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Abstract The Operational Land Imager (OLI) onboard Landsat 8 has potential for mapping the water
bio‐optical properties with high spatial resolution. Landsat 8/OLI generates the remote sensing
reflectance (Rrs) at four visible bands (λ1‐4 = 443, 482, 561, and 655 nm) and is lack of a 412‐nm band
commonly included for ocean color sensors. This spectral configuration has limited the use of Landsat
8/OLI reflectance product for analytical derivation of light absorption coefficients of phytoplankton,
colored dissolved organic matter (CDOM), and detritus. In this study, we proposed a hybrid approach to
fill this gap. First, we developed an algorithm to estimate the reflectance in a virtual band centered at
λ0 = 412 nm from the OLI reflectance spectra Rrs(λ1‐4). Both the estimated Rrs(λ0) and measured Rrs(λ1‐4)
were then used together to retrieve the water component absorption coefficients with existing algorithms
including the quasi‐analytical algorithm. We assessed the model performance using in situ measurements
from the global waters. It was found that the proposed approach could estimate Rrs(412) with a
median absolute percentage difference of ~9%. The subsequent retrievals of the component absorption
coefficients were satisfactorily accurate, with median absolute percentage difference roughly equal to 35%,
40%, and 60% for phytoplankton, CDOM, and detritus, respectively. The results suggest the feasibility to
generate analytically the component absorption coefficients from the Landsat 8/OLI reflectance.

1. Introduction

Phytoplankton, colored dissolved organic matter (CDOM), and detritus are important components of
coastal aquatic ecosystems. Phytoplankton harvest spectral radiation to convert inorganic carbon to organic
carbon through photosynthesis (Morel, 1991), which sustains the aquatic food web. CDOM and detritus
absorb light strongly in the ultraviolet and blue bands, protecting living organisms from damaging
radiation (Bricaud et al., 1981). Monitoring the variability of phytoplankton, CDOM, and detritus light
absorption coefficients (denoted as aph, ag and ad, respectively) is thus crucial for understanding the status
of ecological systems, carbon cycles, and water quality related problems (Hansell & Carlson, 2001; Kim
et al., 2016; Yu et al., 2016).

Satellite remote sensing represents a unique avenue for synoptic and frequent observation of the global
waters. The water color instruments such as the Moderate Resolution Imaging Spectroradiometer and
the Visible and Infrared Spectroradiometer can provide the remote sensing reflectance (Rrs, sr

‐1) at multiple
bands centered around 412, 443, 488, 550, and 670 nm. These multiband Rrs data have been extensively
used to estimate the phytoplankton, CDOM, and detritus absorption coefficients in various types of waters
(Binding et al., 2008; Cao & Miller, 2015; Ciotti & Bricaud, 2006; Mannino et al., 2014; Siegel et al., 2005).
However, these satellite data are typical of coarse spatial resolutions (~1 km), insufficient for observation of
the bio‐optical variability in the dynamic nearshore environments. Landsat 8 satellite is a new member of
the land remote sensor family. To the interests of the aquatic science community, the Operational Land
Imager (OLI) onboard measures Rrs with a spatial resolution of ~30 m and with much enhanced
radiometric performance at four visible bands (λ1‐4, centered at 443, 482, 561, and 655 nm; Markham
et al., 2014). Recent studies show that the OLI reflectance product over waters can be acceptable after
atmospheric correction (Pahlevan et al., 2017; Wei et al., 2018). Over the last few years, the OLI observation
has quickly found its applications in various aquatic studies. In particular, many empirical methods were
used for the estimation of the CDOM absorption coefficient (Alcântara et al., 2016; Olmanson et al., 2016;
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Snyder et al., 2017) and phytoplankton chlorophyll a concentration (CHL, milligram per cubic meter; Kim
et al., 2016; Lee et al., 2019; Snyder et al., 2017). Still, there exists no operational semianalytical (SA)
procedures specific to the OLI data for the derivation of the absorption coefficients from active compo-
nents, such as phytoplankton. Considering the potential and readiness of the high‐resolution satellite
observation, it is highly necessary to explore analytical approaches to facilitate the processing and applica-
tion of the OLI data.

Many SA algorithms exist and can be used to retrieve the absorption coefficient of phytoplankton and the
absorption coefficient due to the colored detrital matters (CDM; including CDOM and detritus; denoted
as adg) from multiband Rrs spectra (Brando et al., 2012; Carder et al., 1999; Hoge & Lyon, 1996; Lee
et al., 1998; Lee et al., 2002; Maritorena et al., 2002; Werdell et al., 2013; Werdell et al., 2018). And almost
all the SA algorithms require the Rrs(412) data in their procedures, because the reflectance at this blue
band provides great constraints for robust partition of phytoplankton and CDM (Carder et al., 1991;
Wei et al., 2016). For instance, the quasi‐analytical algorithm (QAA; Lee et al., 2002) is a stepwise
procedure to determine the particle backscattering coefficient (bb) and bulk or total absorption coefficient
(a), which explicitly uses Rrs measurements at 412 nm to partition aph and adg. The spectral optimization
algorithms also specifically use Rrs(412) in their procedures (Maritorena et al., 2002; Werdell et al., 2013).
The Landsat 8/OLI is lack of a 412‐nm band, thus has no Rrs(412) measurement. It is challenging to
directly apply the existing SA algorithms to the OLI reflectance data for the retrieval of component
absorption coefficients.

In this study, we propose a hybrid approach for systematic derivation of the component absorption
coefficients from Landsat 8 reflectance data. This approach uses an existing Semi‐Analytical algorithm
with a Virtual‐band Estimator (SAVE). The virtual‐band estimator estimates the remote sensing
reflectance in a virtual band centered at 412 nm (designated as λ0) for an OLI reflectance spectrum
Rrs(λ1‐4). Then Rrs(λ0) and Rrs(λ1‐4) are combined into a new spectrum, Rrs(λ0‐4), which is further used
to derive a, aph, and adg products from the QAA algorithm. Last, the adg product is partitioned into
ad and ag with an empirical algorithm. The retrievals are validated with in situ measurements from
the global waters, which shows promising performance (section 4). As a convenient approach, we
recommend the use of SAVE to generate the absorption coefficients of water components from the
Landsat 8/OLI reflectance data.

