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Abstract. Let ξ be a real random variable with mean zero and variance one and A =
{a1, . . . , an} be a multi-set in Rd. The random sum

SA := a1ξ1 + · · ·+ anξn

where ξi are iid copies of ξ is of fundamental importance in probability and its applications.
We discuss the small ball problem, the aim of which is to estimate the maximum prob-

ability that SA belongs to a ball with given small radius, following the discovery made by
Littlewood-Offord and Erdős almost 70 years ago. We will mainly focus on recent devel-
opments that characterize the structure of those sets A where the small ball probability is
relatively large. Applications of these results include full solutions or significant progresses
of many open problems in different areas.
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1. Littlewood-Offord and Erdős estimates

Let ξ be a real random variable with mean zero and variance one and A = {a1, . . . , an} be
a multi-set in R (here n→∞). The random sum

SA := a1ξ1 + · · ·+ anξn

where ξi are iid copies of ξ plays an essential role in probability. The Central Limit Theorem,
arguably the most important theorem in the field, asserts that if the ai’s are the same, then

SA√∑n
i=1 |ai|2

−→ N(0, 1).

Furthermore, Berry-Esséen theorem shows that if ξ has bounded third moment, then the
rate of convergence is O(n−1/2). This, in particular, implies that for any small open interval
I

P(SA ∈ I) = O(|I|/n1/2).

The assumption that the ai’s are the same are, of course, not essential. Typically, it suffices
to assume that none of the ai’s is dominating; see [13] for more discussion.

The probability P(SA ∈ I) (and its high dimensional generalization) will be referred to as
small ball probability throughout the paper. In 1943, Littlewood and Offord, in connection
with their studies of random polynomials [33], raised the problem of estimating the small
probability for arbitrary coefficients ai. Notice that when we do not assume anything about
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the ai’s, even the Central Limit Theorem may fail, so Berry-Esséen type bounds no longer
apply. Quite remarkably, Littlewood and Offord managed to show

Theorem 1.1. If ξ is Bernoulli (taking values ±1 with probability 1/2) and ai have absolute
value at least 1, then for any open interval I of length 2,

P(SA ∈ I) = O(
log n

n1/2
).

Shortly after Littlewood-Offord result, Erdős [10] gave a beautiful combinatorial proof of
the following refinement, which turned out to be sharp.

Theorem 1.2. Under the assumption of Theorem 1.1

P(SA ∈ I) ≤

(
n
bn/2c

)
2n

= O(
1

n1/2
). (1)

Proof. (of Theorem 1.2) Erdős’ proof made an ingenious use of Sperner’s lemma, which
asserts that if F is an anti-chain on a set of n elements, then F has at most

(
n
bn/2c

)
elements

(an anti-chain is a family of subsets none of which contains the other). Let x be a fixed
number. By reversing the sign of ai if necessary, one can assume that ai ≥ 1 for all i. Now
let F be the set of all subsets X of [n] := {1, 2 . . . , n} such that

∑
i∈X

ai −
∑
j∈X̄

aj ∈ (x− 1, x+ 1).

One can easily verify that F is an anti-chain. Hence, by Sperner’s lemma,

|F| ≤

(
n
n/2

)
2n

,

completing the proof. �

The problem was also studied in probability by Kolmogorov, Rogozin, and others; we refer
the reader to [30, 31] and [43]. Erdős’ result is popular in the combinatorics community
and has became the starting point for a whole theory that we now start to discuss.

Notation. We use the asymptotic notation such as O, o,Θ under the assumption that
n → ∞; Oα(1) means the constant in big O depends on α. All logarithms have natural
base, if not specified otherwise.

2. High dimensional extenstions

Let ξ be a real random variable and A = {a1, . . . , an} a multi-set in Rd, where d is fixed.
For a given radius R > 0, we define
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ρd,R,ξ(A) := sup
x∈Rd

P
(
a1ξ1 + · · ·+ anξn ∈ B(x,R)

)
,

where ξi are iid copies of ξ, and B(x,R) denotes the open disk of radius R centered at x in
Rd. Furthermore, let

p(d,R, ξ, n) := sup
A
ρd,R,ξ(A)

where A runs over all multi-sets of size n in Rd consisting of vectors with norm at least 1.
Erdős’ theorem can be reformulated as

p(1, 1,Ber ,n) =

(
n

bn/2c
)

2 n
= O(n−1/2 ).

In the case d = 1, Erdős obtained the optimal bound for any fixed R. In what follows we
define s := bRc+ 1.

Theorem 2.1. Let S(n,m) denote the sum of the largest m binomial coefficients
(
n
i

)
, 0 ≤

i ≤ n. Then

p(1, R,Ber ,n) = 2−nS (n, s). (2)

The case d ≥ 2 is much more complicated and has been studied by many researchers. In
particular, Katona [24] and Kleitman [25] showed that p(2, 1,Ber ,n) = 2−n

(
n

bn/2c
)
. This

result was extended by Kleitman [26] to arbitrary dimension d,

p(d, 1,Ber ,n) =

(
n

bn/2c
)

2 n
. (3)

The estimate for general radiusR is much harder. In [27], Kleitman showed that 2np(2, R,Ber ,n)
is bounded from above by the sum of the 2bR/

√
2c largest binomial coefficients in n. For

general d, Griggs [19] proved that

p(d,R,Ber ,n) ≤ 2 2d−1−2 dR
√

de

(
n

bn/2c
)

2 n
.

This result was then improved by Sali [48, 49] to

p(d,R,Ber ,n) ≤ 2 ddR
√

de

(
n

bn/2c
)

2 n
.

A major improvement is due to Frankl and Füredi [14], who proved
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Theorem 2.2. For any fixed d and R

p(d,R,Ber ,n) = (1 + o(1 ))2−nS (n, s). (4)

This result is asymptotically sharp. In view of (2) and (3), it is natural to ask if the exact
estimate

p(d,R,Ber ,n) = 2−nS (n, s), (5)

holds for all fixed dimension d. However, this has turned out to be false. The authors of
[26, 14] observed that (5) fails if s ≥ 2 and

R >
√

(s− 1)2 + 1. (6)

Example 2.3. Take v1 = · · · = vn−1 = e1 and vn = e2, where e1, e2 are two orthogonal
unit vectors. For this system, let B be the ball of radius R centered at v = (v1 + · · ·+ vn)/2.
Assume that n has the same parity with s, then by definition we have

P(SV ∈ B(v,R)) = 2
∑

(n−s)/2≤i≤(n+s)/2

(
n− 1

i

)
/2n > 2−nS(n, s).

Frankl and Füredi raised the following problem.

Conjecture 2.4. [14, Conjecture 5.2] Let R, d be fixed. If s− 1 ≤ R <
√

(s− 1)2 + 1 and
n is sufficiently large, then

p(d,R,Ber ,n) = 2−nS (n, s).

The conjecture has been confirmed for s = 1 by Kleitman (see (3)) and for s = 2, 3 by
Frankl and Füredi [14] (see [14, Theorem 1.2]). Furthermore, Frankl and Füredi showed
that (5) holds under a stronger assumption that s − 1 ≤ R ≤ (s − 1) + 1

10s2
. A few years

ago, Tao and the second author proved Conjecture 2.4 for s ≥ 3. This, combined with the
above mentioned earlier results, established the conjecture in full generality [66].

Theorem 2.5. Let R, d be fixed. Then there exists a positive number n0 = n0(R, d) such

that the following holds for all n ≥ n0 and s− 1 ≤ R <
√

(s− 1)2 + 1

p(d,R,Ber ,n) = 2−nS (n, s).

We will present a short proof of Theorems 2.2 and 2.5 in Section 17.

3. Refinements by restrictions on A

A totally different direction of research started with the observation that the upper bound
in (1) improves significantly if we make some extra assumption on the additive structure of
A. In this section, it is more natural to present the results in discrete form. In the discrete
setting, one considers the probability that SA takes a single value (for instance, P(SA = 0)).



6 HOI H. NGUYEN AND VAN H. VU

Erdős’s result in the first section implies

Theorem 3.1. Let ai be non-zero real numbers, then

sup
x∈R

P(SA = x) ≤

(
n
bn/2c

)
2n

= O(n−1/2).

Erdős and Moser [11] showed that under the condition that the ai are different, the bound
improved significantly.

Theorem 3.2. Let ai be distinct real numbers, then

sup
x∈R

P(SA = x) = O(n−3/2 log n).

They conjectured that the log n term is not necessary. Sárkőzy and Szemerédi’s [50] con-
firmed this conjecture

Theorem 3.3. Let ai be distinct real numbers, then

ρA := sup
x∈R

P(SA = x) = O(n−3/2).

In [54], Stanley found a different (algebraic) proof for a more precise result, using the
hard-Lepschetz theorem from algebraic geometry.

Theorem 3.4 (Stanley’s theorem). Let n be odd and A0 :=
{
− n−1

2 , . . . , n−1
2

}
. Let A be

any set of n distinct real numbers, then

ρ(A) := sup
x∈R

P(SA = x) ≤ sup
x∈R

P(SA0 = x).

A similar result holds for the case n is even, see [54]. Later, Proctor [41] found a simpler
proof for Stanley’s theorem. His proof is also algebraic, using tools from Lie algebra. It is
interesting to see whether algebraic approaches can be used to obtain continuous results.
(For the continuous version of Theorem 3.3, see Section 6.)

A hierarchy of bounds. We have seen that the Erdős’ bound of O(n−1/2) is sharp, if we

allow the ai to be the same. If we forbid this, then the next bound is O(n−3/2), which can
be attained if the ai form an arithmetic progression. Naturally, one would ask what happen
if we forbid the ai to form an arithmetic progression and so forth. Halász’ result, discussed
in Section 6 , gives a satisfying answer to this question.

Remark 3.5. To conclude this section, let us mention that while discrete theorems such
as Theorem 3.4 are formalized for real numbers, it holds for any infinite abelian groups,
thanks to a general trick called Freiman isomorphism (see [67] and also Appendix A). In
particular, this trick allows us to assume that the ai’s are integers in the proofs. Freiman
isomorphism, however, is not always applicable in continuous settings.
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4. Littlewood-Offord type bounds for higher degree polynomials

For simplicity, we present all results in this section in discrete form. The extension to
continuous setting is rather straightforward, and thus omitted.

One can view the sum S = a1ξ1 + · · · + anξn as a linear function of the random variables
ξ1, . . . , ξn. It is natural to study general polynomials of higher degree k. Let us first consider
the case k = 2. Following [8], we refer to it as the Quadratic Littlewood-Offord problem.

Let ξi be iid Bernoulli random variables, let A = (aij) be an n×n symmetric matrix of real
entries. We define the quadratic concentration probability of A by

ρq(A) := sup
a∈R

P(
∑
i,j

aijξiξj = a).

Similar to the problem considered by Erdős and Littlewood-Offord, we may ask what upper
bound one can prove for ρq(A) provided that the entries aij are non-zero? This question
was first addressed by Costello, Tao and the second author in [8], motivated by their study
of Weiss’ problem concerning the singularity of a random symmetric matrix (see Section 5).

Theorem 4.1. Suppose that aij 6= 0 for all 1 ≤ i, j ≤ n. Then

ρq(A) = O(n−1/8).

The key to the proof of Theorem 4.1 is a decoupling lemma, which can be proved using
Cauchy-Schwarz inequality. The reader may consider this lemma an exercise, or consult [8]
for details.

Lemma 4.2 (Decoupling lemma). Let Y and Z be random variables and E = E(Y,Z) be
an event depending on Y and Z. Then

P(E(Y,Z)) ≤ P(E(Y, Z) ∧ E(Y ′, Z) ∧ E(Y,Z ′) ∧ E(Y ′, Z ′))1/4

where Y ′ and Z ′ are independent copies of Y and Z, respectively. Here we use A ∧ B to
denote the event that A and B both hold.

Consider the quadratic form Q(x) :=
∑

ij aijξiξj , and fix a non-trivial partition {1, . . . , n} =
U1 ∪ U2 and a non-empty subset S of U1. For instance one can take U1 to be the first half
of the indices and U2 to be the second half. Define Y := (ξi)i∈U1 and Z := (ξi)i∈U2 . We
can write Q(x) = Q(Y,Z). Let ξ′i be an independent copy of ξi and set Y ′ := (ξ′i)i∈U1 and
Z ′ := (ξ′i)i∈U2). By Lemma 4.2, for any number x

P(Q(Y, Z) = x) ≤ P(Q(Y,Z) = Q(Y, Z ′) = Q(Y ′, Z) = Q(Y ′, Z ′) = x)1/4.
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On the other hand, if Q(Y,Z) = Q(Y, Z ′) = Q(Y ′, Z) = Q(Y ′, Z ′) = x then regardless the
value of x

R := Q(Y,Z)−Q(Y ′, Z)−Q(Y, Z ′) +Q(Y ′, Z ′) = 0.

