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Models of random matrices

Random covariance matrix (Wishart matrix). Hn,p is an n × p
matrix with independent entries having mean zero and variance
one. Set

Gn = Hn,pH∗n,p.

Random (hermitian) matrix with independent entries. Mn is
an n × n hermitian matrix with independent (upper triangular)
entries having mean zero and variance one. (The diagonal entries
may have a different variance.)

Random (non-hermitian) matrix with independent entries.
Mn is an n × n matrix with n2 independent entries having mean
zero and variance one.



Motivations:

Statistics (Wishart 1928) Sample covariance matrices;
Hypothesis testing:

Numerical analysis (von Neuman-Goldstine 1947) Complexity
of linear algebraic algorithms on random inputs.

Physics (Wigner 1950)



More recent motivations/connections

Probability theory (limiting distributions)

Spectral graph theory (relations between eigenvalues and
graph properties)

Number theory (distribution of roots of zeta functions)

Combinatorics (longest increasing subsequences)

Computer science/data analysis (effect of random noise;
analysis of random data)



Hermitian case: Wigner matrices

A Wigner Hermitian matrix (of size n) is a random Hermitian n× n
matrix Mn with upper triangular complex entries ζij := ξij +

√
−1τij

(1 ≤ i < j ≤ n) and diagonal real entries ξii (1 ≤ i ≤ n) where

For 1 ≤ i < j ≤ n, ξij , τij are iid copies of a real random
variable ξ with mean zero and variance 1/2.

For 1 ≤ i ≤ n, ξii are iid copies of a real random variable ξ̃
with mean zero and variance σ2.



Generalizations

We will focus on the Wigner model for the sake of convenience.

The results hold for more general models, both real and complex.

Similar results hold for Gn = Hn,pHT
n,p (Wishart model; hermitian

but not independent) .
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Scaling

We refer to

ξ, ξ̃ as the atom distributions of Mn, and ξij , τij as the atom
variables;

Wn := 1√
n

Mn as the coarse-scale normalized Wigner

Hermitian matrix;

An :=
√

nMn as the fine-scale normalized Wigner Hermitian
matrix.

It is well known that ‖Mn‖ = Θ(
√

n) with high probability.

The coarse-scale normalization Wn places all the eigenvalues
in a bounded interval [−2, 2].

The fine-scale normalization An keeps the spacing between
adjacent eigenvalues to be roughly of unit size.



Gaussian matrices

Example

An important special case of a Wigner Hermitian matrix is the
gaussian unitary ensemble (GUE), in which ξ, ξ̃ are gaussian
random variables with mean zero and variance 1/2, 1 respectively.

If one consider matrices with real Gaussian entries, then the
corresponding example is the gaussian orthogonal ensemble (GOE).



The goal of the theory

The main goal of the theory of random matrices is to understand
the behavior of the eigenvalues.

We consider the eigenvalues in increasing order

λ1 ≤ λ2 ≤ · · · ≤ λn.



The Global Distribution: Wigner Semi-Circle Law

The global distribution of the eigenvalues is well understood.
Denote by ρsc the semi-circle density function with support on
[−2, 2],

ρsc(x) :=

{
1
2π

√
4− x2, |x | ≤ 2

0, |x | > 2.
(1)

Theorem (Wigner Semi-circular law, 1950s; Full generality: Pastur
60s)

Let Mn be a Wigner Hermitian matrix. Then for any real number
x,

lim
n→∞

1

n
|{1 ≤ i ≤ n : λi (Wn) ≤ x}| =

∫ x

−2
ρsc(y) dy

in the sense of probability (and also in the almost sure sense, if the
Mn are all minors of the same infinite Wigner Hermitian matrix).
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Local Statistics

The main open problem is to understand the Local Statistics.

Distribution of the gaps between consecutive eigenvalues.
(How many 1 ≤ i ≤ n are there such that λi+1 − λi ≤ s ?)

k-point correlation functions.

Distribution of individual λi , for any 1 ≤ i ≤ n.

More generally, one wants to know the limiting joint
distribution of (λi1 , . . . , λik ), for any given
1 ≤ i1 < ... < ik ≤ n.
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The GUE case: Ginibre’s formula

Ginibre’s formula of the joint distribution of the eigenvalues
(non-ordered)

ρ(x1, . . . , xn) = c(n)
∏

1≤i<j≤n
|xj − xi |2 exp(−1

2

n∑
i=1

x2
i ).

