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Mn : random n × n matrix with (complex) iid entries

eigenvalues : λ1(Mn), . . . , λn(Mn) ∈ C.

The k-point correlation function

ρ
(k)
n = ρ

(k)
n [Mn] : Ck → R+

satisfies

∫
Ck

F (z1, . . . , zk)ρ
(k)
n (z1, . . . , zk) dz1 . . . dzk

= E
∑

1≤i1,...,ik≤n, distinct

F (λi1(Mn), . . . , λik (Mn))
(1)

for all continuous, compactly supported test functions F , where dz
denotes Lebesgue measure on the complex plane C.
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The problem

Intuitively, ρ
(k)
n (z1, . . . , zk) (for distinct z1, . . . , zk) is the quantity

such that the probability that there is an eigenvalue of Mn in each
of the disks

{z : |z − zi | ≤ ε}

for i = 1, . . . , k is asymptotically

ρ
(k)
n (z1, . . . , zk)V .

Normalizing factor V = product of the areas of the disks.

Key Problem. Understand ρ
(k)
n (z1, . . . , zk) at local scale. (How

nearby eigenvalues interact ?)
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Gaussian models and Universality

Gaussian model: Entries are iid standard Gaussian (complex or
real).

In these cases, lots of eigenvalues statistics (global distribution,
fluctuation of individual eigenvalues, correlation functions etc) can
be computed explicitly.

Universality Phenomenon. All these statistics hold for all other
”reasonable” models.

We focus on the correlation functions.
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Hermitian matrices.

Universality at global scale: semi-circle law (Wigner, Anorld,
Pastur etc). (Tao’s and Guionnet’s talk)

Universality at local scale with respect to vague convergence:

lim

∫
F (z1, . . . , zk)ρ(z1, . . . , zk)dz1 . . . dzk ,

is universal with respect to all nice test function F .

Basically settled in the complex case: Universality under 2-moment
assumption.

Partially settled in the real case: Universality under 4-moment
assumption. 2-moment if use a weaker notation of convergence
(Erdos’ and Tao’s talks).
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Non-Hermitian matrices

Non-Hermitian case. All entries are iid (mean 0 and variance 1).

Methods used for Hermitian case usually fail.

Universality at global scale: circular law. (Chafai’s talk).

Universality at local scale with respect to vague convergence:
Nothing was known.
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Complex gaussian case

Explicit calculation:

ρ
(k)
n (z1, . . . , zk) = det(Kn(zi , zj))1≤i ,j≤k (2)

where

Kn(z ,w) :=
1

π
e−(|z|

2+|w |2)/2
n−1∑
j=0

(zw)j

j!
. (3)

Example.

ρ
(1)
n (z) = Kn(z , z) =

1

π
e−|z|

2
n−1∑
j=0

|z |2j

j!
. (4)

By Taylor expansion of e−|z|
2
,

ρ
(1)
n (
√

nz)→ 1

π
1|z|≤1

for almost every z ∈ C. This gives the circular law for complex
gaussian matrices (the eigenvalues are roughly uniformly
distributed in B(0,

√
n).
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Moment matching

Definition (Independent-entry matrices)

For k ≥ 0, we say two ensembles Mn = (ξij)1≤i ,j≤n and
M ′n = (ξ′ij)1≤i ,j≤n have matching moments to order k if one has

E<(ξij)
a=(ξij)

b = E<(ξ′ij)
a=(ξ′ij)

b (5)

whenever 1 ≤ i , j ≤ n, a, b ≥ 0 and a + b ≤ k .



Complex case: Four Moment Theorem

Theorem

Let Mn, M̃n be (complex) random matrices matching moments
with each other to fourth order. Let z0 ∈ C be bounded and
F : Ck → C be a nice test function. Then∫

Ck
F (w1, . . . ,wk)ρ

(k)
n (
√

nz0 + w1, . . . ,
√

nz0 + wk) dw1 . . . dwk =∫
Ck

F (w1, . . . ,wk)ρ̃
(k)
n (
√

nz0 + w1, . . . ,
√

nz0 + wk) dw1 . . . dwk + O(n−c)

for some absolute constant c > 0 (independent of k).

