bloom (Chl-a concentration varied from 59 to 1377 lg/L),

located in northwestern Mississippi, U.S.A.

The remote sensing reflectance data was acquired in the

range of 400–900 nm with a sampling interval of 0.3 nm by

deploying a dual sensor system with two inter-calibrated

ocean optics spectroradiometers (Ocean Optics Inc., Dune-

din, Florida, U.S.A.). Surface water samples were collected

and filtered. A Perkin Elmer lambda 850 spectrophotometer

(Perkin Elmer Inc., Waltham, Masscults, U.S.A.) was used to

measure the absorption coefficient of phytoplankton, detrital

matter, and gelbstoff in the 380–750 nm range at 1 nm spec-

tral resolution. Detailed information regarding the environ-

mental characteristics and measurement methods can be

found in Mishra et al. (2013), where cyanobacteria blooms

with Planktothrix agardhii as the most abundant species were

happening when the in situ data were collected. A total of

41 pairs of inherent and apparent optical properties were

used to refine the Gaussian curves of Hoepffner and Sathyen-

dranath (1991) for modeling the aph spectrum and for the

inversion model, respectively.

Dataset for validation

Lake Taihu dataset (LT): This dataset includes 45 Rrs (k)

spectra at 1.4 nm resolution, corresponding spectra of ad, ag,

and aph (350–750 nm) at 1 nm resolution and 31 set of PC

concentration collected from Lake Taihu, China, and under

cyanobacteria bloom conditions (Chl-a: 10–222 lg L21)

where the dominant species was Microcystis aeruginosa.

Water samples and optical data of surface water were col-

lected during two surveys in January–August 2011 and

November 2011, respectively. In situ Rrs(k) was measured

with a hand-held ASD (Analytical Spectral Device, Inc., Boul-

der, Colorado) spectroradiometer. Surface water samples

were collected right after Rrs(k) measurements and analyzed

on the same day in the laboratory. PC concentration was

estimated based on the measurements using a spectrofluoro-

photometer (Shimadzu RF-5301, 620 nm excitation and

647 nm emission). The absorption spectra of particulate,

detrital matter, and gelbstoff, respectively, were measured

with a Shimadzu UV-2401 spectrophotometer after sample

Wang et al. Retrieval of absorption coefficients of multiple pigments
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filtration. More information about LT and details about

water sample collection, measurement protocols, and proc-

essing methods can be found in Duan et al. (2010) and Ma

et al. (2006). This dataset serves as an independent source to

validate the inversion scheme.

Methods

Model development

Remote sensing reflectance, Rrs(k), defined as the ratio of

water leaving radiance to downwelling irradiance just above

the surface, can be expressed as a function of the total

absorption (at, m21) and the total backscattering coefficients

(bb, m21) (Gordon et al. 1988; Morel 1991):

Rrs kð Þ5F
bb kð Þ

at kð Þ1bb kð Þ

� �
(1)

at and bb are usually described as the sum of the primary

components as:

at kð Þ5aph kð Þ1adg kð Þ1aw kð Þ (2)

bb kð Þ5bbw kð Þ1bbp kð Þ (3)

where adg stands for the combined absorption coefficients of

detritus (ad) and gelbstoff (ag), aw is the absorption coeffi-

cients of water molecules; while bbw and bbp represent the

backscattering coefficients of water molecules and suspended

particles, respectively.

In the above equations, except the absorption and back-

scattering contributions from water (aw and bbw) that can be

considered known (Morel 1974; Pop and Fry 1997; Zhang

et al. 2009; Lee et al. 2015), the other parameters (aph, adg,

and bbp) are to be derived from the Rrs spectrum. It is impos-

sible to get one unequivocal solution for any underdeter-

mined system where the unknowns outnumber the

equations. To be mathematically possible, spectral models

have to be developed for each of these components and

used in the inversion process.

The spectrum of particle backscattering coefficient was

modeled following Roesler and Boss (2003) and Whitmire

et al. (2007):

bbp kð Þ5
bbp

bp
cs2aph kð Þ
� �

(4)

where cs represents the beam attenuation coefficient of sus-

pended particles and was assumed spectrally independent.

The bbp/bp in Eq. 4 is the ratio of backscattering to scattering

coefficients of particles which usually varies from 0.01 to

0.03, and was assumed a constant as 0.01 based on Whitmire

et al. (2007). In the above ad is omitted as it is very small

compared with aph for these waters.