This is due to the fact that a matrix from GUE enjoys the
decomposition

M = UDU∗

where U is a random unitary matrix and D is an independent
diagonal matrix. (The measure of GUE is unitary invariance. )



Many local statistics can be computed directly from the above
joint distribution by integration or via the fact that the
corresponding point process is determinatal.

Example. To compute the distribution of the smallest singular
value (von Neumann-Goldstine problem)

P(no eigenvalue in [−θ, θ]) =

∫
(R\[−θ,θ])n

ρ(x1, . . . , xn)dx1 . . . dxn.

(explicit formula given by Jimbo et. al.)
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Distribution of the gaps

For a vector x = (x1, . . . , xn) where x1 < x2 · · · < xn, define the
normalized gap distribution Sn(s; x) as

Sn(s; x) :=
1

n
|{1 ≤ i ≤ n : xi+1 − xi ≤ s}|.

One is interested in the distribution of Sn(s;λ), with
λ = (λ1, . . . , λn). In particular

F1(s) := ESn(s, λ); F2(s) = ES2
n (s, λ); etc



k-correlation functions

∫
f (x1, . . . , xk)ρkn(x1, . . . , xk)dx1 . . . dxk = E

∑
1≤i1<···<ik≤n

f (λi1 , . . . , λik ).

One can also define ρ
(k)
n (x1, . . . , xk) to be the quantity such that

the probability that there is an eigenvalue of Mn in each of the
intervals {x : |x − xi | ≤ ε} for i = 1, . . . , k is asymptotically

(ρ
(k)
n (x1, . . . , xk) + o(1))(πε2)k in the limit ε→ 0+.

From the correlation functions, one can compute several interesting
statistics (using simple inclusion-exclusion arguments) such as: the
gap distribution, the probability that an interval (of length Θ(1/n))
is empty, the probability that an interval has exactly k eigenvalues.
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k-point correlation functions

∫
I ρ

1
n(x)dx computes the expectation of the number of eigenvalues

in I : ∫
I
ρ1n(x)dx =

n∑
i=1

P(λi ∈ I ).

∫
I×J ρ

2
n(x , y)dxdy computes the expectation of the number of pairs

of eigenvalues λi , λj where λi ∈ I , λj ∈ J.∫
I×J

ρ2n(x , y)dxdy =
n∑

i ,j=1

P(λi ∈ I ∧ λj ∈ J).



Consider a small neighborhood around a point u in the spectrum
(nu in the fine-scale model).

lim
n→∞

1

ρsc(u)k

∫
Rk

f (t1, . . . , tk)ρ
(k)
n (nu+

t1
ρsc(u)

, . . . , nu+
tk

ρsc(u)
) dt1 . . . dtk .

Correlation in a small neighborhood around u.



Joint distribution of few eigenvalues

For any 1 ≤ i ≤ n, consider λi in the ordered sequence

λ1 ≤ · · · ≤ λn.

Does λi−µ(i ,n)
σ(i ,n) → a limiting distribution ? What is the limiting

distribution ?

In general one wants to know the joint distribution of (λi1 , . . . , λik )
(after a proper normalization), for any 1 ≤ i1 < · · · < ik ≤ n.
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A hierarchy of problems

From the k-point correlation one can compute the gap distribution
(inclusion-exclusion).

From the joint distribution of any (ordered) k eigenvalues one can
(in principle) deduce the k-point correlation functions.∫

I×J
ρ2n(x , y)dxdy =

n∑
i ,j=1

P(λi ∈ I ∧ λj ∈ J).

Gap problem < −−−−− k-correlation problem < −−−−−
Joint distribution of (ordered) k eigenvalues.

