
The Alternating Series Test

So far we have considered mostly series all of whose terms are positive. If the
signs of the terms alternate, then testing convergence is a much simpler matter.
On the other hand, the limit to which some of these series converge depends
delicately on the order in which the terms are added. How can this be? Let’s
see.

Suppose all an are positive. An alternating series is any series of the form

∞∑

n=1

(−1)n+1an = a1−a2 +a3−· · · or
∞∑

n=1

(−1)nan = −a1 +a2−a3 + · · · (1)

Leibnitz found conditions under which alternating series converge. We sketch a
proof at the end of this section.

Alternating Series Test An alternating series (1) converges if

1. for all n, an ≥ an+1, and

2. as n → ∞, an → 0

As we have seen, convergence is not determined by any finite collection of
an, so the first condition of the Alternating Series Test need hold only for all
n ≥ M for some M .

Example 1 Does the series

∞∑

n=1

(−1)n+1

√
n + 1√
n + 2

converge or diverge? This is certainly an alternating series. To check that
the terms are eventually decreasing, compute the derivative of f(x) = (

√
x +

1)/(
√

x + 2), obtaining

f ′(x) =
2 −√

x

2
√

x(x + 2)3/2

negative for x > 4. Thus the terms of the alternating series are decreasing for
n > 4. However, condition 2 of the Alternating Series Theorem is not satisfied,
because

lim
n→∞

√
n + 1√
n + 2

= 1
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Alone, not satisfying the hypotheses of the Alternating Series Test is not suf-
ficient reason to conclude that the series does not converge. The theorem says
that if its conditions are satisfied, then the series converges. It DOES NOT
say that if the conditions are not satisfied, then the series does not converge.
However, for this example we can conclude that the series diverges, because the
way in which the second condition is not satisfied is a violation of the nth term
test.

For another example, the alternating harmonic series
∑

∞

n=1
(−1)n+1/n con-

verges, because it satisfies the conditions of the Alternating Series Test. That
the harmonic series diverges, but the alternating harmonic series converges,
motivates these definitions.

The series
∑

∞

n=1
an converges absolutely if the series

∑
∞

n=1
|an| converges.

A series converges conditionally if it converges but does not converge absolutely.

Example Does the series
∑

∞

n=1
(−1)n/

√
n + 1 converge absolutely, converge

conditionally, or diverge?
Certainly, this is an alternating series, with 1/

√
n + 1 a decreasing function

of n satisfying limn→∞ 1/
√

n + 1 → 0. So we know the series converges by
the Alternating Series Test. Does it converge absolutely? The absolute values
of the terms are 1/

√
n + 1, looking much like 1/

√
n. This suggests the Limit

Comparison Test:

lim
n→∞

√
n + 1√

n
= 1

Now
∑

∞

n=1
1/

√
n is a p-series with p = 1/2, and consequently diverges. The se-

ries of this example converges but does no converge absolutely, so must converge
conditionally.

One relation between conditional and absolute convergence is more-or-less
what we expect.

Absolute Convergence Theorem If
∑

∞

n=1
an converges absolutely, then the

series converges.

At the end of this section we sketch a proof of the Absolute Convergence Theo-
rem. On the other hand, the alternating harmonic series shows that a converging
series need not converge absolutely.

Absolutely convergent series have a property, of great use to us, that appears
to be just an extension of the commutative law of addition to infinite series. We
shall see the result is much more subtle than this. For example, this theorem
was proved by Riemann in 1867.

Rearrangement Theorem If
∑

∞

n=1
an converges absolutely, and

∑
∞

n=1
bn is

ANY rearrangement of
∑

∞

n=1
an – that is, there is a 1 − 1 correspondence

between {ai} and {bj} – then
∑

∞

n=1
bn =

∑
∞

n=1
an.

For finite series, indeed this is just the commutative law of addition. But in
general, this law does not extend to infinite series. In fact, every infinite series
that converges conditionally but not absolutely can be rearranged to converge
(conditionally) to any number at all.
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The alternating harmonic series illustrates this point. The terms with odd
denominators all are positive, and

∞∑

i=1

1

2n− 1

diverges to +∞. Fig. 1 shows this by a modification of the Integral Test. The
shaded rectangles have areas that sum to +∞, because they cover the area
under the graph of 1/x, which we know diverges to +∞. Now the sum of the
areas of these rectangles is

2 · 1 + 2 · 1

3
+ 2 · 1

5
+ 2 · 1

7
+ · · ·

If
∑

∞

n=1
1/(2n−1) converged, then so would 2

∑
∞

n=1
1/(2n−1) =

∑
∞

n=1
2/(2n−

1), but Fig. 1 shows this is not so.

x

y

y = 1/x

1 2 3 4 5 6 7

Figure 1: The sum of the odd terms of the alternating harmonic series diverges
to ∞.

