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Data and Noise

Data: A very large matrix A.

Major tools to analyze data: Linear Algebra.

Example. Principal Component Analysis (Low rank approximation).
(1) Computing the first few singular vectors and values.

(2) Project onto the subspace spanned by the first few
eigenvectors.

Random Noise is Inevitable.
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Negative Impact

The data matrix A is perturbed by random noise. Thus, one works
with A + E , where E is the noise matrix.
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How does the noise effect the accuracy of the analysis ?

Guarantee resilience and fault tolerance of software.

Estimate error rates, and increase the signal to noise ratio.
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Positive impact

Once we understand (quantitatively) the effect of noise, we can
make some use of it.
Artificial randomness.

(1) Adding artificial randomness can speed up algorithms.

(2) ”Small” noise does not influence the output significantly.
(Spielman-Teng smoothed analysis.)

Strong connections to random matrix theory and high dimensional
geometry.
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Computing the eigen/singular vectors
Problem. For a matrix A of size n × n with singular values
σ1 ≥ · · · ≥ σn ≥ 0, let v1, . . . , vn be the corresponding (unit)
singular vectors. Compute v1, . . . , vk , for some k ≤ n.

Typically n is large and k is relatively small (say 2 or 3). .
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Goal: estimate the influence of noise on the vectors v1, . . . , vk .

Let v ′1, . . . , v
′
k be the first k singular vectors of A + E .

Question. When is v ′1 a good approximation of v1 ?

sub-Question. Is it true that if the noise gets smaller, then v ′1
becomes a better approximation ?



A surprising answer

NO !! the singular vectors are not continuous. Let A be(
1 0
0 1

)
.

Singular vectors (1, 0) and (0, 1). Let E be(
0 ε
ε 0

)
.

The perturbed matrix A + E has the form(
1 ε
ε 1

)
.

The singular vectors are ( 1√
2
, 1√

2
) and ( 1√

2
,− 1√

2
), no matter how

small ε is.



The goal

Measure the distance between v and v ′ by sin∠(v , v ′), where
∠(v , v ′) is the angle between the vectors, taken in [0, π/2].

Fix a small parameter ε > 0, which represents a desired accuracy.

GOAL. Find a sufficient condition (for A) which guarantees that
sin∠(v1, v

′
1) ≤ ε.

CLASSICAL numerical linear algebra: The key parameter to look
at is the gap (or separation)

δ := σ1 − σ2,

between the first and second singular values of A.



Wedin and Davis-Kahan

Theorem (Wedin sin theorem)

sin∠(v1, v
′
1) ≤ ‖E‖

δ
.

Corollary

For any small ε > 0, if δ ≥ ‖E‖ε , then

sin∠(v1, v
′
1) ≤ ε.

A and A + E are Hermitian: Davis-Kahan theorem.



Wedin and Davis-Kahan

Theorem (Wedin sin theorem)

sin∠(v1, v
′
1) ≤ ‖E‖

δ
.

Corollary

For any small ε > 0, if δ ≥ ‖E‖ε , then

sin∠(v1, v
′
1) ≤ ε.

A and A + E are Hermitian: Davis-Kahan theorem.



Models of random noise

The entries of E are iid random variables with mean 0 and variance
1 (the value 1 is, of course, just matter of normalization).

Example. Bernoulli (±1), Gaussian.

We prefer Bernoulli over Gaussian:

(1) In real life situations, noise is not always Gaussian (in fact
rarely Gaussian).

(2) If one can analyze Bernoulli, one can analyze any distribution.



Models of random noise

The entries of E are iid random variables with mean 0 and variance
1 (the value 1 is, of course, just matter of normalization).

Example. Bernoulli (±1), Gaussian.

We prefer Bernoulli over Gaussian:

(1) In real life situations, noise is not always Gaussian (in fact
rarely Gaussian).

(2) If one can analyze Bernoulli, one can analyze any distribution.



Models of random noise

The entries of E are iid random variables with mean 0 and variance
1 (the value 1 is, of course, just matter of normalization).

Example. Bernoulli (±1), Gaussian.

We prefer Bernoulli over Gaussian:

(1) In real life situations, noise is not always Gaussian (in fact
rarely Gaussian).

(2) If one can analyze Bernoulli, one can analyze any distribution.



A classical bound

(Füredi-Kom’os) E‖ ≈ 2
√
n, with high probability.

Corollary

A gap δ ≥
√
n
δ guarantees (with high probability)

sin∠(v1, v
′
1) ≤ ε.