We will first focus on the last problem.
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GUE statistics: Gap distribution

It is known (due to Dyson-Mehta) that

F (s) := lim
n→∞

ESn(s, λ(An)) =

∫ s

0
p(σ)dσ, (2)

where An :=
√

nMn is the fine-scale normalization of Mn, and p(σ)
is the Gaudin distribution, given by the formula

p(s) :=
d2

ds2
det(I − K )L2(0,s),

where K is the integral operator on L2((0, s)) with the Dyson sine
kernel

K (x , y) :=
sinπ(x − y)

π(x − y)
. (3)



GUE statistics: k-correlation functions

For GUE, it was established by Gaudin and Mehta that

ρ
(k)
n (x1, . . . , xk) = det(Kn(xi , xj))1≤i ,j≤k

where the kernel Kn(x , y) is given by the formula

Kn(x , y) :=
1√
2n

e−
1
4n
(x2+y2)

n−1∑
j=0

hj(
x√
2n

)hj(
y√
2n

)

and h0, . . . , hn−1 are the first n Hermite polynomials, normalized to
be orthonormal with respect to e−x

2
dx .



GUE statistics: Dyson kernel

From this and the asymptotics of Hermite polynomials, it was
shown by Dyson that

lim
n→∞

1

ρsc(u)k
ρ
(k)
n (nu+

t1
ρsc(u)

, . . . , nu+
tk

ρsc(u)
) = det(K (ti , tj))1≤i ,j≤k ,

(4)
for any fixed −2 < u < 2 and real numbers t1, . . . , tk , where K is
the Dyson sine kerne. (Universal in u.)



GUE statistics: Gaps in a small neighborhood

Let ln be any sequence of numbers tending to infinity such that
ln/n tends to zero. Define

S̃n(s; x , u) :=
1

ln
|{1 ≤ i ≤ n : xi+1−xi ≤

s

ρsc(u)
, |xi−nu| ≤ ln

ρsc(u)
}|.

(5)
It is proved (Deift et. al.) that for any fixed −2 < u < 2, we have

lim
n→∞

ES̃n(s;λ(An), u) =

∫ s

0
p(σ)dσ. (6)



GUE statistics: Fluctuation at the edge

The large (edge) eigenvalues (such as λ1, λ2 or λn) fluctuate
according to the Tracy-Widom law. Consider λ1 of Wn = 1√

n
Mn,

so λ1 ≈ −2. One has

(λ1 + 2)n2/3 → TW .

An interesting point here is that the fluctuation is of order n−2/3,
not n−1. (The semi-circular function decays sharply at the edge.)

Tracy and Widom computed the limiting joint distribution of
(λ1, . . . , λk) (after a proper normalization).



GUE statistics: Fluctuation in the bulk

Gustavsson (2005) (based on earlier works of Soshnyikov and
Costin-Lebowitz) proved that a bulk eigenvalue has gaussian
fluctuation.
To be precise choose an index i = i(n) such that i/n→ c as
n→∞ for some 0 < c < 1, let Mn be drawn from the GUE and
An :=

√
nMn. Then√

4− t(c)2

2

λi (An)− t(c)n√
log n

→ N(0, 1)

in the sense of distributions, where t(c) can be computed from the
semi-circular function. More informally,

λi (Mn) ≈ t(c)
√

n + N(0,
2 log n

(4− t(c)2)n
).

The result extends to the joint distribution of k eigenvalues.



The Universality Phenomenon

It is generally believed (with strong numerical evidence) that the
local distributions are Universal, namely that results such as the
above should hold for Wigner matrices, or even more general
classes of random matrices.

We will focus on the bulk of the spectrum (interval [−2 + ε, 2− ε]).
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Numerical evidence: Gap distributions
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Numerical evidence: Distribution at the edge
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Numerical evidence: Distribution in the bulk
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Universality Results: Gauss divisible matrices

Consider a ”mixed” model

Mn = c1Hn + c2Gn

where Hn is a Wigner matrix, and Gn is from GUE, c1, c2 are
positive constants such that c2

1 + c2
2 = 1.

Theorem (Johansson 2001)

The gap distribution of a Johansson matrix is the same as for GUE
as n→∞. The k-point correlation is also universal in the weak
sense

lim
n→

∫
f (x1, . . . , xk)ρ

(k)
n (x1, . . . , xk)dx1 . . . dxk →∫

f (x1, . . . , xk) det(Kn(xi , xj))1≤i ,j≤kdx1 . . . dxk .

Method. Johansson matrices still admit an explicit joint
distribution.