The spectrum of the phytoplankton absorption coeffi-

cient, aph, is modeled following Hoepffner and Sathyendra-

nath (1991):

aph kð Þ5
Xn

i51

agaus kið Þexp 20:5
k2ki

ri

� �2
" #

(5)

where ri and agaus (ki) are the width and peak magnitudes of

the ith Gaussian curve with peak center (ki). As each Gaus-

sian curve corresponding to an absorption curve of a specific

pigment (Hoepffner and Sathyendranath 1991), agaus (ki)

could be written as apig(ki).

The spectrum of the combined absorption coefficient of

detritus and gelbstoff, adg, is modeled as an exponential

function following Carder et al. (1991) and other semi-

analytical algorithms (IOCCG Report 5):

adg kð Þ5adg k0ð Þexp 2S k2k0ð Þð Þ (6)

where k0 is taken as 440 nm and S usually varies between

0.01 nm21 and 0.02 nm21 for natural water and 0.015 nm21

was used in this study.

The above relationships form the framework of the multi-

ple pigment inversion (MuPI) model for the retrieval of apig

(ki) from Rrs (k). To effectively derive the values of the

unknowns, a spectral optimization method was employed as

commonly used for the retrieval of chlorophyll concentra-

tion or water depth (Bukata et al. 1995; Roesler and Perry

1995; Lee et al. 1999; Maritorena et al. 2002; Brando et al.

2012). Spectral optimization is basically a method used to

solve a complex equation (Eq. 8) numerically. The derived

values are those unknowns with modeled Rrs spectrum best

matching the input Rrs spectrum by minimizing the target

function (Eq. 9). Specifically, define u 5 bb/(at 1 bb), then

there is

u5
bb

at1bb
5

bbw10:01 cs2aph kð Þ
� �

Xn

i51

agaus kið Þexp 20:5
k2ki

ri

� �2
" #

1adg k0ð Þexp 2S k2k0ð Þð Þ1aw1bbw10:01 cs2aph kð Þ
� � (7)

Following Gordon et al. (1988) and taking into account

the air–sea interface effect (Lee et al. 2002), there is
Rrs5

0:52 g1u1g2u2
� �

121:7 g1u1g2u2ð Þ (8)
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Here, g1 and g2 (sr21) are model coefficients and fixed to

0.089 and 0.125 sr21 (Lee et al. 2002).

The target function to quantify the spectral closeness

between measured and modeled Rrs spectra is defined as

(Huang et al. 2013; Werdell et al. 2013)

d5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

Nk

XNk

i51

R̂rs kið Þ2Rrs kið Þ
� �2

vuut
1

Nk

XNk

i51

Rrs kið Þ
(9)

with Nk as the wavelength number, Rrs (k) as the measured

and R̂rs (k) the modeled spectrum, respectively.

Refinement of the Gaussian parameters

Each Gaussian curve is determined by three parameters:

width, peak center, and magnitude as shown by Eq. 5, and a

set of values have been developed by Hoepffner and

Sathyendranath (1991) (Table 4 in Hoepffner and Sathyen-

dranath 1991) to model spectral aph. This set of peak centers

and widths were applied to aph decomposition of the MS

dataset, for which a Matlab script was used to minimize the

differences between the modeled (Eq. 5) and the measured

aph(k), and the magnitudes for the Gaussian curves were

returned as the results. There was generally a 20% mean rela-

tive difference between the measured and Eq. 5-modeled aph

(k) for the 400–700 nm range, likely due to significant differ-

ences in phytoplankton groups between waters studied in

Hoepffner and Sathyendranath (1991) and those in this

study. More specifically, the set of parameters in Hoepffner

and Sathyendranath (1991) was developed from 20 mono-

specific cultures, which are representative of environments

dominated by three major phytoplankton groups: diatoms,

chlorophyceae, and prymnesiophyceae. For cyanobacteria

dominated waters, these parameters (peak centers, band

widths, and even the number of peaks) may not be exactly

applicable. We therefore refined these parameters with meas-

urements obtained from the MS ponds for applications with

cyanobacteria dominated scenarios.