2. Algorithm Development and Configuration
2.1. Lookup Table for Rrs Spectral Shapes

To estimate Rrs(412) from the OLI Rrs(λ1‐4) data, a lookup table (LUT) for the Rrs spectral shapes cen-
tered at λ0‐4 was created from two hyperspectral Rrs data sets. The first set of data were in situ measure-
ments (400‐800 nm with 3‐nm increment) collected from the global waters; a detailed description can be
found in Wei et al. (2016). The second data set was simulated with the Hydrolight radiative transfer
simulation software (version 5.1; Mobley & Sundman, 2008). For the simulation, we adopted the inher-
ent optical property (IOP) data including the absorption spectra of phytoplankton, detritus, and CDOM
and the backscattering spectra of phytoplankton and detritus (bbph and bbd) from International Ocean
Color Coordinating Group (IOCCG, 2006), with the following modifications. First, we assumed the
Fournier‐Forand phase function for particle scattering for every model runs, with a constant particle
backscattering ratio b̃bp = 0.013 (Whitmire et al., 2007). The pure water absorption coefficient and scat-
tering coefficient were adopted from Lee et al. (2015) and Zhang et al. (2009), respectively. The inelastic
scattering was also included in the simulation with default configurations (Mobley & Sundman, 2008),
where the chlorophyll fluorescent quantum efficiency was set to 0.02, the CDOM fluorescence was
modeled using the spectral fluorescence quantum efficiency function of Mobley (1994), and the
Raman scattering cross‐section was set to 2.6×10‐4 m‐1 at the reference wavelength of 488 nm. Two solar
zenith angles (30° and 60°) under clear sky were considered for mild sea states (wind speed ws = 5 m/s).
The simulation resulted in 1,000 hyperspectral Rrs spectra (400‐800 nm with 5‐nm increment).
Collectively, the field data and the synthetic Rrs data represent a wide range of waters with CHL varying
from ~0.03 to >50 mg/m3.
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In the second step, the in situ and simulated hyperspectral Rrs spectra were convolved to OLI's bands λ1‐4
through

Rrs λið Þ ¼ ∫
800

400Rrs λð ÞRSRidλ

∫
800

400RSR
idλ

; i ¼ 1; 2; 3; and 4; (1)

where RSRi is the acronym for OLI's relative spectral responsivity for band λi. This step is necessary since
OLI has wide bandwidths with full width at half maximum of 15, 60, 57, and 37 nm at 443, 482, 561, and
655 nm, respectively. In addition, the hyperspectral Rrs data were interpolated at 412 nm to obtain Rrs(λ0).
Here we assumed that the virtual band λ0 has a narrow bandwidth of 5 nm and hence no spectral weighting
was applied to it. The derived five‐band Rrs spectra are presented in Figure 1a.

Each individual five‐band Rrs spectrum was then normalized by the root of the sum of squares (RSS) of Rrs
values from λ0 to λ4 as in Wei, Lee, and Shang (2016),

nR*
rs λið Þ ¼ Rrs λið Þ

∑
4

j¼0
Rrs λj

� �2" #1=2
; i ¼ 0; 1; 2; 3 and 4; (2)

where nR*
rs is the normalized Rrs spectrum. All such normalized spectra are further illustrated in Figure 1b.

From the definition of normalization in equation (2), the nR*
rs(λ0‐4) spectra are characteristic of unique fea-

tures. First, the band ratios of nR*
rs(λ0‐4) remain the same with corresponding Rrs(λ0‐4). Second, the spectral

curvature remains unchanged. Third, the magnitudes ofnR*
rs vary from zero to one, inclusively. Last, the RSS

of nR*
rs(λ0‐4) is always equal to one. These nR*

rs(λ0‐4) spectra will be used to represent the Rrs spectral shapes
occurring in natural waters perceived by OLI.

2.2. Virtual‐Band Estimator

With a given Landsat 8/OLI Rrs(λ1‐4) spectrum, the virtual‐band estimator first seeks to identify annR*
rs(λ0‐4)

spectrum from the LUT, which has the closest spectral shape to Rrs(λ1‐4). To do so, we calculate the cosine
distance between Rrs(λ1‐4) and every nRrs

* spectra in the LUT as

d ¼ 1−
∑
4

i¼1
nR*

rs λið Þ·Rrs λið Þ� �
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
∑
4

i¼1
nR*

rs λið Þ� �2 ∑4
i¼1

Rrs λið Þ½ �2
s ; (3)

where d is the distance formed by the two vectors ofnR*
rs(λ1‐4) and Rrs(λ1‐4). ThenR

*
rs spectrumwith the mini-

mum cosine distance to Rrs(λ1‐4) will be determined and chosen for subsequent application.

Figure 1. (a) Remote sensing reflectance spectra at five bands λ0‐4 = 412, 443, 482, 561, and 655 nm. (b) The lookup table
of normalized remote sensing reflectance. As described in the text, Rrs(λ1‐4) spectra are convolved to Landsat 8/OLI
bandwidths.
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It is assumed that the “new” spectrum Rrs(λ0‐4), composed of known Rrs(λ1‐4) and an estimated Rrs(λ0), has
the spectral shape that best represents the reflectance spectrum of the targetedwater. Following equation (2),

we normalized the Rrs spectrum at 412 nm and further let it be equal to nR*
rs(412),

Rrs λ0ð Þ

Rrs λ0ð Þ2 þ ∑
4

i¼1
Rrs λið Þ2

� �1=2 ≈nR*
rs 412ð Þ; (4)

where the denominator in the left‐hand side of equation (4) refers to the RSS of Rrs(λ0‐4), while the right‐
hand side is the value extracted from the above‐selectednR*

rs spectrum.With only one unknown, equation (4)
can be solved for Rrs(λ0) as

Rrs λ0ð Þ ¼ A×nR*
rs 412ð Þ; (5)

where A is a scaling factor with

A ¼ ∑
4

i¼1
Rrs λið Þð Þ2

� �1=2
= ∑

4

k¼1
nR*

rs λkð Þ� �2� �1=2
: (6)

With the above estimated Rrs(λ0) and known Rrs(λ1‐4), the new Rrs(λ0‐4) spectrum will be used for the deriva-
tion of light absorption coefficients of water components in a procedure described below.