√
nz0 is a fixed base point

ρz0(w1, . . . ,wk) := ρ
(k)
n (
√

nz0 + w1, . . . ,
√

nz0 + wk).
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Real gaussian case

There are real eigenvalues. The spectrum splits:

λ1,R(Mn), . . . , λNR[Mn],R(Mn)

λ1,C+
(Mn), . . . , λNC+

[Mn],C+
(Mn)

in the upper half-plane C+ := {z ∈ C : =(z) > 0}

λ1,C+
(Mn), . . . , λNC+

(Mn).

NR + 2NC+
= n.



Mixed correlation functions

We need to work with the mixed correlation functions
ρ
(k,l)
n : Rk × Cl

+ → R+, defined for k , l ≥ 0 by the formula

∫
Rk

∫
Cl

+

F (x1, . . . , xk , z1, . . . , zl)ρ
(k,l)
n (x1, . . . , xk , z1, . . . , zl) dxi dzj

= E
∑

1≤i1<···<ik≤NR[Mn]

∑
1≤j1<···<jl≤NC+

[Mn]

F (λi1,R(Mn), . . . , λik ,R(Mn), λj1,C+
(Mn), . . . , λjl ,C+

(Mn)).

(6)



Intuitively, one can interpret ρ
(k,l)
n (x1, . . . , xk , z1, . . . , zl) (for

distinct x1, . . . , xk ∈ R and z1, . . . , zl ∈ C+) as the unique real
number such that the probability of simultaneously having an
eigenvalue of Mn in each of the intervals (xi − ε, xi + ε) for
i = 1, . . . , k and in each of the disks B(zj , ε) for j = 1, . . . , l is
asymptotically

ρ
(k,l)
n (x1, . . . , xk , z1, . . . , zl)(2ε)k(πε2)l .

In particular, ρk,0 reveals the correlation between the real
eigenvalues.

One can extend ρ
(k,l)
n from Rk × Cl in a natural way.
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The gaussian ensemble

The correlation functions ρ
(k,l)
n were computed by a variety of

methods (Akemann, Kanzieper,Lehmann, Sommers, Sinclair,
Wieczorek, Borodin, Forerster, May etc). The case for n odd and
even are different; for simplicity, we consider n even.

ρ
(k,l)
n (x1, . . . , xk , z1, . . . , zl) = Pf

(
K̃n(xi , xi ′) K̃n(xi , zj ′)

K̃n(zj , xi ′) K̃n(zj , zj ′)

)
1≤i ,i ′≤k;1≤j ,j ′≤l

.

K̃n : (R ∪ C+)× (R ∪ C+)→ M2(C) is a certain explicit 2× 2
matrix kernel obeying the anti-symmetry law

K̃ (ζ, ζ ′) = −K̃ (ζ ′, ζ)T . (7)



The gaussian ensemble

Theorem (Real eigenvalues of a real gaussian matrix)

Let Mn be drawn from the real gaussian ensemble. Then

(Edelman − Kostlan − Shub 94) ENR(Mn) =

√
2n

π
+ O(1)

and

(Forrester − Nagao 07) (Var NR(Mn) = (2−
√

2)

√
2n

π
+ o(
√

n)



Numerical experiment
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Figure: The spectrum of a random real gaussian 10, 000× 10, 000
matrix, with additional detail near the origin to show the concentration
on the real axis. Thanks to Ke Wang for the data and figure.
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Figure: The spectrum of a random real Bernoulli 10, 000× 10, 000
matrix, with additional detail near the origin. Thanks to Ke Wang for the
data and figure.



Real case: Four Moment Theorem

Theorem

Assume Mn and M̃n both match moments with the real gaussian
matrix ensemble to fourth order. Let k , l ≥ 0 be fixed integers, and
let let x0 and z0 ∈ C be bounded; F ,G are nice test functions.
Then∫

Rk

∫
Cl

F (y1, . . . , yk ,w1, . . . ,wl)ρ
(k,l)
n (
√

nx0 + y1, . . . ,
√

nx0 + yk ,

√
nz0 + w1, . . . ,

√
nz0 + wl) dw1 . . . dwldy1 . . . dyk

=

∫
Rk

∫
Cl

F (y1, . . . , yk ,w1, . . . ,wl)ρ̃
(k,l)
n (
√

nx0 + y1, . . . ,
√

nx0 + yk ,

√
nz0 + w1, . . . ,

√
nz0 + wl) dw1 . . . dwldy1 . . . dyk + O(n−c).