Update of the Gaussian peak centers and widths

To find the parameters most suitable for a cyanobacteria

abundant environment, mathematical evaluations were car-

ried out to find the Gaussian peak centers and widths from

the pool of aph spectra. Mathematically, the easiest way to

find peaks and shoulders of a spectrum is to locate the places

where the first- and second-order derivatives are zero, respec-

tively, as demonstrated in Lee et al. (2007). Equations 10

and 11 were applied to in situ aph spectra obtained from the

MS ponds to get the first- and second-order derivatives for

each aph spectrum at 1 nm spectral resolution. The fre-

quency of aph(k)0 and aph(k)00 being zeros, respectively, is

shown in Fig. 1.

aph kð Þ05
daph kð Þ

dk
(10)

aph kð Þ005
daph kð Þ0

dk
(11)

The wavelength locations with the first-order derivative as

zero represent the peaks or valleys of an aph spectrum, while

the second-order derivative as zero indicates an inflection of

an aph spectrum. Knowing the spectral locations of these pla-

ces is not only important to model the spectral variation of

aph with a limited number of variables, but also required to

derive information about specific pigments (Bidigare et al.

Fig. 1. The frequency distribution of each band with the first-order
derivative (A) and second-order derivative (B) of aph spectrum being

zero. aph data were obtained from the MS ponds.
Fig. 2. The mean absolute relative error (MARE, Eq. 13) between Eq. 5-

modeled and measured aph spectrum for data obtained from the MS
pond waters.
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1989). The primary locations of these wavelengths were

obtained via analyzing their distribution frequency (see Fig.

1) and they are: for the first-order derivative: 388–393, 418–

426, 434–445, 555–565, 618–635, 648–658, and 674–683 nm;

for the second-order derivative: 388–395, 405–413, 420–435,

444–453, 473–485, 513–523, 545–554, 573–586, 598–617,

638–647, 661–668, and 685–695 nm (Fig. 1).

It is known that the absorption curves of pure pigments

isolated from particular cultures have characteristic spectral

features, although the actual wavelength could vary slightly

in different solutions and in vivo status (Bidigare et al. 1989,

1990; Hoepffner and Sathyendranath 1991, 1993; Jeffrey

et al. 1997; Bricaud et al. 2004; Chase et al. 2013; Mishra

et al. 2013). Combining this information with wavelengths

where the first- and second-order derivatives of aph are zeros,

an initial set of peak centers (a total of 13) for the absorption

spectra of various pigments was determined. The final loca-

tions and the width of each Gaussian curve were derived by

fitting the aph spectra obtained from the MS pond waters

with Eq. 5. This was achieved via a least square optimization

method embedded in MATLAB, and by minimizing the dif-

ferences between the input aph (k) and the Eq. 5-modeled

aph (k) and allowing the peak center and width vary

within 6 5 nm from the initial guesses (Chase et al. 2013).

The averages (finalized) of the Gaussian parameters (peak

center and width, respectively) obtained from these aph spec-

tra are presented in Table 1. The new set of parameters for

the Gaussian curves (peak center, width, and magnitude)

resulted in a mean absolute relative error (MARE, see Eq. 13)

between the modeled and measured aph spectra generally

under � 2% (see Fig. 2) for wavelengths in the 400–700 nm

range. The higher MARE values (�7%) for wavelengths

around 700 nm and longer are mainly due to lower absorp-

tion at these wavelengths.

The absolute relative error (RE) and mean absolute relative

errors (MARE) are calculated as:

REi5
jYi2Ŷ ij

Yi
(12)

MARE5
1

n

Xn

i51

jYi2Ŷ ij
Yi

(13)

Here Yi represents in situ measurement, and Ŷi for model

estimates.

Compared with the results shown in Hoepffner and

Sathyendranath (1991), the number of Gaussian bands

(Table 1) increased slightly (11–13). One peak around

650 nm from the absorption of Chl-b and another peak at

550 nm for the absorption of PE are added. The peak around

620 nm in Hoepffner and Sathyendranath (1991) was likely

a contribution from Chl-a; for waters with cyanobacteria

bloom, PC also has significant contributions to absorption at

this wavelength. Simis et al. (2005) assumed Chl-a and PC

contribute equally to this absorption peak, but for cyanobac-

teria dominated water, although chlorophyll and other

accessory pigments make some contributions, PC appears to

be the main absorption pigment at this wavelength that con-

tributes around 70% to the total peak height (Emerson and

Lewis 1942). Compared with Hoepffner and Sathyendranath

(1991), the carotenoids (Carot) absorption peak 5 and peak 6

shift to slightly longer wavelengths in cyanobacteria

Table 1. Initial guess of the peak centers and widths (r*) and the output mean peak centers and widths of the Gaussian curves. r*
is related to full width at half maximum (FWHM): FWHM 5 r 3 2.355. As a general indication of the ecosystem, the mean magni-
tudes of the peaks are also included, and the carotenoids are mainly b-carotenoids.