Furthermore, we can write R as

R =
∑
i∈U1

∑
j∈U2

aij(ξi − ξ′i)(ξj − ξ′j) =
∑
i∈U1

Riwi,

where wi is the random variable wi := ξi − ξ′i, and Ri is the random variable
∑

j∈U2
aijwj .

We now can conclude the proof by applying Theorem 3.1 twice. First, combining this
theorem with a combinatorial argument, one can show that (with high probability), many
Ri are non-zero. Next, one can condition on the non-zero Ri and apply Theorem 3.1 for
the linear form

∑
i∈U1

Riwi to obtain a bound on P(R = 0).

The upper bound n−1/8 in Theorem 4.1 can be easily improved to n−1/4. The optimal
bound was obtained by Costello [7] using, among others, the inverse theorems from Section
7.

Theorem 4.3 (Quadratic Littlewood-Offord inequality). Suppose that aij 6= 0, 1 ≤ i, j ≤ n.
Then

ρq(A) ≤ n−1/2+o(1).

The exponent 1/2 + o(1) is best possible (up to the o(1) term) as demonstrated by the
quadratic form

∑
i,j ξiξj = (

∑n
i=1 ξi)

2. Both Theorems 4.1 and 4.3 hold in a general setting
where the ξi are not necessary Bernoulli and only a fraction of the aij ’s are non-zero.

One can extend the argument above to give bounds of the form n−ck for a general polynomial
of degree k. However, due to the repeated use of the decoupling lemma, ck decreases very
fast with k.

Theorem 4.4. Leet f be a multilinear polynomial of real coefficients in n variables ξ1, . . . , ξn
with m× nk−1 monomials of maximum degree k. If ξi are iid Bernoulli random variables,
then for any value x

P(f = x) = O
(
m
− 1

2(k
2+k)/2

)
.

By a more refined analysis, Razborov and Viola [42] recently obtained a better exponent of
order roughly 1

2k
(see Section 16). On the other hand, it might be the case that the bound

n−1/2+o(1) holds for all degrees k ≥ 2, under some reasonable assumption on the coefficients
of the polynomial.

Quadratic (and higher degree) Littlewood-Offord bounds play important roles in the study
of random symmetric matrices and Boolean circuits. We will discuss these applications in
Sections 5 and 16, respectively.
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5. Application: Singularity of random Bernoulli matrices

Let Mn be a random matrix of size n whose entries are iid Bernoulli random variables.
A notorious open problem in probabilistic combinatorics is to estimate pn, the probability
that Mn is singular (see [23, 57] for more details).

Conjecture 5.1. pn = (1/2 + o(1))n.

To give the reader a feeling about how the Littlewood-Offord problem can be useful in
estimating pn, let us consider the following process. We expose the rows of Mn one by
one from the top. Assume that the first n − 1 rows are linearly independent and form a
hyperplane with normal vector v = (a1, . . . , an). Conditioned on these rows, the probability
that Mn is singular is

P(X · v = 0) = P(a1ξ1 + · · ·+ anξn = 0),

where X = (ξ1, . . . , ξn) is the last row.

As an illustration, let us give a short proof for the classical bound pn = o(1) (first showed
by Komlós in [28] using a different argument).

Theorem 5.2. pn = o(1).

We with a simple observation [23].

Fact 5.3. Let H be a subspace of dimension 1 ≤ d ≤ n. Then H contains at most 2d

Bernoulli vectors.

To see this, notice that in a subspace of dimension d, there is a set of d coordinates which
determine the others. This fact implies

pn ≤
n−1∑
i=1

P(xi+1 ∈ Hi) ≤
n−1∑
i=1

2i−n ≤ 1− 2

2n
,

where Hi is the subspace generated by the the first i rows x1, . . . ,xi of Mn.

This bound is quite the opposite of what we want to prove. However, we notice that the
loss comes at the end. Thus, to obtain the desired upper bound o(1), it suffices to show
that the sum of the last (say) log log n terms is at most (say) 1

log1/3 n
. To do this, we will

exploit the fact that the Hi are spanned by random vectors. The following lemma (which
is a more effective version of the above fact) implies the theorem via the union bound.

Lemma 5.4. Let H be the subspace spanned by d random vectors, where d ≥ n− log log n.
Then with probability at least 1− 1

n , H contains at most 2n

log1/3 n
Bernoulli vectors.

We say that a set S of d vectors is k-universal if for any set of k different indices 1 ≤
i1, . . . , ik ≤ n and any set of signs ε1, . . . , εn (εi = ±1), there is a vector V in S such that
the sign of the ij-th coordinate of V matches εj , for all 1 ≤ j ≤ k.
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Fact 5.5. If d ≥ n/2, then with probability at least 1 − 1
n , a set of d random vectors is

k-universal, for k = log n/10.

To prove this, notice that the failure probability is, by the union bound, at most

(
n

k

)
(1− 1

2k
)d ≤ nk(1− 1

2k
)n/2 ≤ n−1.

If S is k-universal, then any non-zero vector v in the orthogonal complement of the subspace
spanned by S should have more than k non-zero vectors (otherwise, there would be a vector
in S having positive inner product with v). If we fix such v, and let x be a random Bernoulli
vector, then by Theorem 3.1

P(x ∈ span(S)) ≤ P(x · v = 0) = O(
1

k1/2
) = o(

1

log1/3 n
),

proving Lemma 5.4 and Theorem 5.2.

The symmetric version of Theorem 5.2 is much harder and has been open for quite sometime
(the problem was raised by Weiss the 1980s). Let psymn be the singular probability of a
random symmetric matrix whose upper diagonal entries are iid Bernoulli variables. Weiss
conjectured that psymn = o(1). This was proved by Costello, Tao, and the second author
[8]. Somewhat interestingly, this proof made use of the argument of Komlós in [28] which
he applied for non-symmetric matrices. Instead of exposing the matrix row by row, one
needs to expose the principal minors one by one, starting with the top left entry. At step
i, one has a symmetric matrix Mi of size i and the next matrix Mi+1 is obtained by adding
a row and its transpose. Following Komlós, one defines Xi as the co-rank of the matrix at
step i and shows that the sequence Xi behaves as a bias random walk with a positive drift.
Carrying out the calculation carefully, one obtains that Xn = 0 with high probability.

The key technical step of this argument is to show that if Mi has full rank than so does
Mi+1, with very high probability. Here the quadratic Littlewood-Offord bound is essential.
Notice that if we condition on Mi, then det(Mi+1) is a quadratic form of the entries in the
additional ((i+ 1)-th) row, with coefficients being the co-factors of Mi. By looking at these
co-factors closely and using Theorem 4.1 (to be more precise, a variant of it where only a
fraction of coefficients are required to be non-zero), one can establish Weiss’ conjecture.

Theorem 5.6.
psymn = o(1).

Getting strong quantitative bounds for pn and psymn is more challenging, and we will continue
this topic in Sections 13 and 14, after the introduction of inverse theorems.

6. Halász’ results

In [21] (see also in [67]), Halász proved the following very general theorem.
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Theorem 6.1. Suppose that there exists a constant δ > 0 such that the following holds

• (General position) for any unit vector e in Rd one can select at least δn vectors ak
with |〈ak, e〉| ≥ 1;

• (Separation) among the nd vectors b of the form ±ak1 ± · · · ± akd one can select at

least δnd with pairwise distance at least 1.

Then

ρd,1,Ber (A) = Oδ,d(n
−3d/2).

Halász’ method is Fourier analytic, which uses the following powerful Esséen-type concen-
tration inequality as the starting point (see [21],[12]).

Lemma 6.2. There exists an absolute positive constant C = C(d) such that for any random
variable X and any unit ball B ⊂ Rd

P(X ∈ B) ≤ C
∫
‖t‖2≤1

|E(exp(i〈t,X〉))| dt. (7)

Proof. (of Lemma 6.2) With the function k(t) to be defined later, let K(x) be its Fourier’s
transform

K(x) =

∫
Rd

exp(i〈x, t〉)k(t)dt.

Let H(x) be the distribution function and h(x) be the characteristic function of X respec-
tively. By Parseval’s indentity we have

∫
Rd

K(x)dH(x) =

∫
Rd

k(t)h(t)dt. (8)

If we choose k(t) so that

{
k(t) = 0 for ‖t‖2 ≥ 1,

|k(t)| ≤ c1 for ‖t‖2 ≤ 1,

then the RHS of (8) is bounded by that of (7) modulo a constant factor.

Also, if
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{
K(x) ≥ 1, ‖x‖2 ≤ c2, for some constant c2,

K(x) ≥ 0 for ‖x‖2 ≥ c2,

then the LHS of (8) is at least
∫
‖x‖2≤c2 dH(x).

Similarly, by translating K(x) (i.e. by multiplying k(x) with a phase of exp(i〈t0, x〉), we
obtain the same upper bound for

∫
‖x−t0‖2≤c2 dH(x). Thus, by covering the unit ball B with

balls of radius c2, we arrive at (7) for some constant C depending on d.

To construct k(t) with the properties above, one may take it to have the convolution form

k(x) :=

∫
x∈Rd

k1(x)k1(t− x)dx,

where k1(x) = 1 if ‖x‖2 ≤ 1/2 and k1(x) = 0 otherwise.

�

To illustrate Halász’ method, let us give a quick proof of Erdős bound O(n−1/2) for the
small ball probability ρ1,1,Ber (A) with A being a multi-set of n real numbers of absolute
value at least 1. In view of Lemma 6.2, it suffices to show that

∫
|t|≤1
|E(exp(it

n∑
j=1

ajξj)|) dt = O(1/
√
n).

By the independence of the ξj , we have

|E(exp(it
n∑
j=1

ajξj))| =
n∏
j=1

|E(exp(itajξj)| = |
n∏
j=1

cos(taj)|.

By Hölder’s inequality∫
|t|≤1
|E(exp(it

n∑
j=1

ajξj))| dt ≤
n∏
j=1

(

∫
|t|≤1
| cos(taj)|n dt)1/n.

But since each aj has magnitude at least 1, it is easy to check that
∫
|t|≤1 | cos(taj)|n dt =

O(1/
√
n), and the claim follows.

Using Halász technique, it is possible to deduce

Corollary 6.3. [67, Corollary 7.16] Let A be a multi-set in R. Let l be a fixed integer and
Rl be the number of solutions of the equation ai1 + · · ·+ ail = aj1 + · · ·+ ajl. Then
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ρA := sup
x

P(SA = x) = O(n−2l− 1
2Rl).

This result provides the hierarchy of bounds mentioned in the previous section, given that
we forbid more and more additive structures on A. Let us consider the first few steps of
the hierarchy.

• If the ai’s are distinct, then we can set l = 1 and R1 = n (the only solutions are the

trivial ones ai = ai). Thus, we obtain Sárközy-Szemerédi’s bound O(n−3/2).

• If we forbid the ai’s to satisfy equations ai + aj = al + ak, for any {i, j} 6= {k, l} (in
particular this prohibits A to be an arithmetic progression), then one can fix l = 2

and R2 = n2 and obtain ρA = O(n−5/2).

• If we continue to forbid equations of the form ah+ai+aj = ak +al+am, {h, i, j} 6=
{k, l,m}, then one obtains ρA = O(n−7/2) and so on.

Halász’ method is very powerful and has a strong influence on the recent developments
discussed in the coming sections.

7. Inverse theorems: Discrete case

A few years ago, Tao and the second author [60] brought a new view to the small ball
problem. Instead of working out a hierarchy of bounds by imposing new assumptions as
done in Corollary 6.3, they tried to find the underlying reason as to why the small ball
probability is large (say, polynomial in n).

It is easier and more natural to work with the discrete problem first. Let A be a multi-set
of integers and ξ be the Bernoulli random variable.

Question 7.1 (Inverse problem, [60]). Let n→∞. Assume that for some constant C

ρA = sup
x

P(SA = x) ≥ n−C .

What can we say about the elements a1, . . . , an of A ?

Denote by M the sum of all elements of A and rewrite
∑

i aiξi as M − 2
∑

i;ξi=−1 ai. As A

has 2n subsets, the bound ρA ≥ n−C implies that at least 2n/nC among the subset sums
are exactly (M −x)/2. This overwhelming collision suggests that A must have some strong
additive structure. Tao and the second author proposed

Inverse Principle:

A set with large small ball probability must have strong additive structure. (9)
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The issue is, of course, to quantify the statement. Before attacking this question, let us
recall the famous Freiman’s inverse theorem from Additive Combinatorics. As the readers
will see, this theorem strongly motivates our study.