2.3. Inversion of Inherent Optical Properties

We adopted the QAA algorithm of Lee et al. (2002) for the IOP inversion from Rrs(λ0‐4). The original QAA
algorithm has input wavelengths different from OLI's center wavelengths. In particular, there is relatively
large offset between OLI's λ4 band (655 nm) and QAA's red band (670 nm). To reduce the uncertainty due
to the band mismatch, we converted the input Rrs(λ4) to Rrs(670) by a polynomial equation (R2 = 0.99),

Rrs 670ð Þ ¼ 10P1X3þP2X2þP3XþP4 ; (7)

with X the log10‐transformed original input Rrs(λ4) and the model coefficients P1 = 0.0775, P2 = 0.6585, P3 =
2.7692, and P4 = 1.433. This step is essential for the accurate determination of the total absorption coefficient
from QAA when the reference wavelength is set to 670 nm.

QAA first converts the Rrs(λ0‐4) spectra to the subsurface remote sensing reflectance (rrs) following Lee
et al. (2002),

rrs λð Þ ¼ Rrs λð Þ
0:52þ 1:7Rrs λð Þ : (8)

Based on numerical simulations of the radiative transfer equations, Gordon et al. (1988) indicated that rrs is a
function of the bulk absorption coefficient (a) and the total backscattering coefficient (bb),

rrs λð Þ ¼ g0
bb λð Þ

a λð Þ þ bb λð Þ þ g1
bb λð Þ

a λð Þ þ bb λð Þ
� �2

; (9)

where g0 and g1 are determined to be 0.089 and 0.125 sr‐1, respectively (Lee et al., 2002). From the above
quadratic equation, u = bb/(a+bb) can be solved as a function of rrs, g0, and g1.

QAA then proceeds with the estimation of the bulk absorption coefficient at a reference wavelength a (λref)
with λref = 561 nm if Rrs(670) < 0.0015 sr‐1. Otherwise, a (λref) will be derived at λref = 670 nm. With esti-
mated a (λref), the backscattering coefficient at λref can be readily derived as below:

bbp λref
� � ¼ u λref

� �
×a λref

� �
1−u λref

� � −bbw λref
� �

; (10)

where bbp is the particle backscattering coefficient and bbw is the backscattering coefficient of pure seawater
spectrally weighted by OLI's RSR function (Lee et al., 2016). From bbp (λref), the spectral backscattering coef-
ficient at bands λ0‐4 can be derived from the power law model (Gordon & Morel, 1983),
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bbp λið Þ ¼ bbp λref
� � λref

λi

	 
η

; i ¼ 0; 1; 2; 3 and 4; (11)

where η can be estimated empirically from the reflectance at 443 and 561 nm (Lee et al., 2016). The spectral
absorption coefficient is then derived as

a λið Þ ¼ 1−u λið Þð Þ bbw λið Þ þ bbp λið Þ� �
=u λið Þ: (12)

The QAA algorithm treats the absorption coefficients of CDOM and detritus together, which is analytically
solved as below (Lee et al., 2002):

adg 443ð Þ ¼ a 412ð Þ−ζa 443ð Þ½ �− aw 412ð Þ−ζaw 443ð Þ½ �
ξ−ζ

: (13)

The parameter ζ is estimated as an inverse function of rrs(443)/rrs(561), while ξ is equal to exp[Sdg×(443‐
412)], which is further modeled as an inverse function of rrs(443)/rrs(561). With determined adg(443), the
phytoplankton absorption coefficient can be readily derived as the difference between a(443) and
adg(443), after accounting for pure seawater's contribution,

aph 443ð Þ ¼ a 443ð Þ−adg 443ð Þ−aw 443ð Þ: (14)

To further partition adg(443) into dissolved and detrital components, we estimated the absorption coefficient
of detritus with the algorithm developed by Dong et al. (2013),

ad 443ð Þ ¼ 0:6×σ0:9; (15)

where σ is parameterized as

σ ¼ 0:05×apg 443ð Þ þ bbp 561ð Þ×1:4Rrs 561ð ÞþRrs 670ð Þ
Rrs 443ð Þ : (16)

This model takes into account the nonwater absorption (apg) as well as the backscattering of the particles.
The spectral absorption coefficient of ad is then quantified as

ad λð Þ ¼ ad 443ð Þ exp −Sd λ−443ð Þ½ �; (17)

where the spectral slope Sd was assumed to be a constant, Sd ≈ 0.012 nm‐1 (Babin et al., 2003). Finally, the
absorption coefficient of CDOM was derived as the difference between adg(λ) and ad(λ).

The procedures and components of SAVE are schematically shown in a flowchart in Figure 2. The configura-
tion allows for further tuning of the LUT, the virtual‐band estimator, and the IOP inversion algorithms
whenever necessary in the future.

3. Data and Analysis
3.1. Data Acquisition

We used two independent data sets to assess the accuracy of the SAVE algorithm: the NASA bio‐Optical
Marine AlgorithmData (NOMAD) (Werdell & Bailey, 2005) and the in situ hyperspectral data retrieved from
the SeaWiFS Bio‐optical Archive and Storage System (SeaBASS; Hooker et al., 1994). With respect to each
data set, we performed the following data reduction.

The NOMAD database consists of multiband spectra for Rrs, aph, adg, ag, ad, and bbp centered at 405, 411, 443,
455, 465, 489, 510, 520, 530, 550, 555, 560, 565, 570, 590, 619, 625, 665, 670, and 683 nm. Yet it is noteworthy
that many Rrs and IOP values are missing, probably a result of the multiband instruments used. To create
sufficient and utilizable data for the evaluation in this context, we extended the multiband ad and ag
measurements over a total of 61 spectral bands evenly distributed between 400 and 700 nm following an
exponential‐decay model as equation (17), with measured ad(443) and ag(443) and corresponding spectral
slope data (Sd and Sg). Similarly, we interpolated linearly the phytoplankton absorption spectra to the
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same 61 spectral bands. The hyperspectral bbp data were obtained by the power law model of equation (11),
based on the measured bbp(555), with the parameter η estimated as η = log10[bbp(443)/bbp(510)]/log10[510/
443]. Quality control was further performed to make sure that only the data with 0 < η < 2.5 were kept for
subsequent application. With these hyperspectral IOP spectra, we employed Hydrolight to simulate the Rrs
spectra. We assumed the same air‐water boundary condition, scattering phase function for particles,
inelastic scattering, and water depths with the simulations in section 2.1. We only considered a clear sky
with the solar zenith angle at 30°. As a result, we obtained 454 hyperspectral Rrs spectra for the given
IOP data.