Gaussian band number and associated pigment species

Input parameters (nm) Output parameters (nm)

Peaks Pigment center width (r*) center width Mean magnitude (m21)

1 Chl-a 385 15 386.6 18.8 12.8

2 Chl-a 410 15 414 10.7 8.5

3 Chl-a 430 15 435 12 8.3

4 Chl-c 450 15 451.7 18.5 6

5 Carot 480 15 484 19.6 5.8

6 Carot 520 15 515.6 18 3.7

7 PE 550 15 548.8 15.7 2

8 Chl-c 580 15 584.4 17 3

9 PC 620 15 617.6 16 3.9

10 Chl-c 640 15 636 11.6 1.8

11 Chl-b 650 15 653 14 2.3

12 Chl-a 675 15 677 10.6 5.6

13 Chl-a 695 15 693.5 20 0.7
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dominated waters, with their widths being almost the same

as shown in Hoepffner and Sathyendranath (1991). Peaks 4

and 10 at 451.7 nm and 636 nm as absorption peaks of Chl-

c, move to slightly shorter wavelengths and the peak at

451.7 nm becomes wider while the peak at 636 nm becomes

narrower in cyanobacteria dominated waters. Peak 9 at

617.6 nm of the PC absorption is located at shorter wave-

length and has a slightly broader band compared with the

Chl-a in Hoepffner and Sathyendranath (1991). For the other

pigment absorption peaks, the location and width are con-

sistent with those in Hoepffner and Sathyendranath (1991).

Covariance between peak magnitudes

There are 15 unknowns (13 Gaussian magnitudes, one for

adg(k) and one for bbp(k)) to be derived from the spectral

optimization scheme (Eq. 9). When inverting an Rrs spec-

trum for information of water constituents, it is always use-

ful and important to have fewer variables. In particular,

although there are 13 Gaussian curves to form one aph spec-

trum, it does not mean the magnitudes among the Gaussian

curves are independent of each other, especially for those

from the same pigments. Further, for a specific phytoplank-

ton group the composition of pigments could be stable, thus

dependencies between pigments may exist, therefore it is

necessary to diagnose to what extent the 13 Gaussian peaks

are independent, at least for such cyanobacteria dominated

waters.

Intercorrelation between the 13 peaks of apig(k) derived

from measured aph(k) was evaluated and a correlation matrix

was developed (see Fig. 3). It is found that there is a very

high coefficient of determination (R2>0.9) among many

mangitudes of apig(k), and two magnitudes at 515.6 nm

Fig. 3. Demonstration of the correlations between apig(k) and examples of modeled vs measured aph(k) (D). (A) and (B) show linear relationships
between apig(515.6), apig(584.4) and other apig(k), respectively. (C) shows the matrix of coefficient of determination (R2) between the 13 magnitudes

(Table 1). (D) is an example of measured aph spectrum (black) and Eq. 5-modeled aph spectrum with 13 (blue) or 2 (red) independent magnitude
variables.
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(peak 6) and 584.4 nm (peak 8) show the highest correla-

tions with others (Fig. 3A,B).

Based on the above analyses (see Table 2 for results of

linear regression analysis), apparently the magnitudes of

the other Gaussian peaks could be estimated from aCarot

(515.6) (representing the absorption coefficient of Carot)

and aChl-c(584.4) (representing the absorption coefficient of

Chl-c). Consequently an aph spectrum could be constructed

with Eq. 5 with just two independent variables (aCarot

(515.6) and aChl-c (584.4)), and the resulted aph spectrum is

only slightly worse (the maximum MARE in the 400–

700 nm range increased to � 10%) compared with that

modeled with 13 independent magnitudes (see Fig. 3D for

an example). Therefore, the two variables for an aph spec-

trum along with cs for the particle backscattering coeffi-

cient (Eq. 4) and adg (k0) for the detritus–gelbstoff

absorption coefficient (Eq. 6) form a four parameter model

for an Rrs spectrum.