In the 1970s, Freiman considered the collection of pairwise sums A+A := {a+a′|a, a′ ∈ A}
[15]. Normally, one expects this collection to have Θ(|A|2) elements. Freiman proved a deep
and powerful theorem showing that if A+A has only O(|A|) elements (i.e, a huge number
of collision occurs) then A must look like an arithmetic progression. (Notice that if A is an
arithmetic progression then |A+A| ≈ 2|A|.)

To make Freiman’s statement more precise, we need the definition of generalized arithmetic
progressions (GAPs).

Definition 7.2. A set Q is a GAP of rank r if it can be expressed in the form

Q = {g0 +m1g1 + · · ·+mrgr|Mi ≤ mi ≤M ′i ,mi ∈ Z for all 1 ≤ i ≤ r}

for some g0, . . . , gr,M1, . . . ,Mr,M
′
1, . . . ,M

′
r.

It is convenient to think of Q as the image of an integer box B := {(m1, . . . ,mr) ∈ Zr|Mi ≤
mi ≤M ′i} under the linear map

Φ : (m1, . . . ,mr) 7→ g0 +m1g1 + · · ·+mrgr.

The numbers gi are the generators of P , the numbers M ′i ,Mi are the dimensions of P ,
and Vol(Q) := |B| is the volume of B. We say that Q is proper if this map is one to one,
or equivalently if |Q| = Vol(Q). For non-proper GAPs, we of course have |Q| < Vol(Q). If
−Mi = M ′i for all i ≥ 1 and g0 = 0, we say that Q is symmetric.

If Q is symmetric and t > 0, the dilate tQ is the set

{m1g1 + · · ·+mrgr| − tM ′i ≤ mi ≤ tM ′i for all 1 ≤ i ≤ r}.

It is easy to see that if Q is a proper map of rank r, then |Q + Q| ≤ 2r|Q|. This implies
that if A is a subset of density δ in a proper GAP Q of rank r, then as far as δ = Θ(1),

|A+A| ≤ |Q+Q| ≤ 2r|Q| ≤ 2r

δ
|A| = O(|A|).

Thus, dense subsets of a proper GAP of constant rank satisfies the assumption |A + A| =
O(|A|). Freiman’s remarkable inverse theorem showed that this example is the only one.

Theorem 7.3 (Freiman’s inverse theorem in Z). Let γ be a given positive number. Let X
be a set in Z such that |X +X| ≤ γ|X|. Then there exists a proper GAP of rank Oγ(1) and
cardinality Oγ(|X|) that contains X.

For further discussions, including a beautiful proof by Ruzsa, see [67, Chapter 5]; see also
[5] for recent and deep developments concerning non-cummutative settings (when A is a
subset of a non-abelian group).
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In our case, we want to find examples for A such that ρ(A) := supx P(SA = x) is large.
Again, dense subsets of a proper GAP come in as natural candidates.

Example 7.4. Let Q be a proper symmetric GAP of rank r and volume N . Let a1, . . . , an
be (not necessarily distinct) elements of Q. By the Central Limit Theorem, with probability

at least 2/3, the random sum SA =
∑n

i=1 aixi takes value in the dilate 10n1/2Q. Since
|tQ| ≤ trN , by the pigeon hole principle, we can conclude that there is a point x where

P(SA = x) = Ω(
1

nr/2N
).

Thus if |Q| = N = O(nC−r/2) for some constant C ≥ r/2, then

ρ(A) ≥ P(SA = x) = Ω(
1

nC
).

This example shows that if the elements of A are elements of a symmetric proper GAP with
a small rank and small cardinality, then ρ(A) is large. Inspired by Freiman’s theorem, Tao
and the second author [62, 60] showed that the converse is also true.

Theorem 7.5. For any constant C, ε there are constants r,B such that the following holds.
Let A be a multi-set of n real numbers such that ρ(A) ≥ n−C , then there is a GAP Q of
rank r and volume nB such that all but nε elements of A belong to Q.

The dependence of B on C, ε is not explicit in [60]. In [62], Tao and the second author
obtained an almost sharp dependence. The best dependence, which mirrors Example 7.4
was proved in a more recent paper [39] of the current authors. This proof is different from
those in earlier proofs and made a direct use of Freiman’s theorem (see Appendix A).

Theorem 7.6 (Optimal inverse Littlewood-Offord theorem, discrete case). [39] Let ε < 1
and C be positive constants. Assume that

ρ(A) ≥ n−C .

Then there exists a proper symmetric GAP Q of rank r = OC,ε(1) which contains all but at
most εn elements of A (counting multiplicities), where

|Q| = OC,ε(ρ(A)−1n−
r
2 ).

The existence of the exceptional set cannot be avoided completely. For more discussions, see
[60, 39]. There is also a trade-off between the size of the exceptional set and the bound on
|Q|. In many combinatorial applications (see, for instance, the next section), an exceptional
set of size εn does not create any trouble.

Let us also point out that the above inverse theorems hold in a very general setting where
the random variables ξi are not necessarily Bernoulli and independent (see [60, 62, 39, 38]
for more details).
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8. Application: From Inverse to Forward

One can use the ”inverse” Theorem 7.6 to quickly prove several ”forward” theorems pre-
sented in earlier sections. As an example, let us derive Theorems 3.1 and 3.3.

Proof. (of Theorem 3.1) Assume, for contradiction, that there is a set A of n non-zero

numbers such that ρ(A) ≥ c1n
−1/2 for some large constant c1 to be chosen. Set ε = .1, C =

1/2. By Theorem 7.6, there is a GAP Q of rank r and size O( 1
c1
nC−

r
2 ) that contains at

least .9n elements from A. However, by setting c1 to be sufficiently large (compared to the

constant in big O) and using the fact that C = 1/2 and r ≥ 1, we can force O( 1
c1
nC−

r
2 ) < 1.

Thus, Q has to be empty, a contradiction. �

Proof. (of Theorem 3.3) Similarly, assume that there is a set A of n distinct numbers such

that ρ(A) ≥ c1n
−3/2 for some large constant c1 to be chosen. Set ε = .1, C = 3/2. By

Theorem 7.6, there is a GAP Q of rank r and size O( 1
c1
nC−

r
2 ) that contains at least .9n

elements from A. This implies |Q| ≥ .9n. By setting c1 to be sufficiently large and using
the fact that C = 3/2 and r ≥ 1, we can guarantee that |Q| ≤ .8n, a contradiction. �

The readers are invited to work out the proof of Corollary 6.3.

Let us now consider another application of Theorem 7.6, which enables us to make very
precise counting arguments. Assume that we would like to count the number of multi-sets
A of integers with max |ai| ≤M = nO(1) such that ρ(A) ≥ n−C .

Fix d ≥ 1, fix 1 a GAP Q with rank r and volume |Q| ≤ cρ(A)−1n−
r
2 for some constant

c depending on C and ε. The dominating term in the calculation will be the number of
multi-sets which intersect with Q in subsets of size at least (1−ε)n. This number is bounded
by

∑
k≤εn
|Q|n−k(2M)k ≤

∑
k≤εn

(cρ(A)−1n−
r
2 )n−k(2M)k (10)

≤ (OC,ε(1))nnOε(1)nρ(A)−nn−
n
2 .

We thus obtain the following useful result.

Theorem 8.1 (Counting theorem: Discrete case). The number N of multi-sets A of integers
with max |ai| ≤ nC1 and ρ(A) ≥ n−C2 is bounded by

N =
(
OC1,C2,ε(1)

)n
nOε(1)n

(
ρ(A)−1n−1/2

)n
,

where ε is an arbitrary constant between 0 and 1.

1A more detailed version of Theorem 7.6 tells us that there are not too many ways to choose the generators
of Q. In particular, if |ai| ≤M = nO(1), the number of ways to fix these is negligible compared to the main
term.
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Due to their asymptotic nature, our inverse theorems do not directly imply Stanley’s precise
result (Theorem 3.4). However, by refining the proofs, one can actually get very close and
with some bonus, namely, additional strong rigidity information. For instance, in [37] the
first author showed that if the elements of A are distinct, then

P(SA = x) ≤ (

√
24

π
+ o(1))n−3/2,

where the constant on the RHS is obtained when A is the symmetric arithmetic progression
A0 from Theorem 3.4. It was showed that if ρ(A) is close to this value, then A needs to be
very close to a symmetric arithmetic progression.

Theorem 8.2. [37] There exists a positive constant ε0 such that for any 0 < ε ≤ ε0, there
exists a positive number ε′ = ε′(ε) such that ε′ → 0 as ε → 0 and the following holds: if A
is a set of n distinct integers and

ρ(A) ≥
(√24

π
− ε
)
n−

3
2 ,

then there exists an integer l which divides all a ∈ A and∑
a∈A

(a
l

)2
≤ (1 + ε′)

∑
a∈A0

a2.

We remark that a slightly weaker stability can be shown even when we have a much weaker
assumption ρ(A) ≥ εn3/2.

As the reader will see, in many applications in the following sections, we do not use the
inverse theorems directly, but rather their counting corollaries, such as Theorem 8.1. Such
counting results can be used to bound the probability of a bad event through the union
bound (they count the number of terms in the union). This method was first used in studies
of random matrices [57, 60, 45], but it is simpler to illustrate the idea by the following more
recent result of Conlon, Fox, and Sudakov [6].

A Hilbert cube is a set of the form x0 + Σ({x1, . . . , xd}) where Σ(X) = {
∑

x∈Y x|Y ⊂ X},
and 0 ≤ x0, 0 < x1 < · · · < xd are integers. Following the literature, we refer to the
index d as the dimension. One of the earliest results in Ramsey theory is a theorem of
Hilbert [22] stating that for any fixed r and d and n sufficiently large, any coloring of the
set [n] := {1, . . . , n} with r colors must contain a monochromatic Hilbert cube of dimension
d. Let h(d, r) be the smallest such n. The best known upper bound for this function is
[22, 20]

h(d, r) ≤ (2r)2d−1
.

The density version of [55] states that for any natural number d and δ > 0 there exists an n0

such that if n ≥ n0 then any subset of n of density δ contains a Hilbert cube of dimension
d. One can show that
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d ≥ c log logn

where c is a positive constant depending only on δ.

On the other hand, Hegyvári shows an upper bound of the form O(
√

log n log logn) by
considering a random subset of density δ. Using the discrete inverse theorems (Section 7),
Conlon, Fox, and Sudakov [6] removed the log logn term, obtaining O(

√
log n), which is

sharp up to the constant in big O, thanks to another result of Hegyvári.

Conlon et. al. started with the following corollary of Theorem 7.5.

Lemma 8.3. For every C > 0, 1 > ε > 0 there exist positive constants r and C ′ such that
if X is a multiset with d elements and |Σ(X)| ≤ dC , then there is a GAP Q of dimension

r and volume at most dC
′

such that all but at most d1−ε elements of X are contained in Q.

From this, one can easily prove the following counting lemma.

Lemma 8.4. For s ≤ log d, the number of d-sets X ⊂ [n] with Σ(X) ≤ 2sd2 is at most

nO(s)dO(d) .

Let A be a random set of [n] obtained by choosing each number with probability δ inde-
pendently. Let E be the event that A contains a Hilbert cube of dimension c

√
log n. We

aim to show that

P(E) = o(1), (11)

given c sufficiently large.

Trivially P(E) ≤ n
∑

X⊂[n] δ
|Σ(X)|, where the factor n corresponds to the number of ways

to choose x0. Let mt be the number of X such that |Σ(X)| = t. The RHS can be bounded
from above by n

∑
tmtδ

t.

If t is large, say t ≥ d3, we just crudely bound
∑

t≥d3 mt by nd (which is the total number

of ways to choose x1, . . . , xd). The contribution in probability in this case is at most n ×
nd × δd3 = o(1), if c is sufficiently large. In the case t < d3, we make use of the counting
lemma above to bound mt and a routine calculation finishes the job.

9. Inverse Theorems: Continuous case I.

In this section and the next, we consider sets with large small probability.

We say that a vector v ∈ Rd is δ-close to a set Q ⊂ Rd if there exists a vector q ∈ Q such
that ‖v − q‖2 ≤ δ. A set X is δ-close to a set Q if every element of X is δ-close to Q. The
continuous analogue of Example 7.4 is the following.

