
Integration by substitution

This integration technique is based on the chain rule for derivatives. It allows
us to change some complicated functions into pairs of nested functions that are
easier to integrate.

1 The idea behind integration by substitution

Let us first recall the chain rule, which we studied in the ”Algebra of derivatives”
module. The rule says:

(f(g))′ = f ′(g)g′

Integrating this, we find that∫
f ′(g(x))g′(x)dx = f(g(x)) + c

The expression is rather involved, and can be hard to understand at first.
This is to be expected: the chain rule was the most complicated one of our rules
for derivatives.

The best thing to do is illustrate this on a few examples, to get a feeling for
how it works.

Example 1: First we will calculate∫
e2xdx

This integral is not difficult to guess: in fact, we have seen this function
several times in previous modules. We know that (e2x)′ = 2e2x, which gives us
the answer: ∫

e2xdx =
e2x

2
+ c

.
Secretly, we using the chain rule here, with g(x) = 2x. Then g′(x) = 2, and

we can write∫
e2xdx =

∫
e2x

2
2dx =

eg(x)

2
g′(x)dx =

eg(x)

2
+ c =

e2x

2
+ c
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We wish to make this process more formal, in order to apply it in more
complicated cases. To this end, we introduce a new variable u = 2x. Then we
perform a change of variables, which gives this technique its name: we substitute
u for x. For the function, this means replacing x with u/2 everywhere, getting

e2x = eu

This is not enough: we also have to switch the integrated variable from x to
u. We can differentiate u = 2x, getting du = 2dx; or dx = 1

2du. Now we are
done: ∫

e2xdx =

∫
eu · 1

2
du =

1

2
eu + c =

e2x

2
+ c

In the last step, we put x back into the expression. We need to report the
answer in terms of the original variable, not in terms of some temporary variable
that we used to evaluate the integral.

There is another reason to switch back to x: if this integral were a definite
one, the limits for x are not the same as the limits for u. To illustrate this,
suppose that the limits for x were a to b. We know that u = 2x, so while x goes
from a to b, the new variable u will travel from 2a to 2b:∫ b

a

e2xdx =

∫ 2b

2a

eu

2
du

We can check that this is true, since we know how to evaluate both integrals:∫ b

a

e2xdx =
e2x

2

∣∣∣∣b
a

=
e2a − e2b

2∫ 2b

2a

eu

2
du =

eu

2

∣∣∣∣2b
2a

=
e2a − e2b

2

We can always switch the limits as we perform the change from x to u.
Usually it is much less trouble to calculate the indefinite integral by switching
to u, convert the answer back to x, and evaluate using the original limits.

Example 2: We can make our first example a bit more complicated:∫
xex

2

dx

It is the ex
2

that is giving us trouble, so we should substitute a variable that
separates the polynomial and the exponential: u = x2, so du = 2xdx. Now we
have ∫

xex
2

dx =

∫
ex

2

2
· 2xdx =

∫
eu

2
du =

eu

2
+ c =

ex
2

2
+ c
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2 Integrating trigonometric functions

Substitution is ideal for many expressions involving trigonometric functions.

Example 1: Let us try to integrate∫
sin(x) cos(x)dx

It is not so easy to see how to do this, but note that cos(x) is the derivative
of sin(x). Now we’re in business: this is a perfect situation for substitution. We
will use u = sin(x), which means that du = cos(x)dx and our integral becomes∫

sin(x) cos(x)dx =

∫
udu =

1

2
u2 + c =

1

2
cos2(x) + c

We can use this technique for integrating many other expressions involving
sin(x), so long as they are multiplied by a cos(x) at the end.

Example 1a: Polynomials, using the same substitution:

∫
sin10(x) cos(x)dx =

∫
u10du =

1

11
u11 + c =

1

11
(sin(x))11 + c

Example 1b: Other functions, same substitution:∫
esin(x) cos(x)dx =

∫
eudu = eu + c = esin(x) + c

The next question is, what do we do when the sin(x) is alone, with no
cos(x) around. Let us discuss powers of sin(x), which will let us integrate all
polynomials in sin(x).

Given an odd power of sin(x), we factor it into multiples of sin2(x) times a
single sin(x). Then replace each sin2(x) by [1− cos2(x)] and integrate.

Example 2: Let us try this with
∫
sin3(x)dx.

sin3(x) = sin2(x) sin(x) = [1− cos2(x)] sin(x) = sin(x)− cos2(x) sin(x)

Now we can evaluate the integral:

∫
sin3(x)dx =

∫
[sin(x)− cos2(x) sin(x)]dx = − cos(x) +

1

3
cos3(x) + c
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Even powers of sin(x) are a little more tricky. For this, we need trigonometric
identities referred to as “double angle formulas”:

cos(2x) = cos2(x)− sin2(x)

sin(2x) = 2 sin(x) cos(x)

The first of these identities can be rewritten to leave only sin(x) on the right
hand side:

cos(2x) = cos2(x)− sin2(x) = [1− sin2(x)]− sin2(x) = 1− 2 sin2(x)

We can rewrite this to get an expression for sin2(x):

sin2(x) =
1− cos(2x)

2

Now we can integrate sin2(x):∫
sin2(x)dx =

∫
1− cos(2x)

2
dx =

x

2
− sin(2x)

4
+ c

To integrate sin4(x), we first express it in terms of cos2(2x). This we can
write in terms of cos(4x), using the first double angle formula, rewritten with
cos on the right side.

Everything in this section can be applied to expressions of cos(x) multiplied
by its derivative, − sin(x). The only change is with even powers of cos(x) with
no sin(x) present, as indicated above This is left for the exercises.

3 Trig substitution

Trig substitution was created to help with certain sums and differences of
squares.

Example 1: The most basic example of trig substitution concerns the in-
tegral ∫

1√
1− x2

dx

This is not an easy integral to do, and certainly not to guess. Trig substi-
tution comes to the rescue: it is designed to eliminate the unfortunate square
root.

Here is the trick: we shall use u = arcsin(x), with the typical convention
that u lies in the interval [−π/2 : π/2].
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To use the substitution, we write sin(u) in place of x everywhere. This
turns 1 − x2 into 1 − sin2(u) = cos2(u). Here cos(u) is non-negative, since
u ∈ [−π/2 : π/2]. We can therefore write√

1− sin2(u) =
√

cos2(u) = cos(u)

From the substitution expression x = sin(u), we see that dx = cos(u)du.
Altogether, we have:

∫
1√

1− x2
dx =

∫
1

cos(u)
cos(u)du =

∫
du = u+ c = arcsin(x) + c

There are two other typical forms of trig substitution.

For expressions with 1 + x2, we use x = tan(u). Then

1 + x2 =
cos2(u)

cos2(u)
+

sin2(u)

cos2(u)
=

1

cos2(u)
= sec2(u)

This is especially useful when the 1 + x2 is on the bottom of a fraction, or
under a square root. For change of integration variable, we get

For expressions with x2 − 1, we use x = sec(u). Then

x2 − 1 =
1

cos2(u)
− 1 =

sin2(u) + cos2(u)

cos2(u)
− cos2(u)

cos2(u)
=

sin2(u)

cos2(u)
= tan2(u)

All three substitutions are summarized in the table below.

Expression Substitution Identity used

1− x2 x = sin(u) 1− sin2(u) = cos2(u)

1 + x2 x = tan(u) 1 + tan2(u) = sec2(u)

x2 − 1 x = sec(u) sec2(u)− 1 = tan2(u)
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