The SeaBASS database archives a large amount of Rrsmeasurements with IOP data. For the present analyses,
we extracted the hyperspectral data from selected nearshore waters including Boston Harbor and
Massachusetts Bay (2017‐2018), the Great Lakes (2013‐2014), Chesapeake Bay (2011), and the northern
Gulf of Mexico (2013). The majority of the Rrs spectra were measured by the HyperPro radiometers floating
at the water surface with a skylight‐blocking approach (137 bands, 350‐800; Lee et al., 2013) or profiling of
the upper water columns (Mueller et al., 2003). In Chesapeake Bay, the radiometric data were measured
with a hand‐held radiometer and postprocessed using the method of Lee et al. (2010). The CDOM

Figure 2. Flowchart for the Semi‐Analytical algorithm with a Virtual‐band Estimator algorithm to estimate phytoplank-
ton, colored dissolved organic matter, and detritus absorption coefficients from Landsat 8/OLI Rrs(λ1‐4) spectra.
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samples were collected through 0.2‐μm filters, and the CDOM absorption coefficient was measured by the
scanning spectrophotometers (250‐800 nm). Samples for particulate absorption were captured using 25
mm precombusted GF/F filters (pore size 0.7 μm), and the absorption coefficient of particles (ap) was deter-
mined using the quantitative filter pad technique (QFT; Mitchell et al., 2002). The particles‐loaded filter was
later bleached usingmethanol to remove phytoplankton pigments to determine the absorption coefficient by
nonalgae particles. The phytoplankton absorption coefficient was then derived as the difference between ap
and ad (aph = ap ‐ ad).

The hyperspectral Rrs and backscattering data were convolved to OLI's bands at λ1‐4 according to equa-
tion (1). The absorption coefficient is inversely proportional to reflectance and was derived following Lee
et al. (2016),

ax λið Þ ¼ ∫
800

400RSR
idλ

∫
800

400 1=ax λð Þ½ �RSRidλ
; i ¼ 1; 2; 3; and 4; (18)

where ax refers to aph, apg, ag, or ad. At λ0 = 412 nm, the corresponding Rrs values were interpolated from the
hyperspectral data, without spectral convolution.

3.2. Validation Analyses

To quantify the accuracy of model‐estimated quantities, the median absolute percentage difference (MAPD)
was derived as

MAPD ¼ median Mj−Tj
� �

=Tj

�� ��×100%� 

; (19)

whereMj and Tj refer to the estimated and known values under investigation, respectively, and j varies from
1 to n, the total number of valid observation involved in the evaluation. The signed relative difference or
error (δ) was calculated for the model‐estimated Rrs(412) values, as the following:

δ ¼ Mj−Tj
� �

=Tj×100%: (20)

Besides, the root mean square difference (RMSD) was analyzed for each estimated and known quantities,
defined as

RMSD ¼ 1
n−1

∑
n

j¼1
Mj−Tj
� �2" #1=2

: (21)

We also performed the model II regression analyses of the log10‐transformed quantities and computed the
slope and the coefficient of determination (R2). Nonrealistic retrievals such as the negative values due to
imperfect model architectures were excluded from the statistical analysis. As a result, the number of valid
retrievals involved in the validation analyses, n, can sometimes be less than the total number of input Rrs
spectra, N.

3.3. Sensitivity Analyses

To understand how the uncertainty of the estimated Rrs(412) impacts the retrieved absorption coefficients,
we carried out the following sensitivity analyses. The IOCCG synthetic data (IOCCG, 2006), considered free
of measurement uncertainty, were used. The data (N = 500) were divided into three subgroups with respect
to their chlorophyll concentrations: the eutrophic (CHL ≥ 1 mg/m3), mesotrophic (0.1 ≤ CHL < 1 mg/m3),
and oligotrophic waters (CHL < 0.1 mg/m3). We convolved the Rrs and IOP spectra of each subgroup to
Landsat 8/OLI bands and interpolated them to λ0. Assuming the “error‐free” Rrs(λ1‐4) spectra, we disturbed
the Rrs(412) values with random errors,

Rerr
rs 412ð Þ ¼ Rrs 412ð Þ þℜ⋅δ; (22)

where Rrs
err(412) represents the error‐disturbed values,ℜ is a random number between 0 and 1 of standard

normal distribution, and δ is the relative difference of Rrs(412) to its true value. Nine instances of δ were
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considered, which vary from −20%, −15%, −10%, −5%, 0%, +5%, +10%, +15%, and finally to +20%. The
SAVE algorithm was implemented directly with these erroneous Rrs spectra following the workflow
starting with equation (7) (Figure 2), that is, revoking the virtual‐band estimator. The median of the
unbiased percentage difference (denoted as Δ) was calculated between the model‐estimated absorption
coefficients from the erroneous Rrs spectra and those from error‐free Rrs spectra, that is, δRrs(412) = 0, as

Δ ¼ median 2×
Ej−Fj

Ej þ Fj

����
����×100%

� �
; j ¼ 1; 2;…;n; (23)

where Ej refers to the model retrievals with the error‐disturbed Rrs spectra, while Fj is the corresponding
optical properties inverted from the error‐free Rrs spectra. In the following, we treat Δ as the uncertainty
of the model‐estimated absorption coefficients originated from δRrs(412).

4. Results
4.1. Evaluation of Rrs(412) Retrievals

As Rrs(412) is critical for the proposed algorithm, we first evaluate the accuracy for the estimated Rrs(412)
values (see Figure 3a and Table 1). For the NOMAD data, the estimated Rrs(412) are reasonably consistent
with known values with small differences (MAPD = 7% and RMSD = 0.00044 sr‐1). The SeaBASS data span
a relatively narrower dynamic range, with Rrs(412) varying between 0.001 and 0.009 sr‐1; the estimated
Rrs(412) data are overall consistent with the measured values of SeaBASS data (MAPD = 11% and RMSD
= 0.00045 sr‐1). In addition, regression analyses between the estimated and known Rrs(412) values obtained
linear slopes only slightly deviated from unity (1.05 and 1.04 for NOMAD and SeaBASS data, respectively).
Furthermore, we compared the frequency distribution of the relative errors of the estimated Rrs(412)
(Figure 3b). It is found that the relative errors (δRrs(412)) are positively skewed. The NOMAD estimation
has the first mode at 2%, while the SeaBASS estimation shows a larger first mode at around 12%. This discre-
pancy can be partly attributable to the uncertainty or errors of the in situ Rrsmeasurements and partly to the
uncertainty of the algorithm itself. In spite of the biases, more than 90% of the estimated Rrs(412) are found
subjected to a relatively small error with δRrs(412) varying between −20% and 20% for the SeaBASS data. A
few outliers are present with the estimated SeaBASS Rrs(412) (Figure 3a), which contribute to the positive
tail of the frequency distribution (Figure 3b). These outliers represent highly absorptive waters, with
Rrs(412) < 0.001 sr‐1. The measurement uncertainties of these Rrs spectra are partly responsible for the dis-
crepancy between estimated and known Rrs(412) values.