Erdös et. al. (2010) The theorem still holds if c2 is n−1+δ for some
constant δ > 0.
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Recently (2009-2011) Erdős et. al. proved average universality of
k correlation functions under various assumptions

lim
b→0

1

2b

∫ u+b

u−b
lim
n→∞

∫
f (x1, . . . , xk)ρ

(k)
n (x1, . . . , xk)dx1 . . . dxk →

∫
f (x1, . . . , xk) det(Kn(xi , xj))1≤i ,j≤kdx1 . . . dxk .

The original assumption was that the atom variables are very
smooth (6 times differentiable with polynomially bounded
derivatives) with some lob-Sobolev property.
The newest improvement (Erdős-Jin-Yau, 2010-2011) removed the
smooth assumption completely. The method works for real and
quaternion matrices as well.

Problem. The extra averaging (double integral).
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Rate of Convergence

In 2002, Bai, Miao, Tsay showed that the spectrum of Mn

converges to Wigner law at rate n−1/2, using the Stieljes transform
method.

In 2008, Erdős-Schlein-Yau refined this method to show strong rate
n−1+ε.

Their techniques play an important role in both our and Erdős et.
al. approach to the universality conjectures, in different ways.
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Works on invariant models:

ρ(x1, . . . , xn) = c(n)
∏

1≤i<j≤n
|xj − xi |β exp(−V (x1, . . . , xn)).

Deift, Kriecherbauer, McLaughlin, Venakides and Zhou, Pastur and
Shcherbina, Bleher and Its (universality in u and V ).



The four moment theorem

Informal: If the first four moments of two atom variables ξ and ξ′

match, then the joint distribution of (λi1 , . . . , λik ) and (λ′i1 , . . . , λ
′
ik

)
are asymptotically the same, for any 1 ≤ i1 < · · · < ik ≤ n.

One can deduce

Universality of gaussian fluctuation, under Four Moments
assumption.

Universality of Tracy-Widom law (at the edge), under Two
Moments assumption (and no symmetry).

Universality of k-point correlation and Gap distribution, under
Two moments assumption.
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Definition (Moment matching)

We say that two complex random variables ξ and ξ′ match to order
k if

E<(ζ)m=(ζ)l = E<(ζ ′)m=(ζ ′)l

for all m, l ≥ 0 such that m + l ≤ k .



Four moment theorem, informal version

Theorem (Tao-V. 2009)

There is a positive constant c such that for every fixed k ≥ 1 the
following holds. Let Mn = (ζij)1≤i ,j≤n and M ′n = (ζ ′ij)1≤i ,j≤n be
two random matrices satisfying

Eζij = 0,E|ζij |2 = 1.

E|ζij |C ,E|ζ ′ij |C <∞ for a sufficiently large C (C = 104).

Any 1 ≤ i < j ≤ n, ζij and ζ ′ij match to order 4 and for any
1 ≤ i ≤ n, ζii and ζ ′ii match to order 2.

Then for any k tuples 1 ≤ i1 < · · · < ik ≤ n and a ”nice” domain
D ∈ Rk ,

|P((λi1 , . . . , λik ) ∈ D)− P((λ′i1 , . . . , λ
′
ik

) ∈ D)| ≤ n−c .

Remark. We always assume the first moment is zero and the
second is 1, so the matching assumption is actually about the third
and forth moments.



Four moment theorem, formal version

Theorem (Four Moment Theorem)

There is a small positive constant c0 such that for integer k ≥ 1
the following holds. Let Mn = (ζij)1≤i ,j≤n and M ′n = (ζ ′ij)1≤i ,j≤n be
two random matrices satisfying C1 (with some sufficiently large
parameter C0). Assume furthermore that for any 1 ≤ i < j ≤ n, ζij
and ζ ′ij match to order 4 and for any 1 ≤ i ≤ n, ζii and ζ ′ii match

to order 2. Set An :=
√

nMn and A′n :=
√

nM ′n, and let
G : Rk → R be a smooth function obeying the derivative bounds

|∇jG (x)| ≤ nc0 (7)

for all 0 ≤ j ≤ 5 and x ∈ Rk . Then for any
1 ≤ i1 < i2 · · · < ik ≤ n, and for n sufficiently large we have

|E(G (λi1(An), . . . , λik (An)))− E(G (λi1(A′n), . . . , λik (A′n)))| ≤ n−c0 .
(8)



Consequences: Universality of Gaussian Fluctuation

Corollary (Universality of gaussian fluctuation)

The conclusion of Gustavsson theorem holds for any other Wigner
Hermitian matrix Mn whose atom distribution ξ satisfies Eξ3 = 0
and Eξ4 = 3

4 . In words, the bulk eigenvalues of such a matrix has
gaussian fluctuation.