Results and discussion

Performance of MuPI for the MS dataset

Evaluation of the MuPI scheme was conducted by com-

paring the magnitudes of apig derived from measured Rrs

spectra and those apig magnitudes from aph spectra of the

MS dataset. The value of the target function (Eq. 10) is under

10% for the entire dataset. The MARE at each wavelength

between the optimized and measured Rrs (k) is generally less

than 10% for the 400–700 nm range. For some samples the

maximum RE at wavelength 610–680 nm runs to �20%, a

result of the slight variance between relationships of pig-

ment absorption magnitudes and the likely fluorescence of

PC around 650 nm (Gregor et al. 2007). An example of the

optimized Rrs vs. the measured Rrs is shown in Fig. 4A, where

a closure between the output and input Rrs spectra is

achieved with the value of the target function as 0.047. Fig-

ure 4B further provides the corresponding spectra of apig,

aph, adg, at, and bb resulted from the MuPI model. The aph

spectrum from sample measurements is also included for a

comparison.

The MARE of two independent variables (aCarot(515.6)

and aChl-c(584.4)) derived from Rrs are 30% and 26%, respec-

tively. The absorption coefficients of the other 11 pigments

are calculated from the aCarot(515.6) and aChl-c(584.4) values

Table 2. Relationships between the magnitudes of apig (k) and
aCarot (515.6) and aChl-c (584.4), respectively. Values of R2 are
also included. x1 for aCarot (515.6) and x2 for aChl-c (584.4).

Gaussian bands and pigment relationships

Peaks Pigment Peak (nm) relationship R2

1 Chl-a 386.6 y 5 2.80 3 x1 0.96

2 Chl-a 414 y 5 1.78 3 x1 0.98

3 Chl-a 435 y 5 2.23 3 x1 0.98

4 Chl-c 451.7 y 5 1.65 3 x1 0.99

5 Carot 484 y 5 1.63 3 x1 0.99

6 Carot 515.6 x1 1

7 PE 548.8 y 5 0.60 3 x1 0.95

8 Chl-c 584.4 x2 1

9 PC 617.6 y 5 1.24 3 x2 0.99

10 Chl-c 636 y 5 0.52 3 x2 0.99

11 Chl-b 653 y 5 0.81 3 x2 0.98

12 Chl-a 677 y 5 1.52 3 x2 0.94

13 Chl-a 693.5 y 5 0.39 3 x2 0.97

Fig. 4. An example of results from the MuPI scheme. (A) is the input and optimized Rrs spectrum (the value of the target function is 0.047 (Eq. 9);

and (B) presents the corresponding (retrieved) spectra of the absorption coefficients of pigments (apig), total phytoplankton (aph), detritus and gelbst-
off (adg), bulk water (at), and the spectrum of backscattering coefficient (bb). Also included is the measured aph spectrum.
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following the relationships shown in Table 2. It is found

that the MARE values are in a range of 22–31% when com-

paring apig (k) derived from Rrs with those derived from aph

(see Table 3 and Fig. 5). The MuPI derived apig matches the

values from aph decomposition well (MARE�32%) for

these pigments, especially for Chl-a (MARE 5 22%). For the

entire dataset, the MARE of apig is 30% for aCarot(515.6),

31% for aPE(548.8), 26% for aChl-c(584.4), 25% for

aPC(617.6), 32% for aChl-b(653), and 22% for aChl-a(677) (see

Table 3). These results indicate comparable or better results

in retrieving the absorption coefficients of other pigments

as that of Chl-a via the empirical ratio algorithm (O’Reilly

et al. 1998). Also included in Table 3 is the root mean

square error in log scale (RMSE, Eq. 14) between the Rrs-

derived and aph-derived apig (k) values, which is calculated

as

RMSE5

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

n

Xn

i51

log10 Âi

� �
2log10 Aið Þ

� �2

vuut (14)

where, Ai is aph-derived apig (k) and Âi the Rrs-derived apig (k).

RMSE provides a more balanced evaluation of both higher

and lower values when the dynamic range is orders of mag-

nitude; and the RMSE values of these pigments are equiva-

lent to that of band-ratio derived chlorophyll-a

concentration (O’Reilley et al. 1998).