Example 9.1. Let Q be a proper symmetric GAP of rank r and volume N in Rd. Let
a1, . . . , an be (not necessarily distinct) vectors which are 1

100βn
−1/2-close to Q. Again by
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the Central Limit Theorem, with probability at least 2/3, SA is β-close to 10n1/2Q. Thus,

by the pigeon hole principle, there is a point x in 100n1/2Q such that

P(SA ∈ B(x, β)) ≥ |10n1/2Q|−1 ≥ Ω(n−r/2|Q|−1).

It follows that if Q has cardinality nC−
r
2 for some constant C ≥ r/2, then

ρd,β,Ber (A) = Ω(
1

nC
). (12)

Thus, in view of the Inverse Principle (9) and Theorem 7.6 , we would expect that if
ρd,β,Ber (A) is large, then most of the ai is close to a GAP with small volume. This statement
turned out to hold for very general random variable ξ (not only for Bernoulli). In practice,
we can consider any real random variable ξ, which satisfies the following condition: there
are positive constants C1, C2, C3 such that

P(C1 ≤ |ξ1 − ξ2| ≤ C2) ≥ C3, (13)

where ξ1, ξ2 are iid copies of ξ.

Theorem 9.2. [39] Let ξ be a real random variable satisfying (13). Let 0 < ε < 1; 0 < C be
constants and β > 0 be a parameter that may depend on n. Suppose that A = {a1, . . . , an} is
a (multi-)subset of Rd such that

∑n
i=1 ‖ai‖22 = 1 and that A has large small ball probability

ρ := ρd,β,ξ(A) ≥ n−C .
Then there exists a symmetric proper GAP Q of constant rank r ≥ d and of size |Q| =

O(ρ−1n(−r+d)/2) such that all but εn elements of A are are O(β logn
n1/2 )-close to Q.

The next result gives more information about Q, but with a weaker approximation.

Theorem 9.3. Under the assumption of the above theorem, the following holds. For any
number n′ between nε and n, there exists a proper symmetric GAP Q = {

∑r
i=1 xigi : |xi| ≤

Li} such that

• At least n− n′ elements of A are β-close to Q.

• Q has small rank, r = O(1), and small cardinality

|Q| ≤ max

(
O(

ρ−1

√
n′

), 1

)
.

• There is a non-zero integer p = O(
√
n′) such that all steps gi of Q have the form

gi = (gi1, . . . , gid), where gij = β
pij
p with pij ∈ Z and pij = O(β−1

√
n′).

Theorem 9.3 immediately implies the following result which can be seen as a continuous
analogue of Theorem 8.1. This result was first proved by Tao and the second author for
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the purpose of verifying the Circular Law in random matrix theory [58, 60] using a more
complicated argument.

Let n be a positive integer and β, ρ be positive numbers that may depend on n. Let Sn,β,ρ
be the collection of all multisets A = {a1, . . . , an}, ai ∈ R2 such that

∑n
i=1 ‖ai‖22 = 1 and

ρd,β,Ber (A) ≥ ρ.

Theorem 9.4 (Counting theorem, continuous case). [58, 60] Let 0 < ε ≤ 1/3 and C > 0
be constants. Then, for all sufficiently large n and β ≥ exp(−nε) and ρ ≥ n−C there is a
set S ⊂ (R2)n of size at most

ρ−nn−n( 1
2
−ε) + exp(o(n))

such that for any A = {a1, . . . , an} ∈ Sn,β,ρ there is some A′ = (a′1, . . . , a
′
n) ∈ S such that

‖ai − a′i‖2 ≤ β for all i.

Proof. (of Theorem 9.4) Set n′ := n1− 3ε
2 (which is� nε as ε ≤ 1/3). Let S ′ be the collection

of all subsets of size at least n − n′ of GAPs whose parameters satisfy the conclusion of
Theorem 9.3.

Since each GAP is determined by its generators and dimensions, the number of such GAPs

is bounded by ((β−1
√
n′)
√
n′)O(1)( ρ

−1
√
n′

)O(1) = exp(o(n)). (The term ( ρ
−1
√
n′

)O(1) bounds the

number of choices of the dimensions Mi.) Thus

|S ′| =
(
O((

ρ−1

√
n′

)n) + 1

)
exp(o(n)).

We approximate each of the exceptional elements by a lattice point in β ·(Z/d)d. Thus if we
let S ′′ to be the set of these approximated tuples then |S ′′| ≤

∑
i≤n′(O(β−1))i = exp(o(n))

(here we used the assumption β ≥ exp(−nε)).

Set S := S ′ × S ′′. It is easy to see that |S| ≤ O(n−1/2+ερ−1)n + exp(o(n)). Furthermore, if

ρ(A) ≥ n−O(1) then A is β-close to an element of S, concluding the proof. �

10. Inverse theorems: Continuous case II.

Another realization of the Inverse Principle (9) was given by Rudelson and Vershynin in
[45, 47] (see also Friedland and Sodin [16]). Let a1, . . . , an be real numbers. Rudelson and
Vershynin defined the essential least common denominator (LCD) of a = (a1, . . . , an) as
follows. Fix parameters α and γ, where γ ∈ (0, 1), and define

LCDα,γ(a) := inf
{
θ > 0 : dist(θa,Zn) < min(γ‖θa‖2, α)

}
.
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The requirement that the distance is smaller than γ‖θa‖2 forces us to consider only non-
trivial integer points as approximations of θa. One typically assume γ to be a small constant,
and α = c

√
n with a small constant c > 0. The inequality dist(θa,Zn) < α then yields that

most coordinates of θa are within a small distance from non-zero integers.

Theorem 10.1 (Diophatine approximation). [45, 46] Consider a sequence A = {a1, . . . , an}
of real numbers which satisfies

∑n
i=1 a

2
i ≥ 1. Let ξ be a random variable such that supa P(ξ ∈

B(a, 1)) ≤ 1 − b for some b > 0, and x1, . . . , xn be iid copies of ξ. Then, for every α > 0
and γ ∈ (0, 1), and for

β ≥ 1

LCDα,γ(a)
,

we have

ρ1,β,ξ(A) ≤ Cβ

γ
√
b

+ Ce−2bα2
.

One can use Theorem 10.1 to prove a special case of the forward result of Erdős and
Littlewood-Offord when most of the ai have the same order of magnitude (see [45, p. 6]).
2 Indeed, assume that K1 ≤ |ai| ≤ K2 for all i, where K2 = cK1 with c = O(1). Set

a′i := ai/
√∑

j a
2
j and a′ := (a′1, . . . , a

′
n). Choose γ = c1, α = c2

√
n with sufficiently small

positive constants c1, c2 (depending on c), the condition dist(θa′,Zn) < min(γ‖θa′‖2, α)
implies that |θa′i − ni| ≤ 1/3 with ni ∈ Z, ni 6= 0 for at least c3n indices i, where c3 is a

positive constant depending on c1, c2 . It then follows that for these indices, θ2a′i
2 ≥ 4n2

i /9.
Summing over i, we obtain θ2 = Ω(n) and so LCDα,γ(a′) = Ω(

√
n). Applying Theorem

10.1 to the vector a′ with β = 1/LCDα,γ(a′), we obtain the desired upper bound O(1/
√
n)

for the concentration probability.

Theorems 10.1 is not exactly inverse in the Freiman sense. On the other hand, it is conve-
nient to use and in most applications provides a sufficient amount of structural information
that allows one derive a counting theorem. An extra advantage here is that this theorem
enables one to consider sets A with small ball probability as small as (1− ε)n, rather than
just n−C as in Theorem 9.2.

The definition of the essential least common denominator above can be extended naturally
to higher dimensions. To this end, we define the product of such multi-vector a and a vector
θ ∈ Rd as

θ · a = (〈θ, a1〉, · · · , 〈θ, an〉) ∈ Rn.

Then we define, for α > 0 and γ ∈ (0, 1),

LCDα,γ(a) := inf
{
‖θ‖2 : θ ∈ Rd,dist(θ · a,ZN ) < min(γ‖θ · a‖2, α)

}
.

The following generalization of Theorem 10.1 gives a bound on the small ball probability
for the random sum

∑n
i=1 aixi in terms of the additive structure of the coefficient sequence

a.

2One can also handle this case by conditioning on the abnormal ai and use Berry-Esseen for the remaining
sum.
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Theorem 10.2 (Diophatine approximation, multi-dimensional case). [46, 16] Consider a
sequence A = {a1, . . . , an} of vectors ai ∈ Rd, which satisfies

n∑
i=1

〈ai, x〉2 ≥ ‖x‖22 for every x ∈ Rd. (14)

Let ξ be a random variable such that supa P(ξ ∈ B(a, 1)) ≤ 1 − b for some b > 0 and
x1, . . . , xn be iid copies of ξ.

Then, for every α > 0 and γ ∈ (0, 1), and for

β ≥
√
d

LCDα,γ(a)
,

we have

ρd,β
√
d,ξ(A) ≤

( Cβ
γ
√
b

)d
+ Cde−2bα2

.

We will sketch the proof of Theorem 10.1 in Appendix B.

11. Inverse quadratic Littlewood-Offord

In this section, we revisit the quadratic Littlewood-Offord bound in Section 4 and consider
its inverse. We first consider a few examples of A where (the quadratic small probability)
ρq(A) is large.

Example 11.1 (Additive structure implies large small ball probability). Let Q be a proper

symmetric GAP of rank r = O(1) and of size nO(1). Assume that aij ∈ Q, then for any
ξi ∈ {±1}

∑
i,j

aijξiξj ∈ n2Q.

Thus, by the pegion-hole principle,

ρq(A) ≥ n−2r|Q|−1 = n−O(1).

But unlike the linear case, additive structure is not the only source for large small ball
probability. Our next example shows that algebra also plays a role.

Example 11.2 (Algebraic structure implies large small ball probability). Assume that

aij = kibj + kjbi

where ki ∈ Z, |ki| = nO(1) and such that P(
∑

i kiξi = 0) = n−O(1).

Then we have
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P(
∑
i,j

aijξiξj = 0) = P(
∑
i

kiξi
∑
j

bjξj = 0) = n−O(1).

Combining the above two examples, we have the following general one.

Example 11.3 (Structure implies large small ball probability). Assume that aij = a′ij+a′′ij,

where a′ij ∈ Q, a proper symmetric GAP of rank O(1) and size nO(1), and

a′′ij = ki1b1j + kj1b1i + · · ·+ kirbrj + kjrbri,

where b1i, . . . , bri are arbitrary and ki1, . . . , kir are integers bounded by nO(1), and r = O(1)
such that

P

(∑
i

ki1ξi = 0, . . . ,
∑
i

kirξi = 0

)
= n−O(1).

Then we have

∑
i,j

aijξiξj =
∑
i,j

a′ijξiξj + 2(
∑
i

ki1ξi)(
∑
j

b1jξj) + · · ·+ 2(
∑
i

kirξi)(
∑
j

brjξj).

Thus,

P(
∑
i,j

aijξiξj ∈ n2Q) = n−O(1).

It then follows, by the pigeon-hole principle, that ρq(A) = n−O(1).

We have demonstrated the fact that as long as most of the aij can be decomposed as

aij = a′ij + a′′ij , where a′ij belongs to a GAP of rank O(1) and size nO(1) and the symmetric

matrix (a′′ij) has rank O(1), then A = (aij) has large quadratic small ball probability. The

first author in [36] showed that sort of the converse is also true.

Theorem 11.4 (Inverse Littlewood-Offord theorem for quadratic forms). Let ε < 1, C be
positive constants. Assume that

ρq(A) ≥ n−C .

Then there exist index sets I0, I of size OC,ε(1) and n−OC(nε) respectively, with I ∩I0 = ∅,
and there exist integers kii0 (for any pair i0 ∈ I0, i ∈ I) of size bounded by nOC,ε(1), and a
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structured set Q of the form

Q =
{OC(1)∑

h=1

ph
qh
gh|ph ∈ Z, |ph|, |qh| = nOC,ε(1)

}
,

such that for all i ∈ I the followings holds:

• (low rank decomposition) for any j ∈ I,

aij = a′ij − (
∑
i0∈I0

kii0ai0j +
∑
i0∈I0

kji0ai0i);

• (common additive structure of small size) all but OC(nε) entries a′ij belong to Q.

We remark that the common structure Q is not yet a GAP, as the coefficients are rational,
instead of being integers. It is desirable to have an analogue of Theorem 7.6 with common
structure as a genuine GAP with optimal parameters (see for instance [7, Conjecture 1]
for a precise conjecture for bilinear forms.) For counting purposes, this inverse theorem is
sufficiently strong.