Figure 3. (a) Comparison of estimated Rrs(412) by the Semi‐Analytical algorithm with a Virtual‐band Estimator algo-
rithm with known Rrs(412) for NASA bio‐Optical Marine Algorithm Data (NOMAD) data and SeaWiFS Bio‐optical
Archive and Storage System (SeaBASS) data, with the accompanying regression statistics given in Table 1; (b) frequency
distribution of the relative difference of modeled Rrs(412) with respect to known values for the synthetic data (in blue) and
in situ data (in red).
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The variation of δRrs(412) was further assessed with respect to the chlorophyll concentrations (Figure 4a).
Interestingly, there is a slightly negative trend between δRrs(412) and CHL. The δRrs(412) slowly vary from
positive to negative when CHL increases from <0.1 to >10 mg/m3. On the other hand, a weak but positive
trend exists between δRrs(412) and Rrs(412) (Figure 4b). The dependencies of δRrs(412) on CHL and Rrs(412)
are not contradictive, as smaller Rrs(412) values are often suggestive of stronger phytoplankton and CDOM
absorption, and vice versa. According to the illustrations in Figure 4, the δRrs(412) can be relatively larger in
very low‐CHL waters or very high‐CHL waters. For the former case, the Rrs(412) values are high, but the
Rrs(λ1‐4) spectra usually vary over a narrow range, which may impact the spectral‐shape‐based classification
as equation (3). For the latter case, the Rrs(412) values can be very small, leading to larger
percentage differences.

Overall, the differences between the estimated and known Rrs(412) values are small. According to the vali-
dation analyses, the satellite‐derived Rrs(412) are often subject to an MAPD of greater than 20% from their in
situ matchups in nearshore environments (Qin et al., 2017; Zibordi et al., 2009). In addition, the in situ mea-
surements of Rrs(412) from different measurement platforms can differ from each other with MAPD > ~10%
(Hooker et al., 2002). So we can conclude that the above‐discussed small differences for the estimated
Rrs(412) provide a confident measure of the virtual‐band estimator in these waters.

Table 1
Regression Statistics and Validation Results of SAVE Estimations for NOMAD (N = 454) and SeaBASS (N = 266) Data

NOMAD data (N = 454) SeaBASS data (N = 266)

n Slope R2 MAPD RMSDa n Slope R2 MAPD RMSD

Rrs 412 454 1.05 0.99 7% 0.00044 266 1.04 0.94 11% 0.00045
a 412 454 0.92 0.97 19% 0.27 266 1.01 0.90 17% 0.4

443 454 0.90 0.97 18% 0.2 266 0.95 0.86 19% 0.36
aph 412 442 0.90 0.76 33% 0.13 255 0.97 0.68 38% 0.19

443 454 0.92 0.77 30% 0.14 266 0.97 0.65 39% 0.22
adg 412 454 0.97 0.93 28% 0.28 266 0.97 0.86 25% 0.44

443 454 0.97 0.92 30% 0.18 266 0.97 0.78 32% 0.34
ag 412 454 0.97 0.87 35% 0.28 265 0.97 0.77 37% 0.45

443 454 0.97 0.86 35% 0.15 266 0.97 0.64 46% 0.33
ad 412 454 0.97 0.81 67% 0.21 266 0.97 0.86 57% 0.28

443 454 0.97 0.80 67% 0.16 266 0.97 0.86 56% 0.21

Note. SAVE= SemiAnalytical algorithmwith a Virtual‐band Estimator; NOMAD=NASA bio‐Optical Marine AlgorithmData; SeasBASS = SeaWiFS Bio‐optical
Archive and Storage System; MAPD =median absolute percentage difference; RMSD = root mean square difference. Note that the regression statistics was per-
formed with log‐transformed data. N is the number of Rrs data tested, and n is the number of valid model retrievals.
aThe unit is sr‐1for Rrs data and m‐1 for absorption coefficient.

Figure 4. Variation of δRrs(412) with water trophic status (panel a) and the magnitudes of Rrs(412) (panel b) for NASA
bio‐Optical Marine Algorithm Data (NOMAD; denoted by open circles) and SeaWiFS Bio‐optical Archive and Storage
System (SeaBASS) data (denoted by crosses). The legends are the same as Figure 3a. Note that the number of in situ data
used in (a) and (b) is different due to data availability.
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4.2. Evaluation of Bulk, Phytoplankton, and CDM Absorption Coefficient Retrievals

The model‐estimated bulk absorption coefficients at 412 and 443 nm are favorably comparable to known
values (Figure 5 and Table 1). First, we stress that the retrieval of a(443) is irrelevant to the estimation of
Rrs(412) under the framework of QAA. Rather, a(443) is solely determined by Rrs(λ1‐4). For NOMAD, the
a(412) and a(443) retrievals agree well (MAPD = 16‐17%, RMSD = 0.22‐0.2 m‐1, and R2 = 0.97) with known
values over the full dynamic range of the test data (0.02‐3 m‐1). The retrievals of a(412) and a(443) for
SeaBASS are slightly less accurate (MAPD = 17‐19%, RMSD = 0.36‐0.4 m‐1, and R2 = 0.86‐0.9), a result of
the uncertainties from both Rrs and IOP measurements. The retrievals for the component absorption coeffi-
cients aph and adg suffer larger uncertainties than the total absorption coefficients (Table 1 and Figure 6).
This is related to the step‐by‐step nature of ocean color inversion as implemented by QAA where Rrs is gov-
erned by the bulk optical properties, not individual components. Therefore more uncertainties or errors are
expected in the retrieved component absorption coefficients aph(443) and adg(443) when they are partitioned
from a(412) and a(443) (Figure 2). The uncertainties in a(412) and a(443) propagate to and impact the esti-
mated aph(443) and adg(443) (Lee et al., 2010). Considering the error metrics and regression analyses, the
agreement between retrieved and known adg values at two blue bands is better than aph. The differential per-
formance for adg and aph estimation is common with the SA algorithms (IOCCG, 2006; Werdell et al., 2013)
and can be partly explained by the fact that adg dominates the total absorption coefficients at two blue bands
for the majority (>80%) of the NOMAD and SeaBASS data used herein. In addition, it is also likely related to
the difficulty in modeling the spectral shapes for phytoplankton absorption, which vary significantly in nat-
ural waters (Bricaud et al., 2004; Roesler et al., 1989). Some outliers are present with the SeaBASS adg retrie-
vals, which are most probably a result of the problems with sampling of inhomogeneous waters (IOCCG,
2018). The uncertainties induced by these outliers further propagated to the total absorption coefficients
and affected their comparison (Figure 5). In comparison, the retrievals for SeaBASS data have shown larger
variability (with higher RMSD) than those for NOMAD data. This is partly related to the fact that we simu-
lated the Rrs spectra for the NOMAD data, which are free of measurement uncertainty.