In this theorem, we have both real and complex base points.

ρx0,z0(y1, . . . , yk ,w1, . . . ,wl).
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Number of real eigenvalues

Theorem (Real eigenvalues of a real matrix)

Let Mn be real random matrix which matches moments with the
real gaussian matrix ensemble to fourth order. Then

ENR(Mn) =

√
2n

π
+ O(n1/2−c)

and
Var NR(Mn) = O(n1−c)

for some fixed c > 0. In particular, with probability 1− o(1)

NR(Mn) = (1 + o(1))

√
2n

π
.



Application: Central limit theorem

Theorem (Central limit theorem, gaussian case)

(Rider 04) Let Mn be drawn from the complex gaussian ensemble.
Let r > 0 be such that 1/r , r/n1/2 = o(1). Let B(z0, r) be a disk
in the bulk of the spectrum and NB(z0,r) be the number of
eigenvalues of Mn in the disk. Then

NB(z0,r) − r2

r1/2π−1/4
→ N(0, 1)R

Extension to general ensembles:

Theorem (Central limit theorem, general case)

Let Mn be a complex random matrix which matches moments with
the complex gaussian matrix ensemble to fourth order. Then the
same conclusion holds for r ≤ no(1).



Numerical experiments

The result must hold for all possible radii.
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 Gaussian
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Figure: The cumulative distribution function for the number of
eigenvalues in the disk B(0,

√
n/3) of real gaussian and real Bernoulli

matrices of size 10, 000× 10, 000, after normalizing the mean by n/9 and
variance by

√
n. Thanks to Ke Wang for the data and figure.



Application: Most eigenvalues are simple

Theorem (Most eigenvalues simple)

Let Mn be a random matrix (complex or real) which matches
moments with the real or complex gaussian matrix to fourth order.
Then with probability 1− O(n−c), at most O(n1−c) of the
complex eigenvalues, and O(n1/2−c) of the real eigenvalues, are
repeated, for some fixed c > 0.

Conjecture. All eigenvalues are simple.



Difficulties

Heat flow method does not seem to work.

The eigenvalues (being mostly complex) are not ordered.

The spectrum of non-Hermitian matrices can be very sensitive to a
small change.



The starting point

Instead of the Stieltjes’ transform, we look at the log-determinant

log | det(Mn − z)|

for a complex number parameter z

(Girko, Brown; Guionnet,
Chafai’s talk).

Connection:

log | det(Mn − z)| =
n∑

i=1

log |λi (Mn)− z |. (8)
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Zooming in: Jensen’s formula

f analytic on D := B(0, r); a1, a2, ..., an are the zeros of f in the
interior of D (counting multiplicity), and f (0)0:

log |f (0)| =
k∑

i=1

log
|ai |
r

+
1

2π

∫ 2π

0
log |f (re iθ)|dθ.

Applied Jensen’s formula:

log | det(Mn − z0)| = −
∑

1≤i≤n:λi (Mn)∈B(z0,r)

log
r

|λi (Mn)− z0|

+
1

2π

∫ 2π

0
log | det(Mn − z0 − re iθ)| dθ.

for any disk B(z0, r).
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Girko’s Hermitization trick

Thus (in principle, at least) information on the (joint) distribution
of the log-determinants log | det(Mn − z)| for various values of z
should lead to information on the eigenvalues of Mn, and in

particular on the k-point correlation functions ρ
(k)
n of Mn.

Girko Hermitization trick:

Wn,z :=
1√
n

(
0 Mn − z

(Mn − z)∗ 0

)
(9)

log | det(Mn − z)| =
1

2
log | det Wn,z |+

1

2
n log n. (10)
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should lead to information on the eigenvalues of Mn, and in

particular on the k-point correlation functions ρ
(k)
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Stieltjes’ transform of W :

sWn,z (E +
√
−1η) :=

1

2n

(
(Wn,z − E −

√
−1η)−1

)
.

log | det Wn,z | = log | det(Wn,z−
√
−1T )|−2n=

∫ T

0
sWn,z (

√
−1η) dη.

(11)
Thus, in principle at least, information on the distribution of the
Stieltjes transform sWn,z will imply information on the
log-determinant of Wn,z . This is the route taken, for instance, to
establish the circular law (Chaifai’s talk).



Trouble at the pole

Possible divergence or instability of the integral in (11) near η = 0.