12. Application: The least singular value of a random matrix

For a matrix A, let σn(A) denote its smallest singular value. It is well known that σn(A) ≥ 0
and the bound is strict if and only if A is non-singular. An important problem with many
practical applications is to bound the least singular value of a non-singular matrix (see
[17, 52, 53, 63, 47, 9] for discussions). The problem of estimating the least singular value
of a random matrix was first raised by Goldstine and von Neumann [17] in the 1940s, with
connection to their investigation of the complexity of inverting a matrix.

To answer Goldstine and von Neumman’s question, Edelman [9] computed the distribution
of the LSV of the random matrix MGau

n of size n with iid standard gaussian entries, and
showed that for all fixed t > 0

P(σn(MGau
n ≤ tn−1/2) =

∫ t

0

1 +
√
x

2
√
x
e−(x/2+

√
x) dx+ o(1) = t− 1

3
t3 +O(t4) + o(1).

He conjectured that this distribution is universal (i.e., it must hold for other models of
random matrices, such as Bernoulli).

More recently, in their study of smoothed analysis of the simplex method, Spielman and
Teng [52, 53] showed that for any t > 0 ( t can go to 0 with n)

P(σn(MGau
n ) ≤ tn−1/2) ≤ t. (15)

They conjectured that a slightly adjusted bound holds in the Bernoulli case [52]

P(σn(MBer
n ) ≤ t) ≤ tn1/2 + cn, (16)
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where 0 < c < 1 is a constant. The term cn is needed as MBer
n can be singular with

exponentially small probability.

Edelman’s conjecture has been proved by Tao and the second author in [64]. This work
also confirms Spielman and Teng’s conjecture for the case t is fairly large; t ≥ n−δ for some
small constant δ > 0. For t ≥ n−3/2, Rudelson in [44], making use of Halász’ machinery
from [21], obtained a strong bound with an extra (multiplicative) constant factor. In many
applications, it is important to be able to treat even smaller t. As a matter of fact, in
applications what one usually needs is the probability bound to be very small, but this
requires one to set t very small automatically.

In the last few years, thanks to the development of inverse theorems, one can now prove
very strong bound for almost all range of t.

Consider a matrix M with row vectors Xi and singular values σ1 ≥ · · · ≥ σn. Let di be
the distance from Xi to the hyperplane formed by the other n− 1 rows. There are several
ways to exhibit a direct relation between the di and σi. For instance, Tao and the second
showed [58]

d−2
1 + · · ·+ d−2

n = σ−2
1 + · · ·+ σ−2

n . (17)

A technical relation, but in certain applications more effective, is [45, Lemma 3.5].

From this, it is clear that if one can bound the di from below with high probability, then
one can do the same for σn. Let v = (a1, . . . , an) be the normal vector of the hyperplane
formed by X2, . . . , Xn and ξ1, . . . , ξn be the coordinates of X1, then

d1 = |a1ξ1 + . . . anξn|.

Thus, the probability that d1 is small is exactly the small probability for the multi-set
A = {a1, . . . , an}. If this probability is large, then the inverse theorems tell us that the set
A must have strong additive structure. However, A comes as the normal vector of a random
hyperplane, so the probability that it has any special structure is very small (to quantify
this we can use the counting theorems such as Theorem 9.4). Thus, we obtain, with high
probability, a lower bound on all di. In principle, one can use this to deduce a lower bound
for σn.

Carrying out the above plan requires certain extra ideas and some careful analysis. In [60],
Tao and the second author managed to prove

Theorem 12.1. For any constant A > 0, there is a constant B > 0 such that

P(σn(MBer
n ) ≤ n−B) ≤ n−A.
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The first inverse theorem, Theorem 7.5, was first proved in this paper, as a step in the proof
of Theorem 12.1. In a consequent paper, Rudelson and Vershynin developed Theorem 10.1,
and used it, in combination with [45, Lemma 3.5] and many other ideas to show

Theorem 12.2. There is a constant C > 0 and 0 < c < 1 such that for any t > 0,

P(σn(MBer
n ) ≤ tn−1/2) ≤ tn1/2 + cn.

This bound is sharp, up to the constant C. It also gives a new proof of Kahn-Komlós-
Szemerédi bound on the singularity probability of a random Bernoulli matrix (see Section
13). Both theorems hold in more general setting.

In practice, one often works with random matrices of the type A+Mn where A is determin-
istic and Mn has iid entries. (For instance, in their works on smoothed analysis, Spielman
and Teng used this to model a large data matrix perturbed by random noise.) They proved
in [52]

Theorem 12.3. Let A be an arbitrary n by n matrix. Then for any t > 0,

P(σn(A+MGau
n ) ≤ tn−1/2) = O(t).

One may ask whether there is an analogue of Theorem 12.2 for this model. The answer
is, somewhat surprisingly, negative. An analogue of the weaker Theorem 12.1 is, however,
available, assuming that ‖A‖ is bounded polynomially in n. For more discussion on this
model, we refer to [63]. For applications in Random Matrix Theory (such as the establish-
ment of the Circular Law) and many related results, we refer to [59, 65, 58, 18, 40, 2, 47]
and the references therein.

13. Application: Strong bounds on the singularity problem–the
non-symmetric case

We continue to discuss the singularity problem from Section 5. The first exponential bound
on pn was proved by Kahn, Komlós and Szemerédi [23], who showed that pn ≤ .999n. In
[56], Tao and the second author simplified the proof and got a slightly improved bound
.952n. A more notable improvement which pushed the bound to (3/4+o(1))n was obtained
in a subsequent paper [57], which combined Kahn et. al. approach with an inverse theorem.
The best current bound is (1/

√
2 + o(1))n by Bourgain, Vu and Wood [3]. The proof of this

bound still relied heavily on the approach from [57] (in particular it used the same inverse
theorem), but added a new twist which made the first part of the argument more effective.

In the following, we tried to present the approach from [23] and [57]. Similar to the proof
in Appendix A, we first embed the problem in a finite field F = Fp, where p is a very large
prime. Let {−1, 1}n ⊂ Fn be the discrete unit cube in Fn. We let X be the random variable
taking values in {−1, 1}n which is distributed uniformly on this cube (thus each element
of {−1, 1}n is attained with probability 2−n). Let X1, . . . , Xn ∈ {−1, 1} be n independent
samples of X. Then

pn := P(X1, . . . , Xn linearly dependent).
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For each linear subspace V of Fn, let AV denote the event that X1, . . . , Xn span V . Let us
call a space V non-trivial if it is spanned by the set V ∩ {−1, 1}n. Note that P(AV ) 6= 0
if and only if V is non-trivial. Since every collection of n linearly dependent vectors in Fn

will span exactly one proper subspace V of Fn, we have

pn =
∑

V a proper non-trivial subspace of Fn

P(AV ). (18)

It is not hard to show that the dominant contribution to this sum came from the hyperplanes:

pn = 2o(n)
∑

V a non-trivial hyperplane in Fn

P(AV ).

Thus, if one wants to show pn ≤ (3/4 + o(1))n, it suffices to show∑
V a non-trivial hyperplane in Fn

P(AV ) ≤ (3/4 + o(1))n.

The next step is to partition the non-trivial hyperplanes V into a number of classes, de-
pending on the number of (−1, 1) vectors in V .

Definition 13.1 (Combinatorial dimension). Let D := {d± ∈ Z/n : 1 ≤ d± ≤ n}. For any
d± ∈ D, we define the combinatorial Grassmannian Gr(d±) to be the set of all non-trivial
hyperplanes V in Fn with

2d±−1/n < |V ∩ {−1, 1}n| ≤ 2d± . (19)

We will refer to d± as the combinatorial dimension of V .

It thus suffices to show that∑
d±∈D

∑
V ∈Gr(d±)

P(AV ) ≤ (
3

4
+ o(1))n. (20)

It is therefore of interest to understand the size of the combinatorial Grassmannians Gr(d±)
and of the probability of the events AV for hyperplanes V in those Grassmannians.

There are two easy cases, one when d± is fairly small and one where d± is fairly large.

Lemma 13.2 (Small combinatorial dimension estimate). Let 0 < α < 1 be arbitrary. Then∑
d±∈D:2d±−n≤αn

∑
V ∈Gr(d±)

P(AV ) ≤ nαn.

Proof. (of Lemma 13.2) Observe that if X1, . . . , Xn span V , then there are n − 1 vectors
among the Xi which already span V . By symmetry, we thus have

P(AV ) = P(X1, . . . , Xn span V ) ≤ nP(X1, . . . , Xn−1 span V )P(X ∈ V ). (21)

On the other hand, if V ∈ Gr(d±) and 2d±−n ≤ αn, then P(X ∈ V ) ≤ αn thanks to (19).
Thus we have

P(AV ) ≤ nαnP(X1, . . . , Xn−1 span V ).

Since X1, . . . , Xn−1 can span at most one space V , the claim follows. �
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Lemma 13.3 (Large combinatorial dimension estimate). We have∑
d±∈D:2d±−n≥100/

√
n

∑
V ∈Gr(d±)

P(AV ) ≤ (1 + o(1))n22−n.

This proof uses Theorem 3.1 and is left as an exercise; consult [23, 57] for details. The heart
of the matter is the following, somewhat more difficult, result.

Proposition 13.4 (Medium combinatorial dimension estimate). Let 0 < ε0 � 1, and let
d± ∈ D be such that (3

4 + 2ε0)n < 2d±−n < 100√
n

. Then we have∑
V ∈Gr(d±)

P(AV ) ≤ o(1)n,

where the rate of decay in the o(1) quantity depends on ε0 (but not on d±).

Note that D has cardinality |D| = O(n2). Thus if we combine this proposition with Lemma
13.2 (with α := 3

4 + 2ε0) and Lemma 13.3, we see that we can bound the left-hand side of
(20) by

n(
3

4
+ 2ε0)n + n2o(1)n + (1 + o(1))n22−n = (

3

4
+ 2ε0 + o(1))n.

Since ε0 is arbitrary, the upper bound (3/4 + o(1))n follows.

We now informally discuss the proof of Proposition 13.4. We start with the trivial bound∑
V ∈Gr(d±)

P(AV ) ≤ 1 (22)

that arises simply because any vectorsX1, . . . , Xn can span at most one space V . To improve
upon this trivial bound, the key innovation in [23] is to replaceX by another random variable
Y which tends to be more concentrated on subspaces V than X is. Roughly speaking, one
seeks the property

P(X ∈ V ) ≤ cP(Y ∈ V ) (23)

for some absolute constant 0 < c < 1 and for all (or almost all) subspaces V ∈ Gr(d±).
From this property, one expects (heuristically, at least)

P(AV ) = P(X1, . . . , Xn span V ) ≤ cnP(Y1, . . . , Yn span V ), (24)

where Y1, . . . , Yn are iid samples of Y , and then by applying the trivial bound (22) with Y
instead of X, we would then obtain a bound of the form

∑
V ∈Gr(d±) P(AV ) ≤ cn, at least

in principle. Clearly, it will be desirable to make c as small as possible; if we can make c
arbitrarily small, we will have established Proposition 13.4.

The random variable Y can be described as follows. Let 0 ≤ µ ≤ 1 be a small absolute
constant (in [23] the value µ = 1

108e
−1/108 was chosen), and let η(µ) be a random variable

taking values in {−1, 0, 1} ⊂ F which equals 0 with probability 1− µ and equals +1 or −1

with probability µ/2 each. Then let Y := (η
(µ)
1 , . . . , η

(µ)
n ) ∈ Fn, where η

(µ)
1 , . . . , η

(µ)
n are iid

samples of η(µ). By using a Fourier-analytic argument of Halász [21], a bound of the form

P(X ∈ V ) ≤ C√µP(Y ∈ V )
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was shown in [23], where C was an absolute constant (independent of µ), and V was a
hyperplane which was non-degenerate in the sense that its combinatorial dimension was
not too close to n. For µ sufficiently small, one then obtains (23) for some 0 < c < 1,
although one cannot make c arbitrarily small without shrinking µ also.

There are however some technical difficulties with this approach, arising when one tries to
pass from (23) to (24). The first problem is that the random variable Y , when conditioned
on the event Y ∈ V , may concentrate on a lower dimensional subspace on V , making it
unlikely that Y1, . . . , Yn will span V . In particular, Y has a probability of (1− µ)n of being
the zero vector, which basically means that one cannot hope to exploit (23) in any non-
trivial way once P(X ∈ V ) ≤ (1− µ)n. However, in this case V has very low combinatorial
dimension and Lemma 13.2 already gives an exponential gain.