Application to LT dataset

The MuPI scheme was further applied to the LT dataset to

test its applicability, with apig retrieved from aph and Rrs

spectra separately. Figure 6 compares the two sets of

retrieved apig values and it is found that the apig derived

Fig. 5. Comparison between the absorption coefficients (apig) of Chl-a, Chl-b, Chl-c, carot, PE, and PC retrieved from Rrs and those derived from aph

for the MS dataset.
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from Rrs is generally in agreement with those derived from

aph (see Table 4). In particular, the MARE values are 22.4%

and 24% for aChl-c(584.4) and aPC(617.6), respectively,

although higher (� 40%) for aCarot(515.6) and aPE(548.8).

The slightly lower performance of the MuPI scheme for

the LT data is likely a result of different phytoplankton spe-

cies. P. agardhii was the most abundant species in the MS

dataset, together with other species of Raphidiopsis brookii (cf.

Cylindrospermopsis raciborskii), Planktothrix perornata and Ana-

baena circinalis (Mishra et al. 2013); however, M. aeruginosa

was the dominant species in the LT dataset (Qi et al. 2014).

The difference in phytoplankton communities could result

in different pigment compositions, which would then bring

in some differences in the covariance among the absorption

coefficients of the pigments. Besides, the dominant particles

in the MS dataset are phytoplankton, and their contribution

to the total absorption coefficient is higher than 70%. How-

ever, for LT, beside phytoplankton, non-phytoplankton par-

ticles also make high contributions to the total absorption

coefficient (> 40% for wavelengths shorter than 550 nm)

(Fig. 7). Consequently the model of bbp spectrum (Eq. 4)

could have larger errors where the effect of ad is omitted.

Because ad and ag have similar spectral shapes, it is still a

research subject in adequately separating these two in ocean

color remote sensing (Dong et al. 2013). Nevertheless, a

smaller than 42% MARE for apig retrieval from Rrs for the

independent LT dataset suggests reasonable results of the

MuPI scheme, and future studies should focus on incorporat-

ing the ad variability in the inversion process.

In addition to comparison of the absorption coefficients

of specific pigments, the aph values obtained from the MuPI

scheme were also compared with measured aph (see Fig. 8).

The MARE between measured and retrieved aph at 410, 440,

510, 560, 660, and 680 nm are 30.1%, 31.9%, 31.8%, 27.7%,

32.3%, and 35.8%, respectively. Further, Fig. 8B compares

the aph spectra of a randomly selected station, where an

underestimation of � 20% for wavelengths shorter than

550 nm is found. To identify the likely error sources, the

measured aph spectrum was compared with the two-

parameter modeled aph (based on Eq. 5 and parameters in

Table 2). It appears that there are disagreements for wave-

lengths longer than 550 nm (Fig. 8B), e.g., an overestimation

of the absorption coefficient of PC at 617.6 nm and an

underestimation of the absorption coefficient of Chl-a at

677 nm. This is mainly due to the different cyanobacteria

groups in the two datasets as mentioned above. Different

cyanobacteria groups usually have different absorption and

concentration ratios of PC to Chl-a (Roy et al. 2011; Kudela

et al. 2015). This suggests that it is likely necessary to

expand the two-parameter aph model to more parameters,

which will require a more inclusive database to optimize

such spectral models.

Estimation of PC concentration

As a signature pigment of cyanobacteria bloom, the

retrieval of PC concentration ([PC]) has been the focus of

many studies (Simis et al. 2005; Wynne et al. 2008; Mishra

et al. 2013; Mishra and Mishra 2014; Qi et al. 2014; Kudela

et al. 2015), and all these methods have tried to use the

information of PC absorption at around 620 nm. In the

MuPI scheme, aPC(617.6) represents the in vivo absorption

coefficient of pigment PC and can be obtained from the Rrs

specttum. Previous studies (Hoepffner and Sathyendranath

1993; Bricaud et al. 1995; Chase et al. 2013) have shown

that there is a strong relationship between absorption coeffi-

cients and pigment concentration, such as the linear rela-

tionship in Hoepffner and Sathyendranath (1993) and Chase

et al. (2013) and the power law relationship in Bricaud et al.

(1995).

In this study, a power law relationship between [PC] (77–

3032 lg L21) and apc (617.6) from the MS dataset was devel-

oped (see Eq. 15 and Fig. 9A)

y531:2x1:78 (15)

where y is [PC], and x is apc (617.6).