The performance of our approach in estimating a(412) is comparable to other SA algorithms, which used the
Rrs(412) measurements for the inversion (e.g., Loisel et al., 2018; Werdell et al., 2013). The MAPD values
varying between 30% and 39% (see Table 1) are not a small uncertainty for aph(443) and adg(443) estimation.
But it is not uncommon to observe such evaluation results for ocean color inversion algorithms, since the in
situ data and the SA algorithms are always subject to uncertainties. For comparison, Werdell et al. (2013)
showed that the estimated NOMAD aph(443) and adg(443) from the generalized IOP (GIOP) algorithm have
an uncertainty with MAPD equal to 26% and 35%, respectively; their results compare favorably to ours (30%
and 30% for aph(443) and adg(443), respectively). Note that they used more data points from the NOMAD
data set (n = 682) than the present study (n = 454) but the absorption coefficients span approximately the

Figure 5. Comparison of Semi‐Analytical algorithm with a Virtual‐band Estimator (SAVE)‐estimated total absorption
coefficients with known values for NASA bio‐Optical Marine Algorithm Data (NOMAD; denote as open circles) and
SeaWiFS Bio‐optical Archive and Storage System (SeaBASS) data (denoted as crosses). The regression and validation
statistics is given in Table 1.

10.1029/2019JC015125Journal of Geophysical Research: Oceans

WEI ET AL. 10



same dynamic range as the present analyses. Smyth et al. (2006) analyzed their SA algorithm with NOMAD
data (n = 459) and reported for the absorption retrievals less accurate than the results shown here, which is
partly related to the narrower dynamic range of the data used therein. From the above analyses, we can
reach a conclusion that our approach can generate retrievals for the bulk, phytoplankton, and CDM
absorption coefficients from Landsat 8/OLI reflectance, with accuracy comparable to previous analyses.

4.3. Evaluation of CDOM and Detritus Absorption Coefficient Retrievals

It is important to reiterate that the SA algorithms generally do not partition the absorption coefficients of
CDOM and detritus because of their similar spectral behaviors (Lee et al., 2002; Maritorena et al., 2002;
Smyth et al., 2006; Werdell et al., 2013). The procedure adopted herein for the estimation of detritus absorp-
tion ad is empirical in nature. It suffers the uncertainties from the estimation of a(443) and bbp(561) but is
irrelevant to Rrs(412). As the intermediate product, the ad retrievals at 412 and 443 nm are subject to large
MAPD varying between 56% and 67%, in spite of the high R2 and close‐to‐one slopes (Figure 7 and
Table 1). The ad(412) and ad(443) retrievals tend to be overestimated for ad < 0.01 m‐1 and underestimated
for ad > 0.1 m‐1. The negative bias is particularly significant for the NOMAD data when ad > 0.1 m‐1. This
may be caused by the measurement uncertainty of the particle absorption coefficients (IOCCG, 2018;
Neeley et al., 2015). In contrast, the retrieval of the CDOM absorption coefficient ag relies on the

Figure 6. Comparison of Semi‐Analytical algorithm with a Virtual‐band Estimator (SAVE)‐estimated aph and adg with
known values for the NASA bio‐Optical Marine Algorithm Data (NOMAD; denote by open circles) and SeaWiFS Bio‐
optical Archive and Storage System (SeaBASS) data (denoted by crosses). The regression and validation statistics is given
in Table 1.
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knowledge of Rrs(412), which allows for the derivation of adg under the framework of QAA. The estimated
ag(443) are much more accurate than ad(443). This is mostly because the values of ad(443) are smaller than
ag(443) for the majority of the NOMAD data (>90%) and SeaBASS data (>70%). Our comparison indicates
that the accuracy of ag(412) retrievals are higher than or at least equivalent to ag(443). This is valuable as
the CDOM absorption is strongly correlated with the dissolved organic carbon and salinity in coastal
waters (Del Castillo & Miller, 2008; Pan & Wong, 2015; Vantrepotte et al., 2015). Undoubtedly, the SA
derivation of ag(412) (and likely ag(443)) with the present approach will provide support to the study of
the carbon stocks and material transport in nearshore environments.

4.4. Sensitivity of Absorption Retrievals to Rrs(412) Estimation

The sensitivity of the absorption coefficient retrievals to the relative error of Rrs(412) (δRrs(412)) is summar-
ized in Table 2. Because the estimation of a(443) from QAA does not rely on Rrs(412), the uncertainty for
a(443) retrieval (Δa(443)) is independent of δRrs(412). As anticipated, however, the uncertainties of other
absorption coefficient retrievals do vary with δRrs(412). The a(412) values are estimated from Rrs(412) and
bbp(412); the latter is irrelevant to the estimation of Rrs(412) but determined by the Rrs(443)/Rrs(561) ratios
(refer to the QAA algorith; Lee et al., 2002). So it is straightforward to understand that Δa(412) increases