Even when (1 − µ)n < P(X ∈ V ) ≤ 1, it turns out that it is still not particularly easy to
obtain (24), but one can obtain an acceptable substitute for this estimate by only replacing
some of the Xj by Yj . Specifically, one can try to obtain an estimate roughly of the form

P(X1, . . . , Xn span V ) ≤ cmP(Y1, . . . , Ym, X1, . . . , Xn−m span V ) (25)

where m is equal to a suitably small multiple of n (we will eventually take m ≈ n/100).
Strictly speaking, we will also have to absorb an additional “entropy” loss of

(
n
m

)
for technical

reasons, though as we will be taking c arbitrarily small, this loss will ultimately be irrelevant.

The above approach (with some minor modifications) was carried out rigorously in [23]
to give the bound pn = O(.999n) which has been improved slightly to O(.952n) in [56],
thanks to some simplifications. There are two main reasons why the final gain in the base
was relatively small. Firstly, the chosen value of µ was small (so the n(1 − µ)n error was
sizeable), and secondly the value of c obtained was relatively large (so the gain of cn or

c(1−γ)n was relatively weak). Unfortunately, increasing µ also causes c to increase, and so
even after optimizing µ and c one falls well short of the conjectured bound.

The more significant improvement to (3/4 + o(1))n relies on an inverse theorem. To reduce
all the other losses to (3

4 + 2ε0)n for some small ε0, we increase µ up to 1/4 − ε0/100, at
which point the arguments of Halász and [23, 56] give (23) with c = 1. The value 1/4 for µ
is optimal as it is the largest number satisfying the pointwise inequality

| cos(x)| ≤ (1− µ) + µ cos(2x) for all x ∈ R,

which is the Fourier-analytic analogue of (23) (with c = 1). At first glance, the fact that
c = 1 seems to remove any utility to (23), as the above argument relied on obtaining gains

of the form cn or c(1−γ)n. However, we can proceed further by subdividing the collection of
hyperplanes Gr(d±) into two classes, namely the unexceptional spaces V for which

P(X ∈ V ) < ε1P(Y ∈ V )

for some small constant 0 < ε1 � 1 to be chosen later (it will be much smaller than ε0),
and the exceptional spaces for which

ε1P(Y ∈ V ) ≤ P(X ∈ V ) ≤ P(Y ∈ V ). (26)

The contribution of the unexceptional spaces can be dealt with by the preceding arguments
to obtain a very small contribution (at most δn for any fixed δ > 0 given that we set
ε1 = ε1(γ, δ) suitably small), so it remains to consider the exceptional spaces V .
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The key technical step is to show that there are very few exceptional hyperplannes (and
thus their contribution is negligible). This can be done using the following inverse theorem
(the way the counting Theorem 8.1 was proved using the inverse Theorem 7.6).

Let V ∈ Gr(d±) be an exceptional space, with a representation of the form

V = {(x1, . . . , xn) ∈ Fn : x1a1 + . . .+ xnan = 0} (27)

for some elements a1, . . . , an ∈ F . We shall refer to a1, . . . , an as the defining co-ordinates
for V .

Theorem 13.5. There is a constant C = C(ε0, ε1) such that the following holds. Let V be a
hyperplane in Gr(d±) and a1, . . . , an be its defining co-ordinates. Then there exist integers

1 ≤ r ≤ C (28)

and M1, . . . ,Mr ≥ 1 with the volume bound

M1 . . .Mr ≤ C2n−d± (29)

and non-zero elements v1, . . . , vr ∈ F such that the following holds.

• (Defining coordinates lie in a progression) The symmetric generalized arithmetic
progression

P := {m1v1 + . . .+mrvr : −Mj/2 < mj < Mj/2 for all 1 ≤ j ≤ r}
is proper and contains all the ai.
• (Bounded norm) The ai have small P -norm:

n∑
j=1

‖aj‖2P ≤ C (30)

• (Rational commensurability) The set {v1, . . . , vr} ∪ {a1, . . . , an} is contained in the
set

{p
q
v1 : p, q ∈ Z; q 6= 0; |p|, |q| ≤ no(n)}. (31)

14. Application: Strong bounds on the singularity problem-the symmetric
case

Similar to Conjecture 5.1, we raise

Conjecture 14.1.

psymn = (1/2 + o(1))n.

We are very far from this conjecture. Currently, no exponential upper bound is known. The
first superpolynomial bound was obtained by the first author [36] very recently.

Theorem 14.2. [36] For any C > 0 and n sufficiently large

psymn ≤ cn−C .
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Shortly after, Vershinyn [69] proved the following better bound

Theorem 14.3. There exists a positive constant c such that

psymn = O(exp(−nc)).

Both proofs made essential use of inverse theorems. The first author used the inverse
quadratic Theorem 11.4 and Vershynin’s proof used Theorem 10.1 several times.

In the following, we sketched the main ideas behind Theorem 14.2. Let r = (ξ1, . . . , ξn) be
the first row of Mn, and aij , 2 ≤ i, j ≤ n, be the cofactors of Mn−1 obtained by removing r
and rT from Mn. We have

det(Mn) = ξ2
1 det(Mn−1) +

∑
2≤i,j≤n

aijξiξj . (32)

Recalling the proof of Theorem 5.6 (see Section 5). One first need to show that with
high probability (with respect to Mn−1) a good fraction of the co-factors aij are nonzero.
Theorem 4.1 then yields that

Pr(det(Mn) = 0) ≤ n−1/8+o(1) = o(1).

To prove Theorem 14.2, we adapt the reversed approach, which, similar to the previous
proofs, consists of an inverse statement and a counting step.

(1) (Inverse step). If Pr(det(Mn) = 0|Mn−1) ≥ n−O(1), then there is a strong additive
structure among the cofactors aij .

(2) (Counting step). With respect to Mn−1, a strong additive structure among the aij
occurs with negligible probability.

By (32), one notices that the first step concentrates on the study of inverse Littlewood-
Offord problem for quadratic forms

∑
ij aijξiξj . Roughly speaking, Theorem 11.4 implies

that most of the aij belong to a common structure. Thus, by extracting the structure on
one row of the array A = (aij), we obtain a vector which is orthogonal to the remaining
n − 2 rows of the matrix Mn−1. Executing the argument more carefully, we obtain the
following lemma.

Lemma 14.4 (Inverse Step). Let ε < 1 and C be positive constants. Assume that Mn−1

has rank at least n− 2 and that

Pr(
∑
i,j

aijξiξj = 0|Mn−1) ≥ n−C .

Then there exists a nonzero vector u = (u1, . . . , un−1) with the following properties.
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• All but nε elements of ui belong to a proper symmetric generalized arithmetic pro-
gression of rank OC,ε(1) and size nOC,ε(1).

• ui ∈ {p/q : p, q ∈ Z, |p|, |q| = nOC,ε(n
ε)} for all i.

• u is orthogonal to n−OC,ε(nε) rows of Mn−1.

Let P denote the collection of all u satisfying the properties above. For each u ∈ P, let
Pu be the probability, with respect to Mn−1, that u is orthogonal to n − OC,ε(nε) rows of
Mn−1. The following lemma takes care of our second step.

Lemma 14.5 (Counting Step). We have∑
u∈P

Pu = OC,ε((1/2)(1−o(1))n).

The main contribution in the sum in Lemma 14.5 comes from those u which have just a few
non-zero components (i.e. compressible vectors). For incompressible vectors, we classify it
into dyadic classes Cρ1,...,ρn−1 , where ρi is at most twice and at least half the probability
P(ξ1u1 + · · · + ξuui = 0). Assume that u ∈ Cρ1,...,ρn−1 . Then by definition, as Mn−1

is symmetric, the probability Pu is bounded by
∏
O(ρi). On the other hand, by taking

into account the structure of generalized arithmetic progressions, a variant of Theorem 8.1
shows that the size of each Cρ1,...,ρn−1 is bounded by

∏
iO(ρi)n

−1/2+o(1). Summing Pu over
all classes C, notice that the number of these classes are negligible, one obtains an upper
bound of order n−(1−o(1))n/2 for the compressible vectors.

We remark that it is in the Inverse Step that we obtain the final bound n−C on the singular
probability. In [69], Vershynin worked with a more general setting where one can assume a
better bound. In this regime, he has been able to apply a variant of Theorem 10.1 to prove
a very mild inverse-type result which is easy to be adapted for the Counting Step. As the
details are complex, we invite the reader to consult [69].

15. Application: Common roots of random polynomials

Let d be fixed. With ~jd = (j1, . . . , jd), ji ∈ Z+ and |~jd| =
∑
ji, let ξ~jd be iid copies of a

random variable ξ. Set x
~jd =

∏
xjii . Consider the random polynomial

P (x1, . . . , xd) =
∑

~jd,|~jd|≤n

ξ~jdx
~jd

of degree n in d variables. (Here d is fixed and n→∞.) Random polynomials is a classical
subject in analysis and probability and we refer to [4] for a survey.

In this section, we consider the following natural question. Let P1, . . . , Pd+1 be d + 1
independent random polynomials, each have d variables and degree n.

Question 15.1. What is the probability that P1, . . . , Pd+1 have a common root ?
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For short, let us denote the probability under consideration by p(n, d)

p(n, d) := P(∃x ∈ Cd : Pi(x) = 0, i = 1, . . . , d+ 1).

When ξ has continuous distribution, it is obvious that p(n, d) = 0. However, the situation
is less clear when ξ has discrete distribution, even in the case d = 1. Indeed, when n is even
and P1(x), P2(x) are two independent random Bernoulli polynomials of one variable, then
one has P(P1(1) = P2(1) = 0) = Θ(1/n) and P(P1(−1) = P2(−1) = 0) = Θ(1/n). Thus in
this case p(n, 1) = Ω(1/n).

In a recent paper, Kozma and Zeitouni [32] proved p(n, d) = O(1/n), answering Question
15.1 in the asymptotic sense.

Theorem 15.2. For any fixed d there exists a constant c(d) such that the following holds.
Let P1 . . . , Pd+1 be d+1 independent random Bernoulli polynomials in d variables and degree
n.

p(n, d) ≤ c(d)/n.

In the sequel, we will focus on the case d = 1. This first case already captures some of the
main ideas, especially the use of inverse theorems. The reader is invited to consult [32] for
further details.

Theorem 15.3. Let P1, P2 be two independent Bernoulli random polynomials in one vari-
able of degree n. Then

p(n, 1) =

{
O(n−1) n even

O(n−3/2) n odd.

Notice that the bounds in both cases are sharp. To start the proof, first observe that,
because the coefficients of P1 are ±1, all roots x of P1 have magnitude 1/2 < |x| < 2.
Furthermore, x must be an algebraic integer. We will try to classify the common roots by
their unique irreducible polynomial, relying on the following easy algebraic fact [32]:

Fact 15.4. For every k there are only finitely many numbers whose irreducible polynomial
has degree k that can be roots of a polynomial of arbitrary degree with coefficients ±1.

Now we look at the event of having common roots. Assume that P1 is fixed (i.e. condition on
P1) and let x1, . . . , xn be its n complex roots. For each xi, we consider the probability that

xi is a root of P2(x). If P(P2(xi) = 0) ≤ n−5/2 for all i, then P(∃x ∈ C : P1(x) = P2(x)) =

O(n−3/2), and there is nothing to prove. We now consider the case P(P2(xi) = 0) ≥ n−5/2

for some root xi of P1(x). Notice that

P(P2(xi) = 0) = Pξ0,...,ξn(

n∑
j=0

ξjx
j
i = 0) = ρ(X),
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where X is the geometric progression X = {1, xi, . . . , xni }.

Now Theorem 7.6 comes into play. As ρ(X) ≥ n−5/2, most of the terms of X are additively
correlated. On the other hand, as X is a geometric progression, this is the case only if xi is
a root of a bounded degree polynomial with well-controlled rational coefficients.

Lemma 15.5. For any C > 0, there exists n0 such that if n > n0, and if

ρ(X) ≥ n−C ,

where X = {1, x, . . . , xn}. Then x is an algebraic number of degree at most 2C.

Proof. (of Lemma 15.5) Set ε = 1/(2C + 2). Theorem 7.6, applied to the set X, implies

that there exists a GAP Q of rank r and size |Q| = OC(nC−r/2) which contains at least
(2C+1)/(2C+2)-portion of the elements of X. By pigeon-hole principle, there exists 2C+1
consecutive terms of X, say xi0 , . . . , xi0+2C , all of which belong to Q.

As |Q| ≥ 1, the rank r of Q must be at most 2C. Thus there exist integral coefficients

m1, . . . ,m2C+1, all of which are bounded by nOC(1), such that the linear combination∑2C
i=0mix

i0+i vanishes. In particular, it follows that x is an algebraic number of degree
at most 2C. �

We now prove Theorem 15.3. Write

p(n, 1) = P(∃x ∈ C : P1(x) = P2(x) = 0)

≤ P(P1(1) = P2(1) = 0) + P(P1(−1) = P2(−1) = 0)

+ P(∃x of algebraic degree 2, 3, 4, 5 : P1(x) = P2(x) = 0)

+ P(∃x of algebraic degree ≥ 6 : P1(x) = P2(x) = 0)

= S1 + S2 + S3.