Numerical experiments
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A new phenomenon: Real dimension matters

Low dimensional data and improved bounds
In a large variety of problems, the data is of small dimension,
namely, r := rank A� n (e.g: Compress sensing, Candes-Tao)

FINDING. the efficient gap depends on the real dimension r ,
rather than the dimension n of the matrix.

Theorem

A gap δ ≥ C
√
r log n
ε . guarantees (with high probability)

sin∠(v1, v
′
1) ≤ ε. (1)

Proof combines ideas from theory of random matrices, high
dimensional geometry and concentration of measure.
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Directions of research

Eigenvalues.

Improve bounds.

Angles between subspaces.

Other models of random matrices (not iid entries).
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The eigenvalue problem

Problem. For a matrix A of size n × n with singular values
σ1 ≥ · · · ≥ σn ≥ 0. Compute 1, . . . , σk , for some k ≤ n.

Weyl bound

|σi − σ′i | ≤ ‖E‖ ≈ 2
√
n.
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A new method

Tao-V. Taylor’s expansion approach (from random matrix theory,
2009):

F (A + tE ) := F (A) + tF ′(A) +
t2

2!
F

′′
(A) + . . . .

Set t = 1,F := σ1 (or any parameter of interest).



Computing the derivatives

Set M(t) = A + tE .

M(t)v(t) := λ(t)v(t)

M ′v + Mv ′ = λ′v + λv ′.

vTM ′v + vTMv ′ = λ′vT v + λvT v ′.

But as vvT = 1, vv ′T = 0. So

vTEv = λ′.

E random, so Ev is almost orthogonal to v .

|vTEv | is small; |λ′| is small, so λ changes very little !!



Using randomness

Problem. The QR algorithm.
The QR algorithm (computing eigenvalues), dating to the early
1960s, is one of the jewels of numerical analysis. Its simplest form
below can be seen as a stable procudure for computing QR
factorization of the matrix power M,M2,M3....
The Algorithm.

Set M(0) := M.

For k = 1, 2, ... compute Q(k)R(k) = M(k−1)

Set M(k) := R(k)Q(k).



The resulting matrices M(k) converges to the Schur form of M
(upper -triangular of M is arbitrary and diagonal of M is
symmetric). Our interest is in the speed of convergence.

Theorem

Let the pure QR algorithm be applied to a real symmetric matrix
M with eigenvalues |λ1| > · · · > |λn| and whose corresponding
eigenvector matrix Q has all non-singular leading principal
submatrix. Rate of convergence

max
i

|λi |
|λi | − |λi+1|

.
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KEY ISSUE. maxj |λj+1|/|λj | can be very close to one. If this is
of order 1 + O(n−10), then the algorithm would take Ω(n10) steps.

In particular, the case when the matrix has eigenvalues with high
multiplicities is rather troublesome.

IDEA. Adding artificial randomness to speed up !!

Run the algorithm on M + εE where E is a random matrix.
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The added randomness should create a gap between consecutive
eigenvalues !!

But it also changes the eigenvalues slightly.

It requires a delicate trade-off. (Work in process with Terence Tao
(UCLA) and S. H. Teng (USC).)

Application in control theory. The eigenvectors of a random
graph do not have zero coordinate. (answered a question by M.
Meshabi, Complex Network meeting 2010).



The added randomness should create a gap between consecutive
eigenvalues !!

But it also changes the eigenvalues slightly.

It requires a delicate trade-off. (Work in process with Terence Tao
(UCLA) and S. H. Teng (USC).)

Application in control theory. The eigenvectors of a random
graph do not have zero coordinate. (answered a question by M.
Meshabi, Complex Network meeting 2010).



The added randomness should create a gap between consecutive
eigenvalues !!

But it also changes the eigenvalues slightly.

It requires a delicate trade-off. (Work in process with Terence Tao
(UCLA) and S. H. Teng (USC).)

Application in control theory. The eigenvectors of a random
graph do not have zero coordinate. (answered a question by M.
Meshabi, Complex Network meeting 2010).



The added randomness should create a gap between consecutive
eigenvalues !!

But it also changes the eigenvalues slightly.

It requires a delicate trade-off. (Work in process with Terence Tao
(UCLA) and S. H. Teng (USC).)

Application in control theory. The eigenvectors of a random
graph do not have zero coordinate. (answered a question by M.
Meshabi, Complex Network meeting 2010).