From the retrieved aPC (617.6) from Rrs and apply the rela-

tionship of Eq. 15, the [PC] was estimated remotely for the

LT dataset. This estimated [PC] was then compared with the

measured values (Fig. 9B). The MARE between the estimated

and measured [PC] for these 31 samples is 43.7% (R2 5 0.96),

with [PC] in a range of � 1–300 lg L21. Despite a 30%

underestimation, these evaluations show quite encouraging

results in estimating PC concentration with a spectral opti-

mization scheme.

Table 3. Mean (and medium) absolute relative error between
apig derived from Rrs and those decomposed from aph for the
MS dataset. Also include are the RMSE values for each apig peak.

Peaks (nm) Mean RE (%) Medium RE (%) RMSE

386.6 30 29 0.19

414 28 29 0.18

435 27 27 0.17

451.7 29 32 0.18

484 30 32 0.19

515.6 30 33 0.19

548.8 31 29 0.15

584.4 26 19 0.15

617.6 25 16 0.14

636 26 16 0.15

653 32 27 0.17

677 22 15 0.13

693.5 22 15 0.12

RE, absolute relative error; RMSE: root mean square error.
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Improvement of aph retrieval over traditional approaches

There are two parameters (aCarot (515.6) and aChl-c

(584.4)) used in MuPI to model the aph spectrum, whereas

most ocean color remote sensing algorithms (e.g., Lee et al.

1999, 2002; Maritorena et al. 2002; Werdell et al. 2013) use

just one parameter for this purpose. To evaluate the impact

in retrieving aph with added variables, the hyperspectral opti-

mization process exemplar (HOPE) developed in Lee et al.

(1999) and the quasi-analytical algorithm (QAA) developed

in Lee et al. (2002) were also applied to the MS and LT data-

sets to retrieve the spectrum of aph. In Lee et al. (1999), the

spectra of aph and bbp are described as:

aph kð Þ5 a0 kð Þ1a1 kð Þln aph k0ð Þ
	 
� �

aph k0ð Þ (16)

bbp kð Þ5bbp k0ð Þ
k0

k

� �g

(17)

where aph (k0) and bbp (k0) are two independent variables

with k0 as 440 nm. The values of a0 (k) and a1 (k) are pro-

vided in Lee et al. (1998). Both MuPI and HOPE use a spec-

tral optimization method to retrieve aph, while QAA is a

step-wise method which uses a series of equations to derive

aph analytically. To make it suitable for highly turbid and

algal bloom waters, Mishra et al. (2014) reparameterized

QAA based on measurements in the MS pond waters. And,

the Rrs data of the MS and LT datasets were reduced to

10 nm spectral resolution in order to match the spectral

resolution of HOPE.

Fig. 6. Comparison between the absorption coefficients (apig) of Chl-a, Chl-b, Chl-c, carot, PE, and PC retrieved from Rrs and those derived from aph

for the LT dataset.
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A comparison of the performance of the three inversion

methods is shown in Fig. 10, where the MARE values vary in

a range of 30–57%, 23–89%, and 23–34% in the 400–700 nm

range, for HOPE, QAA, and MuPI, respectively. Apparently it

is spectrally stable with the MuPI model, while both HOPE

and QAA show spectrally selective performances, at least for

the MS dataset. Specifically for aph (440), MuPI resulted aph

(440) is around the 1:1 line, while HOPE and QAA derived

aph (440) values are somewhat underedtimated (see Fig.

10B,D). These results suggest a necessity to refine both HOPE

and QAA for such extreme waters, while the MuPI scheme

worked quite well in retrieving aph spectrum, at least for this

dataset.

Analysis of model development and application

When selecting independent parameters for aph modeling,

peak 6 (515.6 nm) and peak 8 (584.4 nm) were used based

on regression analysis. However, there are some peaks which

show higher correlations with other pigments than these

two (Fig. 3). For example, peak 12 (677 nm) has a higher cor-

relation with peak 3 (435 nm) (R2 5 0.97) than with peak 8

(R2 5 0.94). To test the impact of selecting free variables for

aph modeling on the optimization retrievals, different combi-

nations and number of peaks used to model aph: such as 3

peaks (aCarot(484) or aCarot(515.6), aChl-c(584.4) and aChl-

a(693.5)) and 4 peaks (aCarot(515.6), aChl-c(584.4), aPC(617.6)

and aChl-a(677)). No significant improvements in the apig

retrieval were found when additional parameters were

applied to the MS dataset. It appears that aCarot(515.6) and

aChl-c(584.4) are adequate parameters for aph modeling, at

least for this dataset.