A similar argument shows that

∞∑

n=1

− 1

2n

diverges to −∞.
Now pick any number at all, say π/2. Add the positive terms of the al-

ternating harmonic series until the sum first exceeds π/2. Because the series
of positive terms diverges, we know the sum of positive terms eventually will
exceed π/2.

1 +
1

3
+

1

5
+

1

7
≈ 1.67619 >

π

2

Now add the negative terms until the sum drops below π/2.

1 +
1

3
+

1

5
+

1

7
− 1

2
≈ 1.17619 <

π

2

Now add the remaining positive terms until the sum exceeds π/2.

1 +
1

3
+

1

5
+

1

7
− 1

2
+

1

9
+

1

11
+

1

13
+

1

15
+

1

17
≈ 1.58062 >

π

2
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Now add the remaining negative terms until the sum drops below π/2.

1 +
1

3
+

1

5
+

1

7
− 1

2
+

1

9
+

1

11
+

1

13
+

1

15
+

1

17
− 1

4
≈ 1.33062 <

π

2

Continue in this fashion. At each step, we have used finite collections of positive
and of negative terms. Removing the first few (trillion) terms of a diverging
series still leaves a diverging series, so always enough positive and negative terms
remain to continue the sum to exceed π/2 and to drop below π/2. Moreover,
as n → ∞, both 1/(2n − 1) and −1/(2n) go to 0, so the amount of overshoot
and of undershoot of π/2 goes to 0. That is, this recipe gives a rearrangement
of the alternating harmonic series that converges to π/2.

If the commutative law of addition extended to allow arbitrary rearrange-
ments of infinite series, all rearrangements of every convergent series would have
the same sum.

So now maybe it seems strange that all rearrangements of an absolutely
convergent series have the same sum, but this is the content of Riemann’s Re-
arrangement Theorem. The proof is a bit involved, so we omit it here.

Sketch of a proof of the Alternating Series Test

Recall Sn denotes the sum of the first n terms of the series. Because this is
a finite sum, terms can be associated in any way

S2m = (a1 − a2) + (a3 − a4) + (a5 − a6) + · · · + (a2m−1 − a2m) (2)

= a1 − (a2 − a3) − (a4 − a5) − · · · − (a2m−2 − a2m−1) − a2m (3)

Recalling all the ai are positive, it follows from condition 1 of the Alternating
Series Test that all the bracketed terms of Eq. (2) are nonnegative, so the
sequence {S2m} is nondecreasing. Similarly, each bracketed term (a2i − a2i+1)
in Eq. (3) is positive, so all S2m are bounded above by a1. That is, the even
partial sums constitute a nondecreasing sequence bounded above and so by the
Monotone Convergence Theorem,

lim
m→∞

S2m = L (4)

Next, because S2m+1 = S2m + a2m+1 and a2m+1 → 0 as m → 0, so

lim
m→∞

S2m+1 = lim
m→∞

(S2m + a2m+1) = lim
m→∞

S2m = L (5)

Combining Eqs. (4) and (5), we see limn → ∞Sn = L. That is,
∑

∞

n=1
an

converges.

Sketch of a proof of the Absolute Convergence Theorem

Suppose
∑

∞

n=0
an converges absolutely. We show that this series converges.

First, observe that for all n, −|an| ≤ an ≤ |an|, and so

0 ≤ an + |an| ≤ 2|an| (6)
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Because
∑

∞

n=0
an converges absolutely, 2

∑
∞

n=0
|an| =

∑
∞

n=0
2|an| converges.

Then
∑

∞

n=0
(an + |an|) converges by the Comparison Theorem applied to Eq.

(6). Because the two series on the left below converge, so does their difference:

∞∑

n=0

(an + |an|) −
∞∑

n=0

|an| =
∞∑

n=0

(an + |an| − |an|) =
∞∑

n=0

an

That is, the series
∑

∞

n=0
an converges.
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