Figure 7. Comparison of Semi‐Analytical algorithm with a Virtual‐band Estimator (SAVE)‐estimated ag and ad with
known values for NASA bio‐Optical Marine Algorithm Data (NOMAD; denote by open circles) and SeaWiFS Bio‐opti-
cal Archive and Storage System (SeaBASS) data (denoted by crosses). The regression and validation statistics is given in
Table 1.
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with increasing δRrs(412). Because we have assumed that Rrs(443) and
Rrs(561) are error free in our analysis, the rate of change in Δa(412) is
found weak, with resultant Δa(412) values smaller than the absolute
amplitudes of δRrs(412). The uncertainties of the component absorption
coefficients are much more sensitive to δRrs(412), where Δaph and Δag
can be twice larger than the absolute magnitudes of δRrs(412). In the
mesotrophic waters, for instance, Δaph(412) and Δaph(443) increase from
~27% to ~45% when δRrs(412) varies from ±10% to ±20%. This result can
be explained by the involvement of a(412) in the separation of aph(443)
and adg(443), which plays a major role in Δaph(412) and Δaph(443) in
QAA (Lee, Arnone, et al., 2010). Among all component absorptions,
Δadg remains least sensitive to δRrs(412). In all three types of waters,
Δadg and Δag are found roughly comparable to each other. Our analyses
only indicate a weak dependence of Δaph and Δadg on the chlorophyll a
concentrations. Specifically, Δaph(412) and Δaph(443) remain the smallest
in the oligotrophic waters, while Δadg(412) and Δadg(443) are the smallest
for the eutrophic andmesotrophic waters. For CDOM, we found the smal-
lest Δag in the mesotrophic waters. Unlike all above component absorp-
tion coefficients, Δad does not change with δRrs(412), because its
derivation is not related to Rrs(412) in the present configuration (recalling
equations (15) and (16)).

5. Discussion

The Landsat 8/OLI instrument has the potential for generating high‐spa-
tial‐resolution bio‐optical properties in the dynamic nearshore waters.
Compared with the operational satellite sensors such as Moderate
Resolution Imaging Spectroradiometer and Visible and Infrared
Spectroradiometer, Landsat 8/OLI is still short‐handed because of the
relatively fewer number of visible bands (λ1‐4 = 443, 482, 561, and 655
nm). Particularly, the lack of a blue band at 412 nm has made it difficult
to implement the existing SA algorithms (IOCCG, 2006; Lee et al., 2002;
Maritorena et al., 2002; Smyth et al., 2006; Werdell et al., 2013) for the
retrieval of component absorption coefficients. The SAVE algorithm is
designed to fill this gap. It predicts Rrs in a virtual band centered at λ0 =
412 nm for each individual Rrs(λ1‐4) spectrum. The estimated Rrs(λ0) and

existing Rrs(λ1‐4) together allow for analytical derivation of absorption coefficients of the major components.
This convenient approach makes it practical for generating the absorption coefficients for phytoplankton,
CDOM, and detritus from the Landsat 8/OLI data while following the framework of the existing
SA algorithms.

The virtual‐band estimator is a novel and critical component of the SAVE algorithm. In spite of the
encouraging performance, the model still faces challenges. First, the virtual‐band estimator evokes spec-
tral matching (or optical classification) based on four‐band Rrs spectra (recall equation (3)). With too few
bands, this matching can introduce uncertainty or error, albeit small. Second, it is impossible for the
lookup table to include every Rrs spectral shapes existing in natural waters. When the actual Rrs shape
deviates from the LUT, the matching and subsequent estimation of Rrs(412) may suffer sometimes large
uncertainty or error. Nevertheless, the analyses suggest that the SAVE algorithm provides a satisfactory
estimation for Rrs(412) over the high dynamic range of waters with Rrs(412) varying between ~0.001
and 0.025 sr‐1.

The study here used the NOMAD and SeaBASS data, which are not free of measurement uncertainty. The
uncertainty for the particulate absorption coefficient measurements can sometimes be very large (Neeley
et al., 2015). The in situ Rrs measurements are also subject to uncertainties originating from the calibration,
environmental disturbance, postprocessing, and so forth (Wei et al., 2014; Zibordi et al., 2012). Although

Table 2
The Uncertainty Δ (×100) of SAVE‐Estimated Absorption Coefficients

Oligotrophic waters (N = 75)

δRrs 412 −20% −15% −10% −5% 5% 10% 15% 20%

Δa 412 18 8 5 3 3 5 9 12
443 0 0 0 0 0 0 0 0

Δaph 412 50 27 20 12 14 22 28 34
443 50 27 20 12 14 22 28 34

Δadg 412 44 21 14 9 9 16 24 35
443 44 21 14 9 9 16 24 35

Δag 412 48 27 19 12 12 19 31 45
443 50 28 20 13 12 20 31 46

Mesotrophic waters (N = 150)

δRrs 412 −20% −15% −10% −5% 5% 10% 15% 20%

Δa 412 14 10 6 3 4 6 11 15
443 0 0 0 0 0 0 0 0

Δaph 412 44 34 26 13 17 28 43 47
443 44 34 26 13 17 28 43 47

Δadg 412 34 24 13 6 9 15 25 36
443 34 24 13 6 9 15 25 36

Δag 412 41 28 16 7 10 18 31 42
443 42 29 16 8 11 18 32 43

Eutrophic waters (N = 275)

δRrs 412 −20% −15% −10% −5% 5% 10% 15% 20%

Δa 412 15 9 7 3 3 7 9 14
443 0 0 0 0 0 0 0 0

Δaph 412 49 35 29 16 15 28 35 47
443 49 35 29 16 15 28 35 47

Δadg 412 33 21 15 8 7 16 22 32
443 33 21 15 8 7 16 22 32

Δag 412 46 28 22 11 10 22 31 45
443 48 29 24 11 10 23 33 48

Note. SAVE = Semi‐Analytical algorithm with a Virtual‐band Estimator.
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difficult to determine, these measurement uncertainties have certainty affected the validation results.
According to the sensitivity analyses (Table 2), the influence of the erroneous Rrs(412) input data is indeed
not negligible under the extreme conditions when δRrs(412) approach ±20%. The assumption of ±20%
errors for Rrs(412) is not randomly chosen but inferred from the evaluations of the in situ measurements
(Figure 3). We did not further change δRrs(412), positively or negatively, because the resultant Rrs spectral
shapes could be dramatically distorted so that the resultant Rrs spectra become unrealistic. A complete
understanding of the model uncertainty will demand an investigation of the uncertainty propagation with
globally representative data.

As our analyses demonstrated, SAVE provides a feasible avenue for the analytical retrieval of the water com-
ponent absorption coefficients, particularly for phytoplankton, CDM, and CDOM from the Landsat 8/OLI
reflectance data for global applications (Tables 1 and 2). The success of the model benefits from the use of
existing SA algorithm, specifically, of QAA (Lee et al., 2002). It is interesting to note the model configuration
also allows utilizing the other SA algorithms for optical inversion. For example, one may replace QAA with
the spectral‐optimization algorithm of GIOP (Werdell et al., 2013) for the purpose of the IOP inversion.
Being a temporary solution, the current modeling framework does not rule out the necessity of continuous
development of the SA schemes to further improve the model performance for the derivation of light
absorption coefficients.