The same statement holds for the universality of the asymptotic
joint distribution law for any k eigenvalues λi1(Mn), . . . , λik (Mn) in
the bulk of the spectrum of a Wigner Hermitian matrix for any
fixed k (the GUE case is treated by Gustavsson). The real case is
treated recently by O’ Rourke (2010)



Consequences: Universality of the gap distribution

Corollary (Universality of the gap distribution)

The limiting gap distribution of GUE holds for random Hermitian
matrices whose whose entries have mean zero, variance one and
bounded C th moment, for a sufficiently large constant C and has
support on at least 3 points.

Note that in contrast to previous applications, we are making NO
assumptions on the third and fourth moments of the atom
distribution ξ.



The extra observation here is that we do not always need to
compare Mn with GUE . We can compare Mn with any model
where the desired statistics have been computed.

In this case, we are going to compare Mn with a Johansson matrix.
The definition of Johansson matrices provides etra degrees of
freedom, and we can use them to remove the condition of the third
and fourth moments.
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Recall that the atom variable in a Johansson matrix is of the form
c1ξ
′ + c2N(0, 1), where c2

1 + c2
2 = 1. Given a Wigner matrix Mn

with atom variable ξ, we want to show that there is a Johansson
variable that match ξ in the first four moments. This is a special
case of the classical truncated moment problem (Hamburger).

Lemma (Truncated moment matching problem)

For any variable ξ with mean 0 and variance 1 and support on at
least 3 points, there is a random variable ξ′ with mean 0 and
variance 1, and two numbers 0 < c1, c2 < 1 such that c2

1 + c2
2 = 1

and the first four moments of c1ξ
′ + c2N(0, 1) and ξ match.

One can remove the 3 points assumption (ERSTVY) by an
additional trick.



Consequences: Universality of the k-correlation function

One can use an asymptotic version of the Four moment theorem,
combined with the above argument and a recent localization result
of Erdos-Yau-Yin to prove the (local) Unviversality of the k-point
correlation function.

Theorem (Universality of correlation function)

Fix ε > 0 and u such that −2 < u − ε < u + ε < 2. Let k ≥ 1 and
let f : Rk → R be a continuous, compactly supported function,
and let M = Mn be a Wigner random matrix whose entries have
mean zero, variance one and bounded C th moment, for a
sufficiently large C . Then

lim
n→∞

1

ρsc(u)k

∫
Rk

f (t1, . . . , tk)ρ
(k)
n (nu+

t1
ρsc(u)

, . . . , nu+
tk

ρsc(u)
) dt1 . . . dtk

→
∫

f (x1, . . . , xk) det(Kn(xi , xj))1≤i ,j≤kdx1 . . . dxk .



Mehta conjecture (1967) for Hermitian complex matrices.

Extension to generalized Wigner matrices: Erdős-Yau (2012).

Open question. Mehta conjecture for random real symmetric
matrices ?

The above theorem holds with 4 moment assumption (as one does
not have Johansson type results).
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Mehta conjecture (1967) for Hermitian complex matrices.

Extension to generalized Wigner matrices: Erdős-Yau (2012).

Open question. Mehta conjecture for random real symmetric
matrices ?

The above theorem holds with 4 moment assumption (as one does
not have Johansson type results).



Extensions of Four Moment theorem

Beyond the Wigner model. The entries do not need to be iid,
and can be either real or complex. In the complex case, the real
part and the imaginary part are not necessarily independent.
Random covariance matrices. Four moment theorem holds for
Random covariance matrices, as far as lim p

n tends to a positive
constant.



Necessity of Four moments

Theorem

Let Wn,W
′
n be Wigner matrices whose atom variables η, η′ satisfy

Eη3 = E(η′)3 = 0 but their fourth moments are different
Eη4 6= E(η′)4. As before, write λi := λi (Wn) and λ′i := λi (W ′

n).
Then for all sufficiently large n, one has

n∑
i=1

|Eλi − Eλ′i | ≥ κ

for some κ depending only on the atom distributions.