Idea. Truncation; provided that one has adequate bounds on the
least singular value of Wn,z .

This can be done using (Inverse-) Littlewood-Offord theorems
Additive Combinatorics. One only needs a lower bound of the form
n−100, but much better (near optimal) bounds are known
(Rudelson’s talk).



Least singular value

Negative second moment identity (Tao-V. 05)

d−21 + · · ·+ d−2n = σ−21 + · · ·+ σ−2n .

di is the distance of row Xi to the hyperplane spanned by other
rows.

di = |a1ξ1 + . . . anξn| = |S |,

where (a1, . . . , an) is the (unit) normal vector and Xi = ξ1, . . . ,n ).

P(di < ε = P(S ∈ (−ε, ε)).



Union bound and Monte Carlo method

Significant technical issue : formulae involving integrals require one
to control the value of various random functions (log-determinants
or Stieltjes transforms) for an uncountable number of choices of
parameters such as z and η.

Can no longer directly use union bound to control exceptional
events when the expected control on these quantities fails.

Idea. We use Monte Carlo method (Combinatorics and
Theoretical compute science). This method enables us to use
random sampling arguments to replace many of these integral
expressions by discrete, random, approximations.



Lemma (Monte Carlo sampling lemma)

Let (X , µ) be a probability space, and let F : X → C be a
square-integrable function. Let m ≥ 1, let x1, . . . , xm be drawn
independently at random from X with distribution µ, and let S be
the empirical average

S :=
1

m
(F (x1) + · · ·+ F (xm)).

Then S has mean
∫
X F dµ and variance

∫
X (F −

∫
X F dµ)2 dµ. In

particular (by Chebyshev’s inequality)

P(|S −
∫
X

F dµ| ≥ λ) ≤ 1

mλ2

∫
X

(F −
∫
X

F dµ)2 dµ.



Monte Carlo method with large variance

If the variance is too large, the approximation is useless.

Smoothing. Find a smoothing function F0 such that
∫
X F0 = 0

and Var (F − F0) small.

Sample F − F0.

S :=
1

m
((F − F0)(x1) + · · ·+ (F − F0)(xm)).

The mean remains the same and variance gets smaller.

In applications, F involves the Laplacian ∆ of a function with
compact support; choose F0 = L∆ where L is linear.
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Four moment theorem for determinants

Theorem

Let c0 > 0 be a sufficiently small absolute constant. Let Mn,M
′
n

be random matrices which match each other to fourth order. Let
1 ≤ k ≤ nc0 , let C > 0 be fixed, and let z1, . . . , zm ∈ B(0,C

√
n).

Let G : Rm → C be a smooth function obeying the derivative
bounds

|∇jG (x1, . . . , xm)| � nc0

for all j = 0, . . . , 5 and x1, . . . , xm ∈ C, where ∇ denotes the
gradient in Rm. Then we have

EG (log | det(Mn − z1)|, . . . , log | det(Mn − zm)|)
= EG (log | det(M ′n − z1)|, . . . , log | det(M ′n − zm)|) + O(n−c0).

Proof. Swapping argument. The only place where four moments
matter.
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Error control via non-clustering

The spectrum is B(0,
√

n). A disk of radius r ≥ 1 is expected to
have O(r2) eigenvalues.

Non-clustering. Any disk of radius r ≥ 1 in B(0, 3
√

n) has
O(r2no(1)) eigenvalues, with overwhelming probability.

More is true:

Theorem (Local circular law)

Let Mn = (ξij)1≤i ,j≤n be which matches either the real or complex
gaussian matrix to third order. Then for any fixed C > 0, one has
with overwhelming probability that

NB(z0,r) =

∫
B(z0,r)

1

π
1|z|≤

√
n dz + O(no(1)r) (12)

uniformly for all z0 ∈ B(0,C
√

n) and all r ≥ 1.
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Remarks on the local law

The bound (12) is probably not best possible, even if one ignores
the no(1) term. In the complex gaussian case, Rider showed that
the variance of NB(z0,r) is O(r), suggesting a fluctuation of

O(no(1)r1/2) rather than O(no(1)r).