For the first term, it is clear that S1 = Θ(n−1) if n is even, and S1 = 0 otherwise. For
the second term S2, by Lemma 15.4, the number of possible common roots x of algebraic
degree at most 5 is O(1), so it suffices to show that P(P1(x) = P2(x)) = n−3/2 for each

such x. On the other hand, by Lemma 15.5 we must have P(Pi(x) = 0) ≤ n−3/4 because x
cannot be a rational number (i.e. algebraic number of degree one). Thus we have

P(P1(x) = P2(x) = 0) = P(P1(x) = 0)P(P2(x) = 0) ≤ n−3/2.

Lastly, in order to bound S3 we first fix P1(x). It has at most n roots x of algebraic degree

at least 6. For each of these roots, by Lemma 15.5, P(P2(x) = 0) = O(n−5/2). Thus the
probability that P2 has at least a common root with P1 which is an algebraic number of
degree at least 6 is bounded by n×O(n−5/2) = O(n−3/2). As a result, S3 = O(n−3/2).
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16. Application: Littlewood-Offord type bound for multilinear forms and
Boolean circuits

Let k be a fixed positive integer, and p(ξ1, . . . , ξn) =
∑

S∈[n]≤k cSξS be a random multi-linear

polynomial of degree at most k, where ξi are iid Bernoulli variables (taking values {0, 1}
with equal probability) and ξS =

∏
i∈S ξi. As mentioned in Section 4, by generalizing the

proof of Theorem 4.1, Costelo, Tao and the second author proved the following

Theorem 16.1. Let K denote the number of non-zero coefficients cS, and set m := K/nk−1.
Then for any real number x we have

P(p = x) = O
(
m
− 1

2(k
2+k)/2

)
.

Using a finer analysis, Razborov and Viola [42] improved the exponent 1

2(k
2+k)/2

to 1
2k2k

.

Theorem 16.2. Let p(ξ1, . . . , ξn) =
∑

S∈[n]≤k cSξS be a multi-linear polynomial of degree k,

and assume that there exist r terms ξS1 , . . . , ξSr of degree k each where the Si are mutually
disjoint and cSi 6= 0. Then for any real number x we have

P(p = x) = O(r−bk),

where bk = (2k2k)−1.

One observes that r = Ω(m/k), where m was defined in Theorem 16.1. Indeed, assume that
the collection {S1, . . . , Sr} is maximal (with respect to disjointness). Then every set S with
cS 6= 0, either ξS has degree less than k or S intersects one of the Si. Thus K = O(rknk−1),
and so r = Ω(m/k).

It is a very interesting question (in its own right and for applications) to improve the
exponent further. In the rest of this section, we are going to discuss Razborov and Viola’s
main application of Theorem 16.2.

For two functions f, g : {0, 1}n → R, one defines their correlation as

Corn(f, g) := P(f(ξ1, . . . , ξn) = g(ξ1, . . . , ξn))− 1/2,

where ξi are iid Bernoulli variables taking values {0, 1} with equal probability.

Most of the research in Complexity Theory has so far concentrated on the case in which
both f and g are Boolean functions (that is f(x), g(x) ∈ {0, 1}). To incorporate into this
framework arbitrary multivariate polynomials, one converts them to Boolean functions.
There are two popular ways of doing this. For a polynomial p with integer coefficients,
define a Boolean function b(x) = 1 if m|p(x), where m is a given integer, and 0 otherwise.
These functions b are called modular polynomials. For arbitrary p, one can set b(x) = 1
if p(x) > t for some given threshold t, and 0 otherwise. We refer to these functions b as
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threshold polynomials. For further discussion on these polynomials, we refer the reader to
[34, 35].

It is an open problem to exhibit an explicit Boolean function f : {0, 1}n → {0, 1} such that
Corn(b, f) = o(1/

√
n) for any modular polynomial b whose underlying polynomial p has

degree log2 n (see [70]). The same problem is also open for threshold polynomials.

In [42], Razborov and Viola initiated a similar study for the correlation of multi-variable
polynomials where any output outside of {0, 1} is counted as an error. They highlighted
the following problem.

Problem 16.3. Exhibit an explicit Boolean function f such that Corn(p, f) = o(1/
√
n) for

any real polynomial p : {0, 1}n → R of degree log2 n.

It is well-known that analogies between polynomial approximations and matrix approxima-
tions are important and influential in theory and other areas like Machine Learning (see for
instance [51]). Viewed under this angle, Razborov and Viola’s model is a straightforward
analogy of matrix rigidity [68] that still remains one of the main unresolved problems in
the modern Complexity Theory. For further discussion and motivation, we refer to [42] and
the references therein. It is noted that solving Problem 16.3 is a pre-requisite for solving
the corresponding open problem for threshold polynomials. Similarly, the special case of
Problem 16.3 when the polynomials have integer coefficients is a pre-requisite for solving the
corresponding open problem for modular polynomials. As a quick application of Theorem
16.2, we demonstrate here a result addressing the question for lower degree polynomials.

Theorem 16.4. [42, Theorem 1.2] We have Corn(p, parity) ≤ 0 for every sufficiently large
n and every real polynomial p : {0, 1}n → R of degree at most log2 log2 n/2.

Proof. (of Theorem 16.4) First we suppose that the hypothesis of Theorem 16.2 is satisfied
with r =

√
n. Then the probability that the polynomial outputs a Boolean value is bounded

by

2×O((1/
√
n)

1

2k2k ) ≤ 1/2,

where k ≤ 1
2 log2 log2 n.

Otherwise, we can cover all the terms of degree k by k
√
n variables. Freeze these variables

and iterate. After at most k iterations, either the hypothesis of Theorem 16.2 is satisfied
with r =

√
n (and with smaller degree), in which case we would be done, or else we end up

with a degree-one polynomial with n−O(k2)
√
n ≥ 1 variables, in which case the statement

is true by comparison with the parity function. �

17. Application: Solving Frankl and Füredi’s conjecture

In this section, we return to the discussion in Section 2 and give a proof of Conjecture 2.4
and a new proof for Theorem 2.2. Both proofs are based on the following inverse theorem.
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Theorem 17.1. For any fixed d there is a constant C such that the following holds. Let
A = {a1, . . . , an} be a multi-set of vectors in Rd such that pd,1,Ber (A) ≥ Ck−d/2. Then A
is ”almost” flat. Namely, there is a hyperplane H such that dist(ai, H) ≥ 1 for at most k
values of i = 1, . . . , n.

The proof of this theorem combines Esseén’s bound (Lemma 6.2) together with some geo-
metric arguments. For details, see [66]; dist(a,Hi), of course, means the distance from a to
Hi.

We first prove Theorem 2.2 by induction on the dimension d. The case d = 1 follows from
Theorem 2.1, so we assume that d ≥ 2 and that the claim has already been proven for
smaller values of d. It suffices to prove the upper bound

p(d,R,Ber, n) ≤ (1 + o(1))2−nS(n, s).

Fix R, and let ε > 0 be a small parameter to be chosen later. Suppose the claim failed, then
there exists R > 0 such that for arbitrarily large n, there exist a multi-set A = {a1, . . . , an}
of vectors in Rd of length at least 1 and a ball B of radius R such that

P(SA ∈ B) ≥ (1 + ε)2−nS(n, s). (33)

In particular, from Stirling’s approximation one has

P(SA ∈ B)� n−1/2.

Applying the pigeonhole principle, we can find a ball B0 of radius 1
logn such that

P(SA ∈ B0)� n−1/2 log−d n.

Set k := n2/3. Since d ≥ 2 and n is large, we have

P(SA ∈ B0) ≥ Ck−d/2

for some fixed constant C. Applying Theorem 17.1 (rescaling by log n), we conclude that
there exists a hyperplane H such that dist(vi, H) ≤ 1/ log n for at least n − k values of
i = 1, . . . , n.

Let V ′ denote the orthogonal projection to H of the vectors vi with dist(vi, H) ≤ 1/ log n.
By conditioning on the signs of all the ξi with dist(vi, H) > 1/ log n, and then projecting
the sum XV onto H, we conclude from (33) the existence of a d− 1-dimensional ball B′ in
H of radius R such that

P(XV ′ ∈ B′) ≥ (1 + ε)2−nS(n, s).

On the other hand, the vectors in V ′ have magnitude at least 1−1/ log n. If n is sufficiently
large depending on d, ε this contradicts the induction hypothesis (after rescaling the V ′ by
1/(1−1/ log n) and identifying H with Rn−1 in some fashion; notice that the scaling changes
R slightly but does not change s, and also that the function 2−nS(n, s) is decreasing with
n). This concludes the proof of (4).
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Now we turn to the proof of Conjecture 2.4. We can assume s ≥ 3, as the remaining
cases have already been treated (see Section 2). If the conjecture failed, then there exist
arbitrarily large n for which there exist a multi-set A = {a1, . . . , an} of vectors in Rd of
length at least 1 and a ball B of radius R such that

P(SA ∈ B) > 2−nS(n, s). (34)

By iterating the argument used to prove (4), we may find a one-dimensional subspace

L of Rd such that dist(vi, L) � 1/ log n for at least n − O(n2/3) values of i = 1, . . . , n.
By reordering, we may assume that dist(vi, L) � 1/ log n for all 1 ≤ i ≤ n − k, where

k = O(n2/3).

Let π : Rd → L be the orthogonal projection onto L. We divide into two cases. The first
case is when |π(vi)| > R

s for all 1 ≤ i ≤ n. We then use the trivial bound

P(SA ∈ B) ≤ P(Sπ(V ) ∈ π(B)).

If we rescale Theorem 2.1 by a factor slightly less than s/R, we see that

P(Sπ(V ) ∈ π(B)) ≤ 2−nS(n, s)

which contradicts (34).

In the second case, we assume |π(vn)| ≤ R/s. We let A′ be the multi-set {a1, . . . , an−k},
then by conditioning on the ξn−k+1, . . . , ξn−1 we conclude the existence of a unit ball B′

such that
P(SA′ + ξnan ∈ B′) ≥ P(SA ∈ B).

Let xB′ be the center of B′. Observe that if SV ′ + ξnan ∈ B′ (for any value of ξn) then

|Sπ(V ′) − π(xB′)| ≤ R + R
s . Furthermore, if |Sπ(V ′) − π(xB′)| >

√
R2 − 1, then the paral-

lelogram law shows that SV ′ + an and SV ′−n cannot both lie in B′, and so conditioned on
|Sπ(V ′) − π(xB′)| >

√
R2 − 1, the probability that SV ′ + ξnan ∈ B′ is at most 1/2.

We conclude that

P(SA′ + ξnan ∈ B′)

≤ P(|Aπ(A′) − π(xB′)| ≤
√
R2 − 1) +

1

2
P(
√
R2 − 1 < |Sπ(V ′) − π(xB′)| ≤ R+

R

s
)

=
1

2

(
P(|Aπ(A′) − π(xB′)| ≤

√
R2 − 1) + P(|Sπ(A′) − π(xB′)| ≤ R+

R

s
)
)
.

However, note that all the elements of π(A′) have magnitude at least 1− 1/ log n. Assume,
for a moment, that R satisfies√

R2 − 1 < s− 1 ≤ R < R+
R

s
< s. (35)

From Theorem 2.1 (rescaled by (1− 1/ log n)−1), we conclude that

P(|Sπ(A′) − π(xB′)| ≤
√
R2 − 1) ≤ 2−(n−k)S(n− k, s− 1)

and

P(|π(SA′)− π(xB′)| ≤ R+
R

s
) ≤ 2−(n−k)S(n− k, s).
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On the other hand, by Stirling’s formula (if n is sufficiently large) we have

1

2
(2−(n−k)S(n− k, s− 1)) +

1

2
2−(n−k)S(n− k, s) =

√
2

π

s− 1/2 + o(1)

n1/2

while

2−nS(n, s) =

√
2

π

s+ o(1)

n1/2

and so we contradict (34).

An inspection of the above argument shows that all we need on R are the conditions
(35). To satisfy the first inequality in (35), we need R <

√
(s− 1)2 + 1. Moreover, once

s − 1 ≤ R <
√

(s− 1)2 + 1, one can easily check that R + R
s < s holds automatically for

any s ≥ 3, concluding the proof.