To demonstrate the application of the SAVE algorithm for the monitoring of nearshore waters, we derived
the absorption coefficient products from a Landsat 8/OLI image. The Landsat 8/OLI image was captured on
28 August 2015 over Boston Harbor and Massachusetts Bay (Figure 8). The OLI bands 5 and 7 (865 and
2201 nm, respectively) were used for the atmospheric correction and the satellite retrievals flagged as
ATMFAIL, LAND, CLDICE, and HILT were masked out. The validation of Landsat 8/OLI Rrs spectra with
in situ matchups were provided elsewhere (Wei et al., 2018). As shown in Figure 8a, the transport pattern of
surface water including the water plumes, bright/dark waterfronts, and ship wakes are captured in the
composited true color image. The spatial gradients and distribution patterns of the absorption coefficients
for CDM, phytoplankton, and CDOM from theHarbor toward the Bay are clearly shown up in Figures 8b–8d.
Within the spatial domain under investigation, the CDOM and the detritus dominate the light absorption
coefficients instead of phytoplankton. Also, aph(443), adg(443), and ag(443) are found extremely high near
the shorelines and river mouths with values greater than 10 m‐1 for Landsat 8/OLI measurements of this
time. The absorption products in the strongly absorptive waters with a > 1 m‐1 have not been fully validated
though due to lack of concurrent field measurements. As suggested in Figures 8b–8d, there exists significant
difference in the distribution patterns of aph(443) and adg(443) (and ag(443)) products). Such difference is
attributable to the fact that the phytoplankton does not covarywith CDM, CDOM, or detritus, a phenomenon
commonly occurring in optically complex nearshorewaters. The decoupling of aph(443) and adg(443) is of sig-
nificant implication for the estimation of phytoplankton biomass in such aquatic environments. In water
color remote sensing, the empirical blue‐green spectral band ratios of Rrs spectra such as Rrs(482)/Rrs(561)
are often used for CHL retrievals (Franz et al., 2015; Snyder et al., 2017). The band‐ratio algorithms are sen-
sitive to the bulk absorption and work relatively well for “case 1” water (Gregg & Casey, 2004; Moore et al.,
2009). But the reflectance ratios become less sensitive to the changes of CHL as the CDOM and/or detritus
absorption starts to play increasingly important roles in the bulk absorption (Dierssen, 2010). As a result,
the comparison of the CHL retrieval from the band‐ratio algorithm (Figure 8e) with the aph(443) retrieval
can show strikingly different spatial distribution patterns. For these particular observations, the spatial dis-
tribution of the CHL product is much more similar to adg(443) and ag(443), indicating erroneous CHL pro-
duct for such nearshore waters when it is estimated using blue‐green band‐ratio algorithms. The SA
retrieval of aph(443) from the current approach likely provides more accurate estimation for the autotrophic
biomass with fine details.

The framework of SAVE is designed with the objective to facilitate the use of the Landsat 8/OLI reflectance
data. It is certainly feasible to implement it with reflectance measurements from other radiometers as long as
they share similar band settings with the OLI sensor. For instance, the Sentinel 2 satellite is equipped with
the MultiSpectral Instrument (MSI). The MSI has four visible bands centered at 444, 497, 560, and 664 nm,
almost identical to Landsat 8/OLI. The future Landsat 9 satellite will have the OLI‐2. The algorithm devel-
oped in this study should be readily applicable to MSI and OLI‐2 imageries.
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6. Concluding Remarks

Landsat 8/OLI is an advanced multiband and high‐resolution satellite sensor and can generate high‐quality
reflectance product for the coastal waters. Since its launch in 2013, the Landsat 8 data have been widely used
in water‐related studies on a variety of topics. Partly due to the lack of a 412‐nm band, however, it remains
challenging to apply existing SA algorithms to Landsat 8/OLI reflectance product for derivation of the light
absorption coefficients for various water components. Consequently, the Landsat 8 data have not received
sufficient attention in wider applications to coastal water remote sensing as it should have deserved after

Figure 8. Landsat 8/Operational Land Imager true color image (LC80120312015240) of Boston Harbor and Massachusetts Bay (panel a) and mapping products of
retrieved component absorption coefficients aph(443), adg(443), and ag(443) (unit: per meter) from Semi‐Analytical algorithm with a Virtual‐band Estimator
(panels b–d). Panel (e) is the chlorophyll a concentrations (unit: milligram per cubic meter) derived from the fourth‐order polynomial function of Rrs(482)/Rrs(561)
ratios with coefficients determined by NASA.
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6‐year operation. In this study, we developed SAVE to facilitate the derivation of phytoplankton, CDOM,
and detritus absorption coefficients from the Landsat 8/OLI reflectance. SAVE employs a virtual‐band esti-
mator to estimate Rrs at 412 nm from the existing reflectance spectra measured at other bands. It is found
that such estimated Rrs(412) is acceptably accurate over the full dynamic range of the test data, with
MAPD of 7% and 11% for the NOMAD and SeaBASS data, respectively. Thus, the estimation of Rrs(412)
allows to use existing SA inversion algorithms for derivation of the component absorption coefficients of
waters. In current analysis, we adopted the QAA to derive aph(443) and adg(443). The aph(443) retrievals
are found only subject to an uncertainty with MAPD = 30% and MAPD = 39% for NOMAD and SeaBASS
data, respectively. The estimated adg(443) suffer an uncertainty with MAPD = 30% for NOMAD and
MAPD = 32% for SeaBASS data. These uncertainty statistics are comparable with those of existing SA algo-
rithms using the Rrs(412) measurements. The SAVE algorithm further partitions adg into ag and ad with an
existing algorithm of Dong et al. (2013). The accuracy of the estimated ag (MAPD = 35–47%) is found com-
parable with aph retrievals. Our analyses suggest that it is feasible to use the new approach to semianalyti-
cally generate the component absorption coefficients for the global waters with a(443) varying between
0.01 and 3 m‐1, with acceptable accuracy. The semianalytically derived phytoplankton absorption coefficient
is arguably a more reliable proxy for phytoplankton biomass in coastal waters where the phytoplankton is
often decoupled with CDOM and detritus. On the other hand, the CDOM and detritus absorption coeffi-
cients will also provide important information for aquatic biology, carbon cycles, and other climate‐
related problems.
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