The local law was proved (about the same time) by Yau et. al.
They focused on disk in the bulk of the spectrum and required only
2 matching moment. Shortly after, they extended the result to the
edge, but required more moment. Very recent result of Yin (Dec
2012) claimed that one can have the edge result under 2 moment
assumption as well. The methods are totally different.
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Local law via Sharp concentration

Using Jensen’s formula and the Monte Carlo argument, we deduce
the Local Law from

Theorem (Concentration bound on log-determinant)

Let Mn be a random matrix matching the real or complex gaussian
ensemble to third order. Then for any fixed C > 0, and any
z0 ∈ B(0,C ), with overwhelming probability

log | det(Mn−z0
√

n)| =
1

2
n log n +

1

2
n(|z0|2−1)+no(1) for |z0| ≤ 1

log | det(Mn − z0
√

n)| =
1

2
n log n + n log |z0|+ no(1), for |z0| ≥ 1.
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Toy case. z0 = 0;

log | det Mn| =
1

2
n log n − 1

2
n + no(1).

The upper bound is easy, via Turán’s identity
E| det Mn|2 = n! ≈ (n/e)n.
Using Swapping method, it suffices to verify the gaussian case

Theorem

The statement holds when Mn is drawn from the real or complex
gaussian ensemble.
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Tridiagonalisation of GUE

Tridiagonalisation of GUE matrices (Trotter) Edelman’s talk:

M ′n =



a1 b1 0 . . . 0 0
b1 a2 b2 . . . 0 0
0 b2 a3 . . . 0 0
...

...
...

. . .
...

...
0 0 0 . . . an−1 bn−1
0 0 0 . . . bn−1 an


a1, . . . , an ≡ N(0, 1)R being standard real Gaussians, and each bi

having a χ-distribution (all independent)

bi = (
i∑

j=1

|zi ,j |2)1/2

where zi ,j ≡ N(0, 1)C are iid complex gaussians. Then the joint
eigenvalue distribution of GUE is identical to the joint eigenvalue
distribution of M ′n.



Hessenberg form

Lemma

Let Mn be a complex gaussian matrix, and let M ′n be the random
matrix

M ′n =



ξ11 χn−1,C 0 0 . . . 0

ξ21 ξ22 χn−2,C 0 . . . 0

ξ31 ξ32 ξ33 χn−3,C . . . 0
...

...
...

...
. . .

...
ξ(n−1)1 ξ(n−1)2 ξ(n−1)3 ξ(n−1)4 . . . χ1,C
ξn1 ξn2 ξn3 ξn4 . . . ξnn


where ξij for 1 ≤ j ≤ i ≤ n are iid copies of the complex gaussian
N(0, 1)C, and for each 1 ≤ i ≤ n − 1, χi ,C is a complex χ
distribution of i degrees of freedom. The the two matrices have
the same spectrum distribution.

First showed by Krisnapur and Virag (2011).



Lower triangular form

The next step is to apply a proper linear operator (preserving the
determinant) to bring M ′n − z0 into a lower triangular matrix.
The diagonal entries of this matrix are

(
√
|a1|2 + χ2

n−1,C,
√
|a2|2 + χ2

n−2,C, . . . ,
√
|an−1|2 + χ2

1,C, an).

a1 := N(0, 1)C − z0
√

n (13)

ai+1 :=
−z0
√

nai√
|ai |2 + χ2

n−i ,C

+ N(0, 1)C. (14)

Key. Show that the ai behave as expected, with high probability.
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Divide and Conquer Martingale

Let Y = Y (ξ1, . . . , ξn) be a random variable depending on
independent atom variables ξi ∈ C. For 1 ≤ i ≤ n and
ξ = (ξ1, . . . , ξn) ∈ Cn, define the martingale differences

Ci (ξ) := |E(Y |ξ1, . . . , ξi )− E(Y |ξ1, . . . , ξi−1)|.
Azuma (1960s): Ci ≤ αi with probability one, then

P

|Y − EY | ≥ λ

√√√√ n∑
i=1

α2
i

 ≤ exp(−cλ2).

In applications, the assumption that Ci ≤ αi with probability one
usually fails. We have this refinement:

P

|Y − EY | ≥ λ

√√√√ n∑
i=1

α2
i

 ≤ exp(−cλ2) +
n∑

i=1

P(Ci (ξ) ≥ αi ).
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Open questions

Reduce the number of moments ?

Gauss divisible models ?

Distribution of the ”largest” eigenvalue ? (known in the gaussian
case; Rider).

Distribution of the permanent ?
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