Appendix A. Proof of Theorem 7.6

In this section, we sketch the proof of Theorem 7.6.

Embedding. The first step is to embed the problem into a finite field Fp for some prime
p. In the case when the ai are integers, we simply take p to be a large prime (for instance
p ≥ 2n(

∑n
i=1 |ai|+ 1) suffices).

If A is a subset of a general torsion-free group G, we rely on the concept of Freiman
isomorphism. Two sets A,A′ of additive groups G,G′ (not necessarily torsion-free) are
Freiman-isomorphism of order k (in generalized form) if there is an bijective map f from A
to A′ such that f(a1) + · · ·+ f(ak) = f(a′1) + · · ·+ f(a′k) in G′ if and only if a1 + · · ·+ ak =
a′1 + · · ·+ a′k in G, for any subsets {a1, . . . , ak} ⊂ A; {a′1, . . . , a′k} ⊂ A′.

The following theorem allows us to pass from an arbitrary torsion-free group to Z or cyclic
groups of prime order (see [67, Lemma 5.25]).

Theorem A.1. Let A be a finite subset of a torsion-free additive group G. Then for any
integer k the following holds.

• there is a Freiman isomorphism φ : A→ φ(A) of order k to some finite subset φ(A)
of the integers Z;

• more generally, there is a map φ : A → φ(A) to some finite subset φ(A) of the
integers Z such that

a1 + · · ·+ ai = a′1 + · · ·+ a′j ⇔ φ(a1) + · · ·+ φ(ai) = φ(a′1) + . . . φ(a′j)

for all i, j ≤ k.

The same is true if we replace Z by Fp, if p is sufficiently large depending on A.

Thus instead of working with a subset A of a torsion-free group, it is sufficient to work with
subset of Fp, where p is large enough. From now on, we can assume that ai are elements
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of Fp for some large prime p. We view elements of Fp as integers between 0 and p− 1. We
use the short hand ρ to denote ρ(A). The next few steps are motivated by Halász’ analysis
in [21].

Fourier Analysis. The main advantage of working in Fp is that one can make use of discrete
Fourier analysis. Assume that

ρ = ρ(A) = P(S = a),

for some a ∈ Fp. Using the standard notation ep(x) for exp(2π
√
−1x/p), we have

ρ = P(S = a) = E
1

p

∑
t∈Fp

ep(t(S − a)) = E
1

p

∑
t∈Fp

ep(tS)ep(−ta). (36)

By independence

Eep(tS) =

n∏
i=1

ep(tξiai) =

n∏
i=1

cos
2πtai
p

. (37)

It follows that

ρ ≤ 1

p

∑
t∈Fp

∏
i

| cos
2πait

p
| = 1

p

∑
t∈Fp

∏
i

|cosπait

p
|, (38)

where we made the change of variable t→ t/2 (in Fp) to obtain the last identity.

By convexity, we have that | sinπz| ≥ 2‖z‖ for any z ∈ R, where ‖z‖ := ‖z‖R/Z is the
distance of z to the nearest integer. Thus,

| cos
πx

p
| ≤ 1− 1

2
sin2 πx

p
≤ 1− 2‖x

p
‖2 ≤ exp(−2‖x

p
‖2), (39)

where in the last inequality we used that fact that 1− y ≤ exp(−y) for any 0 ≤ y ≤ 1.

Consequently, we obtain a key inequality

ρ ≤ 1

p

∑
t∈Fp

∏
i

| cos
πait

p
| ≤ 1

p

∑
t∈Fp

exp(−2

n∑
i=1

‖ait
p
‖2). (40)

Large level sets. Now we consider the level sets Sm := {t|
∑n

i=1 ‖ait/p‖2 ≤ m}. We have

n−C ≤ ρ ≤ 1

p

∑
t∈Fp

exp(−2
n∑
i=1

‖ait
p
‖2) ≤ 1

p
+

1

p

∑
m≥1

exp(−2(m− 1))|Sm|.
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Since
∑

m≥1 exp(−m) < 1, there must be is a large level set Sm such that

|Sm| exp(−m+ 2) ≥ ρp. (41)

In fact, since ρ ≥ n−C , we can assume that m = O(log n).

Double counting and the triangle inequality. By double counting we have

n∑
i=1

∑
t∈Sm

‖ait
p
‖2 =

∑
t∈Sm

n∑
i=1

‖ait
p
‖2 ≤ m|Sm|.

So, for most ai

∑
t∈Sm

‖ait
p
‖2 ≤ C0m

n
|Sm| (42)

for some large constant C0.

Set C0 = ε−1. By averaging, the set of ai satisfying (42) has size at least (1− ε)n. We call
this set A′. The set A\A′ has size at most εn and this is the exceptional set that appears
in Theorem 7.6. In the rest of the proof, we are going to show that A′ is a dense subset of
a proper GAP.

Since ‖ · ‖ is a norm, by the triangle inequality, we have for any a ∈ kA′

∑
t∈Sm

‖at
p
‖2 ≤ k2C0m

n
|Sm|. (43)

More generally, for any l ≤ k and a ∈ lA′

∑
t∈Sm

‖at
p
‖2 ≤ k2C0m

n
|Sm|. (44)

Dual sets. Define S∗m := {a|
∑

t∈Sm ‖
at
p ‖

2 ≤ 1
200 |Sm|} (the constant 200 is adhoc and any

sufficiently large constant would do). S∗m can be viewed as some sort of a dual set of Sm.
In fact, one can show as far as cardinality is concerned, it does behave like a dual

|S∗m| ≤
8p

|Sm|
. (45)

To see this, define Ta :=
∑

t∈Sm cos 2πat
p . Using the fact that cos 2πz ≥ 1− 100‖z‖2 for any

z ∈ R, we have, for any a ∈ S∗m
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Ta ≥
∑
t∈Sm

(1− 100‖at
p
‖2) ≥ 1

2
|Sm|.

One the other hand, using the basic identity
∑

a∈Fp cos 2πax
p = pIx=0, we have

∑
a∈Fp

T 2
a ≤ 2p|Sm|.

(45) follows from the last two estimates and averaging.

Set k := c1

√
n
m , for a properly chosen constant c1 = c1(C0). By (44) we have ∪kl=1lA

′ ⊂ S∗m.

Set A
′′

= A′ ∪ {0}; we have kA
′′ ⊂ S∗m ∪ {0}. This results in the critical bound

|kA′′ | = O(
p

|Sm|
) = O(ρ−1 exp(−m+ 2)). (46)

The role of Fp is now no longer important, so we can view the ai as integers. Notice that
(46) leads us to a situation similar to that of Freiman’s inverse result (Therem 7.3). In that
theorem, we have a bound on |2A| and conclude that A has a strong additive structure. In
the current situation, 2 is replaced by k, which can depend on |A|. We can, however, finish
the job by applying the following variant of Freiman’s inverse theorem.

Theorem A.2 (Long range inverse theorem, [39]). Let γ > 0 be constant. Assume that
X is a subset of a torsion-free group such that 0 ∈ X and |kX| ≤ kγ |X| for some integer
k ≥ 2 that may depend on |X|. Then there is proper symmetric GAP Q of rank r = O(γ)
and cardinality Oγ(k−r|kX|) such that X ⊂ Q.

One can prove Theorem A.2 by combining Freiman theorem with some extra combinatorial
ideas and several facts about GAPs. For full details we refer to [39].

The proof of the continuous version, Theorem 9.2, is similar. Given a real number w and a
variable ξ, we define the ξ-norm of w by ‖w‖ξ := (E‖w(ξ1 − ξ2)‖2)1/2, where ξ1, ξ2 are two
iid copies of ξ. We have the following variant of Lemma 6.2.

ρr,ξ(A) ≤ exp(πr2)

∫
Rd

exp(−
n∑
i=1

‖〈ai, z〉‖2ξ/2− π‖z‖22)dz. (47)

This will play the role of (38) in the previous proof. The next steps are similar and we refer
the reader to [39] for more details.
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Appendix B. Proof of Theorem 10.2

We provide here a proof from [46] (see also [16]). This proof is also influenced by Halász’
analysis from [21]. The starting point is again Esseén’s bound. Applying Lemma 6.2, we
obtain

ρd,β
√
d,ξ(A) ≤ Cd

∫
B(0,
√
d)

n∏
k=1

|φ(〈θ, ak〉/β)| dθ, (48)

where φ is the characteristic function.

Let ξ′ be an independent copy of ξ and denote by ξ̄ the symmetric random variable ξ − ξ′.
Then we easily have |φ(t)| ≤ exp(−1

2(1−E cos(2πtξ̄))).

Conditioning on ξ′, the assumption supa P(ξ ∈ B(a, 1)) ≤ 1− b implies that P(|ξ̄| ≥ 1) ≥ b.
Thus,

1−E cos(2πtξ̄) ≥ P(|ξ̄| ≥ 1) ·E
(

1− cos(2πtξ̄) | |ξ̄| ≥ 1
)

≥ b · 4

π2
E
(

min
q∈Z
|2πtξ̄ − 2πq|2 | |ξ̄| ≥ 1

)
= 16b ·E

(
min
q∈Z
|tξ̄ − q|2 | |ξ̄| ≥ 1

)
.

Substituting of this into (48) and using Jensen’s inequality, we get

ρd,β
√
d,ξ(A) ≤ Cd

∫
B(0,
√
d)

exp
(
− 8bE

( n∑
k=1

min
q∈Z
|ξ̄〈θ, ak〉/β − q|2

∣∣∣ |ξ̄| ≥ 1
))

dθ

≤ CdE
(∫

B(0,
√
d)

exp
(
− 8b min

p∈Zn

∥∥∥ ξ̄
β
θ · a− p

∥∥∥
2

)
dθ
∣∣∣ |ξ̄| ≥ 1

)
≤ Cd sup

z≥1

∫
B(0,
√
d)

exp(−8bf2(θ)) dθ,

where f(θ) = minp∈Zn
∥∥∥ zβ θ · a− p∥∥∥2

.

The crucial step is to bound the size of the recurrence set

I(t) :=
{
θ ∈ B(0,

√
d) : f(θ) ≤ t

}
.

Lemma B.1. We have

µ(I(t)) ≤
(Ctβ
γ
√
d

)d
, t < α/2.
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Proof. (of Lemma B.1) Fix t < α/2. Consider two points θ′, θ′′ ∈ I(t). There exist p′, p′′ ∈
Zn such that

∥∥∥ z
β
θ′ · a− p′

∥∥∥
2
≤ t,

∥∥∥ z
β
θ′′ · a− p′′

∥∥∥
2
≤ t.

Let

τ :=
z

β
(θ′ − θ′′), p := p′ − p′′.

Then, by the triangle inequality,

‖τ · a− p‖2 ≤ 2t. (49)

Recall that by the assumption of the theorem, LCDα,γ(a) ≥
√
d
β . Thus, by the definition

of the least common denominator, either ‖τ‖2 ≥
√
d
β or

‖τ · a− p‖2 ≥ min(γ‖τ · a‖2, α). (50)

In the latter case, since 2t < α, (49) and (50) imply

2t ≥ γ‖τ · a‖2 ≥ γ‖τ‖2,

where the last inequality follows from (14).

Thus we have proved that every pair of points θ′, θ′′ ∈ I(t) satisfies:

either ‖θ′ − θ′′‖2 ≥
√
d

z
=: R or ‖θ′ − θ′′‖2 ≤

2tβ

γz
=: r.

It follows that I(t) can be covered by Euclidean balls of radii r, whose centers are R-

separated in the Euclidean distance. Since I(t) ⊂ B(0,
√
d), the number of such balls is at

most

µ(B(0,
√
d+R/2))

µ(B(0, R/2))
=
(2
√
m

R
+ 1
)d
≤
(3
√
d

R

)d
.

Summing these volumes, we obtain µ(I(t)) ≤ (3Cr
R )m. �
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Proof. (of Theorem 10.2) First, by the definition of I(t) and as µ(B(0,
√
d) ≤ Cd, we have

∫
B(0,
√
m)\I(α/2)

exp(−8bf2(θ)) dθ ≤
∫
B(0,
√
d)

exp(−2bα2) dθ

≤ Cd exp(−2bα2). (51)

Second, by using Lemma B.1, we have∫
I(α/2)

exp(−8bf2(θ)) dθ =

∫ α/2

0
16bt exp(−8bt2)µ(I(t)) dt

≤ 16b
( Cβ
γ
√
d

)d ∫ ∞
0

td+1 exp(−8bt2) dt

≤
(C ′β
γ
√
b

)d√
d ≤

(C ′′β
γ
√
b

)d
. (52)

Combining (51) and (52) completes the proof of Theorem 10.2. �
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