On average, eigenvalues move by a considerable amount once the
forth moment changes.
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Eigenvalues’ dance

For δn ≤ i ≤ (1− δ)n with δ > 0 fixed, one has

Eλi = n1/2γi + n−1/2Ci ,n +
1

4
√

n
(γ3i − 2γi )Eη4 + Oδ(n−1/2−c)

for some absolute constant c > 0, where Ci ,n is some bounded
quantity depending only on i , n (in particular independent of η).

This conjecture would imply that if one increases the forth
moment, then (in expectation) those λi with γi ≤ −

√
2 or

0 ≤ γi ≤
√

2 are shift to the left (decreasing), while those λi with
γi ≥

√
2 or 0 ≥ γi ≥ −

√
2 are shifted to the right (increasing). In

other words, the eigenvalues in the middle move toward the center
of the spectrum, while those closer to the edge move outward.



Non-hermitian matrices

Mn has n2 iid entries with mean 0 and variance 1. The eigenvalues
are now typically complex .

Global law: Circular Law. The limiting distribution of the
spectrum of 1√

n
Mn is uniform on the unit circle.

(Conjectured in the 1950s.)

Partial results: Ginibre (1960s), Edelman, Girko (80s), Bai (90s),
Götze-Tikhomirov, Pan-Zhou, Tao-V. (around 2005).

Full generality: Tao-V. (2006). Important ingredient. Inverse
Littlewood-Offord theorems from additive combinatorics.

Extension. Krisnapur-Tao-V., Soshnikov et. al.,
Götze-Tikhomirov, Chafai, Hoi Nguyen, etc. (2006-2012)
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Matrix with complex entries: Correlation functions

Definition.

∫
Ck

F (z1, . . . , zk)ρ
(k)
n (z1, . . . , zk) dz1 . . . dzk

= E
∑

1≤i1<···<ik≤n
F (λi1(Mn), . . . , λik (Mn))

(9)

for all continuous, compactly supported test functions F .

Equivalent: ρ
(k)
n (z1, . . . , zk) for distinct z1, . . . , zk is the quantity

such that the probability that there is an eigenvalue of Mn in each
of the disks {z : |z − zi | ≤ ε} for i = 1, . . . , k is asymptotically

(ρ
(k)
n (z1, . . . , zk) + o(1))(πε2)k in the limit ε→ 0+.
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The Gaussian case

The entries ξij are iid with the distribution of a complex gaussian
N(0, 1)C with mean zero and variance one. The correlation
functions of a complex gaussian matrix are given by the explicit
formula

ρ
(k)
n (z1, . . . , zk) = det(Kn(zi , zj))1≤i ,j≤k (10)

where Kn : C× C→ C is the kernel

Kn(z ,w) :=
1

π
e−(|z|

2+|w |2)/2
n−1∑
j=0

(zw)j

j!
. (11)



In particular, one has

ρ
(1)
n (z) = Kn(z , z) =

1

π
e−|z|

2
n−1∑
j=0

|z |2j

j!
. (12)

Thus (by Taylor expansion of e−|z|
2
) one has the asymptotic

ρ
(1)
n (
√

nz)→ 1

π
1|z|≤1

as n→∞ for almost every z ∈ C. This gives the circular law for
complex gaussian matrices.



Four Moment theorem for the correlation functions

Recently (2012), we succeeded to prove a Four moment theorem
for non-hermitian matrices:

Theorem (Four Moment Theorem for complex matrices)

Let Mn, M̃n be independent-entry matrix ensembles with
independent real and imaginary parts, having vanishing third
moment, and the fourth moments match. Then for any compactly
support continuous test function F∫

Ck
F (w1, . . . ,wk)ρ

(k)
n (
√

nz1 + w1, . . . ,
√

nzk + wk) dw1 . . . dwk =∫
Ck

F (w1, . . . ,wk)ρ̃
(k)
n (
√

nz1 + w1, . . . ,
√

nzk + wk) dw1 . . . dwk + o(1).

Better (polynomial) error term if F is smooth.
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Matrices with real entries: Correlation functions

The real entries have the effect of forcing the spectrum
λ1(Mn), . . . , λn(Mn) to split into a union of real eigenvalues and
pairs of conjugate complex eigenvalues.