But it is necessary to keep in mind that the model

developed in this study was based on measurements from

cyanobacteria bloom waters where the absorption coeffi-

cient of phytoplankton is very strong. This dataset is far

from representative in dynamic range, especially to many,

normal and healthy, lake and coastal waters, thus the

applicability of the MuPI scheme to such waters are

unknown, although the general framework seems encour-

aging. More tests with data measured from other ecosys-

tems are desired and required for the validation and

improvement of MuPI.

Separately, although hyperspectral Rrs spectrum was used

for apig retrieval, the total number of unknowns in the MuPI

scheme is only four, which suggests that such a fine

Table 4. Average (and medium) absolute relative error
between apig derived from Rrs and those decomposed from aph

for the LT dataset. Also include are the RMSE values for each
apig peak.

Peaks (nm) Mean RE (%) Medium RE (%) RMSE

386.6 42 41 0.35

414 41 41 0.35

435 36 28 0.29

451.7 40 38 0.34

484 42 41 0.36

515.6 39 35 0.31

548.8 43 40 0.35

584.4 22 18 0.15

617.6 24 18 0.14

636 39 30 0.28

653 31 30 0.22

677 35 31 0.24

693.5 29 23 0.16

RE, absolute relative error; RMSE: root mean square error.

Fig. 7. Mean percentage contributions of aph, ad, ag, and aw to at for the MS (left) and LT (right) datasets.
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hyperspectral resolution (1 nm) may not be necessary to

obtain satisfactory apig results. This is supported with the

good results when MuPI was applied to Rrs data with a spec-

tral resolution of 10 nm (see Fig. 10). Mathematically, it

might be workable of MuPI if the number of spectral bands

are greater than four and are spread enough to contain inde-

pendent spectral information. The lower requirement of

spectral resolution shows that the MuPI scheme has the

potential (after refinement) to be implemented to past (e.g.,

SeaWiFS, MERIS) or current (e.g., MODIS) multispectral satel-

lite data or future hyperspectral data (e.g., HyspIRI) (Devred

et al. 2013). However, for better or more reasonable retrievals

it should be cautious for the reduction of spectral bands,

especially for optically complex bloom waters as some bands,

like the one around 695–715 nm, play critical roles for the

retrieval environmental properties from Rrs (Lee and Carder

2002; Lee et al. 2007; Mouw et al. 2015).

Conclusion

In this study, the MuPI model that combined Gaussian

decomposition and spectral optimization was used to

retrieve the absorption coefficients of multiple pigments

from hyperspectral remote sensing reflectance. In particular,

the absorption coefficients of two representative pigments

were derived from Rrs via spectral optimization, which were

then used to estimate the absorption coefficients of other 11

peaks that represent six different pigments (chlorophyll a, b,

c, carotenoid, phycoerythrin, and phycocyanin). It is found that

the absorption coefficients of these pigments retrieved from

Fig. 8. (A) Comparison bewteen measured and Rrs-derived aph at 410, 440, 510, 560, 660, and 680 nm for the LT dataset. (B) A comprison of aph

spectrum of a randomly selected station of the LT dataset, with black from sample measurements, red from the MuPI scheme, and blue from the two-
variable (aCarot(515.6) and aChl-c(584.4)) model.

Fig. 9. (A) A power law relationship between aPC (617.6) (derived from aph decomposition) and PC concentration ([PC]) obtained from the MS
pond waters. (B) A comparison between measured PC concentration and that estimated from Rrs using the MuPI model for the LT dataset.
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Rrs are quite consistent with those decomposed from aph

spectra (MARE�� 32% for a dataset used for the model

development). This is further demonstrated with an inde-

pendent dataset where the MARE ranges between 22% and

42% for wavelengths of 400–700 nm.

The results of this effort indicate the possibility of retriev-

ing absorption coefficients of multiple phytoplankton pig-

ments from hyperspectral remote-sensing reflectance,

especially for waters where the contribution from phyto-

plankton dominates the total absorption coefficient. How-

ever, the boundary of the applicability of such a scheme is

not yet fully known and its performance when applied to

past or current satellite ocean color data remains to be

determined.
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