Because of this additional structure of the eigenvalues, we need to

work with the correlation functions ρ
(k,l)
n : Rk × Cl

+ → R+, defined
for fixed k , l ≥ 0 by the formula

∫
Rk

∫
Cl

+

F (x1, . . . , xk , z1, . . . , zl)ρ
(k,l)
n (x1, . . . , xk , z1, . . . , zl) dx1 . . . dxkdz1 . . . dzl

= E
∑

1≤i1<···<ik≤NR[Mn]

∑
1≤j1<···<jl≤NC+

[Mn]

F (λi1,R(Mn), . . . , λik ,R(Mn), λj1,C+
(Mn), . . . , λjl ,C+

(Mn)).

(13)



Again, one can interpret ρ
(k,l)
n (x1, . . . , xk , z1, . . . , zl) as the unique

real number such that, as ε→ 0, the probability of simultaneously
having an eigenvalue of Mn in each of the intervals (xi − ε, xi + ε)
for i = 1, . . . , k and in each of the disks B(zj , ε) for j = 1, . . . , l is
equal to

(1 + o(1))ρ
(k,l)
n (x1, . . . , xk , z1, . . . , zl)(2ε)k(πε2)l

in the limit as ε→ 0.



The Gaussian case

When Mn is given by the real gaussian ensemble, the correlation

functions ρ
(k,l)
n were computed by a variety of methods, for both

odd and even n, (Edelman, Sommers-Wieczorec, Borodin-Sinclair
etc) building in turn on the foundational work of Ginibre.

The precise formulae for these correlation functions are somewhat
complicated and involve Pfaffians of a certain 2× 2 matrix kernel.

The parity of n also matters. To avoid technicality we assume n is
even.
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Four moment theorem for real matrices

Theorem (Four Moment Theorem for real matrices)

Let Mn, M̃n be independent-entry matrix ensembles with real
coefficients, Let k, l ≥ 0 be fixed integers, and let let x1, . . . , xk
and z1, . . . , zl ∈ C be bounded. Assume that n is even and F is a
compactly supported continuous test function. Then∫

Rk

∫
Cl

F (y1, . . . , yk ,w1, . . . ,wl)ρ
(k,l)
n (
√

nx1 + y1, . . . ,
√

nxk + yk ,

√
nz1 + w1, . . . ,

√
nzl + wl) dw1 . . . dwldy1 . . . dyk

=

∫
Rk

∫
Cl

F (y1, . . . , yk ,w1, . . . ,wl)ρ̃
(k,l)
n (
√

nx1 + y1, . . . ,
√

nxk + yk ,

√
nz1 + w1, . . . ,

√
nzl + wl) dw1 . . . dwldy1 . . . dyk + o(1).



Application: Number of real eigenvalues

Let NR(Mn) denote the number of real zeroes of a random matrix
Mn. We have the following asymptotics:

Theorem (Real eigenvalues of a real gaussian matrix)

Let Mn be drawn from the real gaussian ensemble. Then

ENR(Mn) =

√
2n

π
+ O(1) Edelman

and

NR(Mn) = (2−
√

2)

√
2n

π
+ o(
√

n) Forrester − Nagao



By using the above universality results, we may partially extend
this result to more general ensembles:

Theorem (Real eigenvalues of a real matrix)

Let Mn be an independent-entry matrix ensemble with real
coefficients which matches moments with the real gaussian matrix
ensemble to fourth order. Assume n is even. Then

ENR(Mn) =

√
2n

π
+ O(n1/2−c)

and
NR(Mn) = O(n1−c)

for some fixed c > 0.

In particular, from Chebyshev’s inequality, we have

NR(Mn) =

√
2n

π
+ O(n1/2−c ′)

with probability 1− O(n−c
′
), for some fixed c ′ > 0.



Ideas: Distribution via bump functions

Assume that we want to estimate P(X ∈ I ) for some random
variable X and an interval I . We have

P(X ∈ I ) = EχI (X )

where χI (u) = 1 if u ∈ I and 0 otherwise.
Replace χI be a smooth bump function G , we have

P(X ∈ I ) ≈ E(G (X )).

As G is smooth, we can make use of Taylor expansion

G (u) = G (0) + G ′(0)u + G
′′

(0)u2/2 + . . . .
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Lindeberg method: Central limit theorem

Lindeberg replacement method

Sn :=
ξ1 + · · ·+ ξn√

n
→ N(0, 1).

Trivial for ξi being gaussian. Replace ξi with gaussian one at a
time.

Recent applications: Chatterjee, Krishnapur.



Lindeberg method: Eigenvalues

Fix all but one entry of An (say ζpq). Switch ζpq to ζ ′pq. Show that
the impact on λi is negligible.

λ := λi ; z := ζpq;λ′ := λ′i ; z ′ := ζ ′pq.

We want to estimate

EG (λ)− EG (λ′).



G (λ) = G (λ(z)) := F (z).

F (z) = F (0) + F ′(0)z + F
′′

(0)z2/2 + ...

EG (λ)−EG (λ′) = EF (z)−EF (z ′) = F (0)(1−1)+F ′(0)(z−z ′)+
1

2
F

′′
(0)(z2−z ′2)+....

If the first four moments of z and z ′ match, then the first 5 terms
vanish. The remaining term is at most

sup
x
|F v (x)|E(|z |5 + |z ′|5).



Computing of the derivatives

We use Hadamard variation formulae for the derivatives of
λi (A(t)), which can be derived for instance by repeatedly
differentiating the eigenvector equation
A(t)ui (A(t)) = λi (A(t))ui (A(t)). The formula for the first
derivative is

d

dt
λi (A(t)) = ui (A(t))∗A′(0)ui (A(t)).

The second derivative formula reads

d2

dt2
λi (A(t)) = −2

∑
j 6=i

|ui (A(t))∗A′(0)uj(A(t))|2

λj(A(t))− λi (A(t))
.

Further derivatives can be computed with recursive formulae.



Lemma (Main Lemma 1)

|F k(x)| ≤ n−k+o(1) for all fixed k.

We are talking about An
√

nMn, so E(|z |5 + |z ′|5) = Θ(n5/2).
Thus,

|EG (λ)− EG (λ′)| = O(n−5/2+o(1)).

Since we have to swap roughly n2/2 times, the total change is

O(n−1/2+o(1)) = o(1).



There is, however, a big problem with conditioning. Main Lemma 1
only holds if the rest of the matrix (entries we do not swap) is nice.
Bad event. There are two eigenvalues very close to each other.
Notice that the typical gap between two consecutive eigenvalues of
An =

√
nMn is of order Θ(1)

Lemma (Main Lemma 2)

For any constant c > 0
For any fixed 1 ≤ i ≤ n, P(λi+1(An)− λi (An) < n−c) ≤ n−.01.

This means Bad event happens rarely.



However, not rarely enough, as we have to proceed in roughly n2/2
steps. (The bound n−0.1 can be improved somewhat, but it cannot
be better than n−1/2 by a theoretical reason.

Lemma (Main Lemma 3)

One can put the Bad event into the function F .

This enables us to bound the Bad event just once.



Cauchy Interlacing Law. The eigenvalues ηj of a principal
(n − 1)× (n − 1) interlace λi .

λi ≤ ηi ≤ λi+1.

Recall that the typical gap λi+1 − λ between two consecutive
eigenvalues of An =

√
nMn is of order O(1) So ηi − λi = O(1).

However, at the edge of the spectrum, the λi+1 − λ is much
bigger. For example λ2 − λ1 = Θ(n1/3), with high probability.

Lemma (Main Lemma 4: Bias Interlacing law)

With high probability ηi − λi = O(1), for all i ≤ n/2. (A mirrow
inequality holds for the other end.)

For example, η1 is not in the middle of λ1 and λ2, it is glued to λ1.



Tools:

Linear algebra (Perturbation theory, Matrix analysis:
Hadamard’sprinciple.)

Probability ( Sharp concentration: Talagrand inequality,
Stieljes transform technique: Erdős-Schlein-Yau (strong rate
of convergence to SCL), Bai et. al. )

Combinatorics (Boosting).

High dimensional geometry (Berry-Essen bound in high
dimension) .



Bound the derivatives.
Bound the ”bad” event (gap property).
Put the bad event into the test function.
Bias Interlacing law.


